O工艺设计及调试
- 格式:pdf
- 大小:245.96 KB
- 文档页数:4
技术解析 | A2/O工艺原理、特点及效果改进措施作者:一气贯长空A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
工艺流程A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。
A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。
该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。
工艺原理1、首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。
2、在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。
3、在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。
污水处理厂A/A/O工艺调试技术施工工法前言污水处理厂A/A/O生物脱氮除磷工艺调试技术施工工法属于环境保护科学技术领域中污水处理专业,A/A/O工艺目前已广泛用于世界污水治理行业,目前在国内污水治理工艺中属于领先水平,但此工艺没有成套可循的调试规范,只能凭施工经验,为此总结编制本调试技术施工工法,以期达到对类似的工艺调试工程项目能够起到借鉴和指导作用。
本工法重点在于曝气池活性污泥培养与污泥驯化,难点在于根据污水各项分析指标调节内外回流比,即过程控制与调节。
本工法在观摩同类工艺的污水处理厂后并参照有关技术标准的前提下,通过在日处理40万吨的杭州七格污水处理厂的工艺调试的过程中总结与完善而成。
2特点本工艺调试技术施工工法切合实际、容易操作、经济适用、效果明显,对运用A/O、A/A/O 工艺的污水处理厂的工艺调试有广泛的指导意义。
本工艺调试关键技术是A/A/O 物脱氮除磷工艺的活性污泥的培养技术和过程调试控制与调节技术。
3本工艺调试技术施工工法,适用于采用A/O和A/A/O工艺的污水处理厂的工艺调试。
4材料性能接种污泥采用杭州四堡污水处理厂的脱水生污泥泥饼。
5工艺原理在进行A/A/O工艺调试之前,相关的调试技术人员必须了解其工艺原理。
了解各工段的生化反应状况,这样能在调试的过程中有针对性地工作,对圆满完成调试工作有直接指导意义。
一般污水处理厂在去除BOD。
和SS的同时,还要求脱氮并去除磷,A/A/O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合,其过程是:在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气层中,从而达到脱氮的目的;在好氧段,硝化细菌将氨氮通过生物硝化作用,转化成硝酸盐,从而把有机物转化成无机物,其关键是在污泥培养过程中通过分析工艺参数,根据工艺要求有效地控制曝气系统、外回流污泥系统、内回流混合液系统、剩余污泥排放以及ORP和pH值等一系列的过程调试。
倒置AAO工艺的设计特点与运行参数现有城市污水脱氮除磷技术主要有以下三大类:A2/O工艺、氧化沟法和SBR法,其中A2/O脱氮除磷工艺是应用较为广泛的一类,近十年来出现了倒置AAO工艺[’一’〕、A + A2/O工艺、Trizon工艺等改良型AZ/O工艺。
倒置AAO工艺的设计特点与常规 A2/O工艺相比,倒置AAO工艺省去了混合液内回流,适当加大了污泥回流比,其工艺流程如图1所示。
根据进水水质不同,通过缩短初沉时间或者取消初沉池(由超越管实现)来满足倒置AAO工艺的需要:初沉时间的缩短,一方面使得沉砂池出水中的微生物和部分或全部有机物直接进入生化反应系统,增加了反应池进水的有机物总量,保证了脱氮除磷新工艺对碳源的需要,提高了生化反应系统对氮、磷的去除效率;另一方面为微生物提供了良好的栖息场所,使系统的生物种类和数量都大幅度提高。
缺氧池、厌氧池配有搅拌设备,好氧池通过曝气维持供氧。
三个工艺段的作用如下:缺氧段,微生物利用进水中有机物为碳源,使得回流污泥带来的硝态氮反硝化,形成Nz或N,0,逸至大气中,达到脱氮目的;厌氧段,水中溶解氧和硝态氮结合氧均已消耗完毕处于厌氧状态,聚磷微生物利用胞内聚磷分解产生的能量吸收污水中的易降解COD,同时释放磷酸盐;好氧段前段主要降解污水中的有机质并过量吸磷,到好氧区后段则BOD大幅度降低,BOD/TKN值较低利于硝化菌的生长,主要进行硝化反应。
缺氧段、厌氧段并无严格的界限,主要取决于工艺构筑物采用的形式和前置反硝化的效果。
生化反应池较高的污泥浓度不仅从固定的生化反应池容积中争取到好氧池硝化所需要的反应容积,而且活性污泥絮体内部的缺氧微环境使得硝化和反硝化过程在曝气时段内就同步进行,从而为进一步提高系统的脱氮效率创造了条件。
