02 定向井井眼轨迹设计解析
- 格式:ppt
- 大小:558.50 KB
- 文档页数:53
21我国的油气资源在不断的勘探开发过程中,生产开采条件日益恶化,在这种情况下断层遮挡、复杂地层油田区块的勘探开发受到了高度重视,在针对上述油田区在进行开发的过程中定向井钻井技术得到了广泛应用,使得油田开采效率得到全面提升,钻井成本也得到有效控制。
一、定向井直井段轨迹控制技术分析在定向井钻井施工过程中井眼轨迹剖面设计是非常关键的一个环节,只有针对井眼轨迹进行不断完善优化才能充分保障井眼轨迹设计的科学性和合理性,从而实现定向井钻井施工目标。
具体针对定向井井眼轨迹剖面进行优化设计的时候必须要坚持以下一些原则。
优化设计要以实现定向井钻井地质目标为基本出发点,在定向井钻井施工过程中涉及到了穿越多个油层提升勘探效果、避开断层开采剩余油储层、实现在目的层中大范围延伸井眼轨迹增加油藏裸露面积等一些地质目标[1],与此同时,在钻井施工过程中一旦发生安全事故会对油井正常开采产生严重影响,充分利用定向井钻井技术可以针对目的性进行侧钻来达到勘探开发目标,而如果在实际开发过程中由于地面存在障碍物而导致正常钻井施工无法正常进行,也可以充分利用定向井来实现勘探开采,为了能够最大程度节约钻井施工成本,可以充分利用丛式定向井钻井平台进行钻井施工,这样就能够最大程度减小平台占地面积;在进行造斜点设计的过程中要保证其尽量避开容易出现坍塌、缩径、漏失等事故的地层,而且要将井斜角严格的控制在15~45°之间,如果井斜角设置过大会进一步增加钻井施工难度,甚至会引发钻井安全事故,而如果井斜角设置过小,又会导致在实际断裂使用过程中钻井方位出现不稳定现象。
2.定向井钻井轨道设计在当前在油田钻井施工过程中定向井可以按照施工目的以及具体用途的不同进一步划分为常规定向井、丛式井以及大位移井等几种类型,通常情况下常规定向井水平位移不会超过1km,而且垂直深度处在3km以内;丛式井在实际应用过程中能够最大程度减小井场面积;大位移井通常情况下采取的都是悬链曲线轨道,井眼轨迹在设计过程中主要采取的是高稳斜看一下角和低造斜率。
02定向井井眼轨迹设计解析定向井井眼轨迹设计是一项重要的工作,它对于成功完成定向井任务至关重要。
一个合理的井眼轨迹设计可以确保井眼轨迹在储层目标上的准确位置,有助于实现钻井目标的高效达成,并最大化产出。
井眼轨迹设计的目标是安全、经济、高效地达到钻井目标。
在进行井眼轨迹设计时,需要综合考虑以下因素:1.井位布置:井位的选择是井眼轨迹设计的基础。
在选择井位时,需要充分考虑储层位置、产能分布、地质条件等因素,以确保最佳井位布置。
2.井眼弯曲:井眼轨迹设计中,需要考虑井眼弯曲的角度和半径,以确保钻井设备能够顺利通过管柱并避免钻井事故的发生。
3.接触储层的长度:在确定井眼轨迹的设计时,需要确定接触储层的长度。
根据储层情况,可能需要调整井眼轨迹的角度和位置,以确保最大限度地接触到储层。
4.钻井流程:井眼轨迹的设计需要根据钻井流程来考虑,包括井口钻头运动、钻头下压和旋转等。
通过合理的井眼轨迹设计,可以最大程度地提高钻井效率,减少钻井时间和成本。
5.地震数据和井速数据:井眼轨迹的设计还需要考虑地震数据和井速数据。
通过分析这些数据,可以更好地预测井眼轨迹,减少风险,提高钻井成功率。
在进行井眼轨迹设计时,通常会使用计算机软件进行模拟和优化。
这些软件可以根据输入的数据和条件,生成最佳的井眼轨迹设计方案。
在生成方案后,还需要进行验证和调整,以确保方案的可行性和成功性。
总结起来,定向井井眼轨迹设计是一项综合性、复杂性的工作。
它需要综合考虑多种因素,包括井位布置、井眼弯曲、接触储层长度、钻井流程和地震数据等。
通过合理的井眼轨迹设计,可以提高钻井效率,减少风险,并最大化产出。
1.井眼轨迹的基本概念1.1定向井的定义定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。
(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。
1.2井眼轨迹的基本参数所谓井眼轨迹,实指井眼轴线。