倒置 A AO 工艺具有以下特点[4]:①缺氧区位于工艺系统首端,优先满足反硝化碳源需求,强化了处理系统的脱氮功能;②所有的回流污泥全部经过完整的厌氧释磷与好氧吸磷过程,具有“群体效应”,同时聚磷菌经过厌氧释磷后直接进人生化效率较高的好氧环境,其在厌氧状态下形成的吸磷动力可以得到充分利用,提高了处理系统的除磷能力;③通过取消初沉池或缩短初沉池停留时间,不仅增加了系统脱氮除磷所需的碳源,而且提高了处理系统内的污泥浓度,强化了好氧区内的同步反硝化作用,进一步缓解了处理系统内的碳源矛盾,提高了处理系统的脱氮除磷效率;④将常规AZ/O工艺的混合液回流系统与污泥回流系统合二为一组成了唯一的污泥回流系统,工艺流程简捷,运行管理方便,占地面积减少;⑤与常规AZ/O工艺相比,倒置AAO工艺的流程形式和规模要求与传统法工艺更为接近,在老厂改造方面更具推广优势。
污水AO工艺操作手册一、A/O工艺简介A/O工艺将前段缺氧段〔水解酸化段〕和后段好氧段〔接触氧化段〕串联在一起的污水处理工艺。
根本原理:缺氧段〔A段〕:主要依靠异养菌将废水中的大分子有机物、悬浮物、可溶性有机物通过水解作用,分解成小分子有机物,提高废水的可生化性。
同时,在缺氧段,异养菌可以将污染物分子链上的氨基断链,产生游离态氨。
好氧段〔O段〕:主要依靠硝化菌通过硝化作用将氨氧化成硝态氮、亚硝态氮。
最后,将好氧段泥水混合液回流至缺氧段,在反硝化菌的作用下,将硝态氮反硝化成氮气,完成对N元素的降解作用。
综述:在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进展好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进展氨化〔有机链上的N或氨基酸中的氨基〕游离出氨〔NH3、NH4+〕,在充足供氧条件下,自养菌的硝化作用将NH3-N〔NH4+〕氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将 NO3-复原为分子态氮〔N2〕完成C、N、O在生态中的循环,实现污水无害化处理。
主要特点:(1〕前段缺氧池中的反硝化菌可以充分利用反硝化菌,减轻好氧池的有机负荷;(2〕后段好氧池可以进一步降解缺氧段为降解的有机污染物,提高对有机污染物的去除效率;(3〕工艺流程简单,运行费用低;(4〕耐负荷冲击能力强。
影响因素:〔1〕MLSS污泥浓度。
污泥浓度一般大于3000mg/L,否那么将影响脱氮效果;〔2〕DO溶解氧值。
缺氧段DO值一般不大于0.2mg/L,好氧段DO值一般在2-4mg/L;〔3〕TKN/MLSS负荷率。
硝化反响中,TKN/MLSS负荷率不大于0.05gTKN/(gMLSS·d);〔4〕BOD/MLSS负荷率。
BOD/MLSS负荷率不大于0.18kgBOD/(gMLSS·d);〔5〕泥水混合液回流比。
AO工艺设计计算公式A/O工艺设计参数在A/O工艺的设计中,需要考虑以下参数:1.水力停留时间:硝化不少于5-6小时,反硝化不超过2小时,A段:O段=1:3.2.污泥回流比:50-100%。
3.混合液回流比:300-400%。
4.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N。
5.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d。
6.硝化段污泥负荷率:BOD5/MLSS<0.18KgBOD5/KgMLSS·d。
7.混合液浓度x=3000-4000mg/L(MLSS)。
8.溶解氧:A段DO2-4mg/L。
9.pH值:A段pH=6.5-7.5,O段pH=7.0-8.0.10.水温:硝化20-30℃,反硝化20-30℃。
11.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g 氧,生成3.75g碱度(以CaCO3计)。
12.需氧量Ro:单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nr。
其中,a’为平均转化1Kg的BOD的需氧量KgO2/KgBOD,b’为微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
13.Nr为被硝化的氨量,kd/d4.6为1kgNH3-N转化成NO3-所需的氧量(KgO2)。
对于不同类型的污水,其a’和b’值也有所不同。
最后,还需要考虑供氧量的问题。
由于充氧与水温、气压、水深等因素有关,因此氧转移系数应作修正。
ρ表示所在地区实际压力(Pa)与标准大气压下Cs值的比值。
公式为ρ=实际Cs值/(Pa)=所在地区实际压力(Pa)/(Pa)。
污水处理A/O工艺设计参数1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝化脱氮,故两池的容积大小对总氮的去除率极为重要。
A/O的容积比主要与该废水的曝气分数有关。
缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。
借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。
而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m(NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。
另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。
后将A/O容积比按1:6改造,缺氧池运行平稳。
1.1、A/O除磷工艺的基本原理A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。
在厌氧、好氧交替条件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过量去除系统中的磷。
其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。
聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。
这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。
厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。
A/O工艺生物脱氮工艺原理、设计与计算(一)工艺流程A/O工艺以除氮为主时,基本工艺流程如下图1。
图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。
分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。
合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下因数影响:溶解氧 (0.5~1.5mg/L)、污泥负荷[0.1~ 0.15kgBOD5/(kgMLVSS•d)]、C/N比(6~7)、pH值(7.5~8.0) ,而不易控制。
对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NO3-N还原成N2,不需外加碳源。
反硝化池还原1gNOx-N产生3.57g碱度,可补偿硝化池中氧化1gNH3-N所需碱度(7.14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH值,反硝化池残留的有机物可在好氧硝化池中进一步去除。
一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。
图2 分建式缺氧一好氧活性污泥脱氮系统图3 合建式缺氧好氧活性污泥脱氮系统(二)A/O工艺生物脱氮工艺的特点1.优点①同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。
②反硝化缺氧池不需外加有机碳源,降低了运行费用。
③好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高了出水水质。
④缺氧池中污水的有机物被反硝化菌所利用,减轻了好氧池的有机物负荷,同时缺氧池中反硝化产生的碱度可弥补好氧池中硝化需要碱度的一半。
焦化污水处理A-A-O工艺的开工调试天津铁厂焦化厂王春刚石拥军关键词:焦化厂、污水处理工艺、开工调试、结论一、概况:天津铁厂焦化厂现有焦炉四座其中1#2#为42孔58-Ⅱ型、3#为JN-80型、4#为58-I型,年设计焦炭产量为112万吨,日产煤气130万m3,原生化污水处理工艺是1990年建成投产的O-O工艺,设计规模为100m3/h污水,分两系运行,用于处理炼焦和煤气净化过程中产生的污水,该污水主要污染物有酚、氰、氨氮、吡啶及多环芳香族化合物等,属成分复杂的难于生物降解的典型工业污水。
原生化污水处理系统设计为生化脱酚装置,该装置由预处理、生化处理,以及分析化验等部分组成。
O-O工艺流程:2004年5月底,我厂由鞍山焦耐院设计,在污水处理的基础上将生物脱酚装置改为生物脱氮装置即O-O工艺改造为A-A-O工艺。
该工艺把原均合池改建为厌氧池,原曝气池一段改建为缺氧池,曝气池二段改建为好氧池,一沉池改为事故备用水池,二沉池改建为新工艺的沉淀池。
分两系运行,增设有生物过滤罐系统,设计规模处理100m3/h污水。
进入生化工段的水质如下:挥发酚≤1300mg/l,氰化物≤350mg/l,焦油≤50mg/l,氨氮≤400mg/l,COD≤4200mg/l,PH值9~10。
二、开工前的准备:1、各种设备试运转正常。
2、各种化验设备齐全。
3、污水处理所需药剂准备充足。
4、在厌氧池和缺氧池的花环上挂满污泥。
5、在好氧池中注入剩余污泥已备培养和驯化。
三、开工步骤:1、开工方案我厂新蒸氨工艺于2004年3月建成并投入开工调试。
生化A-A-O工艺于2004年5月28日进行开工调试,在调试的第一个月内原O-O工艺正常运行。
从开工之日起,好氧池污泥培养及驯化时间为一个月;缺氧池污泥的培养及驯化时间为一个半月;厌氧池污泥的培养及驯化时间为2~3个月。
2、向好氧池投加接种污泥由原O-O工艺所产剩余污泥每日向好氧池排放3~5小时。