测斜:一口实钻井的井眼轴线乃是一条空间曲线。
为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。
测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。
这些井段被称为“测段”,这些点被称为“测点”。
基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。
这三个参数就是轨迹的基本参数。
井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。
井深是以钻柱或电缆的长度来量测。
井深既是测点的基本参数之一,又是表明测点位置的标志。
井深常以字母L表示,单位为米(m)。
井深的增量称为井段,以ΔL表示。
二测点之间的井段长度称为段长。
一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。
井深的增量总是下测点井深减去上测点井深。
井斜角:井眼轴线上每一点都有自己的井眼前进方向。
过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。
井眼方向线与重力线之间的夹角就是井斜角。
井斜角常以希腊字母α表示,单位为度(°)。
一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。
井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。
井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。
井斜方位角常以字母θ表示,单位为度(°)。
井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。
定向井大井眼轨迹控制技术与应用研究随着石油勘探和开发的深入,油田开采已经从传统的常规井向复杂、多变的非常规油气资源过渡。
在这个过程中,非常规油气资源的开发已经成为石油勘探开发领域的一个重要趋势。
定向井和大井眼轨迹控制技术的研究与应用对于提高油气开采效率和降低成本具有重要意义。
本文将从定向井大井眼轨迹控制技术的基本原理、方法和应用进行详细介绍和分析。
一、定向井大井眼轨迹控制技术的基本原理1. 定向井的定义和特点定向井是指在垂直井的基础上,通过合理的井眼轨迹设计和控制技术,使得井眼轨迹不再垂直,而是朝向目标油田地层,从而提高油气的开采效率。
定向井的特点包括:井眼轨迹复杂、井深较大、井眼弯曲度较大、工程技术难度大等。
2. 大井眼轨迹控制技术的定义和特点大井眼是指井眼的直径超过8.89厘米(3.5英寸)的井眼。
大井眼轨迹控制技术是指通过合理的井眼轨迹设计和控制技术,使得大井眼的井眼轨迹能够达到设计要求,从而满足作业要求。
大井眼轨迹控制技术的特点包括:井眼直径大、井眼轨迹复杂、控制精度高等。
1. 定向井大井眼轨迹设计方法定向井大井眼轨迹设计是指根据地质结构和矿层分布,选择合适的井眼轨迹形式和参数,使得井眼轨迹能够有效地穿过目标地层,实现油气的产量最大化。
定向井大井眼轨迹设计方法包括:平面轨迹设计、垂直井眼深度设计、水平井眼深度设计、井眼弯曲率设计等。
定向井大井眼轨迹控制方法是指通过合适的井眼轨迹控制技术,使得井眼轨迹能够达到设计要求。
定向井大井眼轨迹控制方法包括:钻井液性能控制、地层动力学控制、钻具运输控制等。
随着页岩气开发的深入,定向井大井眼轨迹控制技术在页岩气开发中得到了广泛的应用。
通过合理的井眼轨迹设计和控制技术,能够有效地穿过页岩气层,实现页岩气的连续生产。
定向井大井眼轨迹控制技术在页岩气开发中的应用为页岩气的高效开发提供了重要的技术支撑。
水平井是指井眼的有效水平长度大于井眼垂直长度的特殊井眼形式。
解悉定向井井眼轨迹最优化设计方法现如今我国的定向井已经越来越发达,井眼轨迹的变化也非常的多,定向井侧钻井挖的越来越深,对于我们方便了许多,为祖国做出了非常大的贡献,但其中的过程是非常复杂的,艰难的,还需要做出许多的改变,使定向井变得越来越完美,能更好的利用在我们的生活中,我们需要克服更多的困难,提高定向井的效率,使它变得越来越方便。
标签:优化方法;定向井轨迹;定向井研究定向井是近百年来最常用的一种方法。
我们的油田开采大多都需要定向井钻井技术,使用定向井解决的困难也越来越多,定向井是一种非常有技术含量的钻井方法,它完成了许多普通钻井技术不能完成的工作。
定向井需要测量与科学技术的协调来完成开采工作,并不简单,但随着我国不断发展,人才越来越多,对于定向井的钻井技术投入的也越来越多,因此定向井更有效的帮助了我们对于地下的开采与探索。
定向井技术对于我们来说非常的重要,所以需要不断地改造以及提升。
一:定向井的轨迹和研究1.1井眼轨迹定向井是开采地下的工具,而这个工具需要测量仪器的辅助,在地下开采过程的演变中,定向井的钻井技术有了很大的提高,方便了许多,而井眼的轨迹有许多种,有水平位移的,有可以绕开地面障碍的,有各种开采方式的轨道。
有了定向井后地下开采就方便了许多,以前不能开采的路线通过定向井又可以重新开始开采。
定向井井眼轨迹在地下行动起来,可以减少地面的井场占地面积,节省了部分资金,可以说是方便了许多,还适用于地下的条件,节省了许多开采的時间,更方便于开采到更多的矿物质资源,实用技术高超。
1.2 定向井的作用现如今,定向井的钻井技术适用于我国的多数地下矿物以及油田开采,要开发地下的油田和地下矿物资源,唯一的办法就是在开发地下附近打定向井。
我国对定向井钻井技术有了更多的投入,对于定向井的优化也很努力,所以定向井钻井技术发展得越来越快,世界上的定向井最大水平位移超过了5000米,水平井最大水平位移超过了10000米。
定向井钻井轨迹设计与控制技术研究摘要:在定向井钻井过程中,井眼轨迹的设计和控制至关重要,它可以决定定向井施工的成败。
因此,有必要进一步探索定向井井眼轨迹的设计和控制技术,以实现安全、优质、高效的定向井施工。
定向井轨迹的选择对钻井施工的安全、高效、低成本起着重要作用。
关键词:定向井;钻井轨迹;设计;轨迹控制前言近年来,随着钻井工程技术和钻井设备的不断改进,钻井技术得到了快速发展。
定向钻井作为一种非常重要和实用的钻井方法,受到了人们的极大关注。
井眼轨迹设计技术是一整套钻井技术中的第一个关键环节。
定向井是指根据预先设计的井斜方向和井筒轴线形状钻探的井。
换句话说,任何设计目标偏离井口所在垂直线的井都属于定向井。
定向井是相对于垂直井而言的,根据设计的井筒轴线分为二维定向井和三维定向井。
由于油气资源短缺以及当前油气生产中遇到的问题,为定向井轨迹设计提供了广阔的发展前景和空间。
定向井轨迹的设计方法和实际钻井偏移测量理论将是研究的重要趋势。
现在,进入计算机快速发展时期,将现有和更成熟的工程模型计算机化,以提高现场施工人员的工作效率;另一方面,准确及时地将现场数据输入计算机,为未来的数据统计和科研分析提供第一手现场真实数据。
因此,利用定向井轨迹设计的软件实现和强大的计算机编程功能,实现了定向井轨迹优化设计软件的研究。
通过不断的实验和改进,设计的轨迹不仅满足了施工现场条件的限制,而且是满足各种设计条件的理想轨迹。
1.定向井轨迹概念井眼轨迹可分为两类:设计轨迹和实际钻井轨迹。
其中,设计轨迹可分为钻孔前设计的轨迹和钻孔过程中钻孔时修改或调整的轨迹。
设计轨迹通常由一些分段的特殊曲线组成,具有很强的规律性。
设计轨迹和实际钻井轨迹都是连续光滑的空间曲线,只有一条线,在三维空间中随机变化,没有任何规则可循。
为了表达这样的曲线,可以使用图形来显示井轨迹的形状,或者使用几何参数来描述井轨迹的形式。
这两种方法相互补充,并且通常以一种既考虑到图形方法的视觉和直观特性,又考虑到精确和灵活的分析参数的优势的方式应用。
井眼轨迹设计引言 (1)1井轨道设计依据 (1)2设计原则 (1)3设计步骤 (2)4基础数据 (3)5井身剖面设计参数 (3)6参考文献 (10)引言井眼轨道是指在一口井钻进之前人们预想的该井井眼轴线形状。
井眼轨迹是指一口已钻成的井的实际井眼轴线形状。
按照设计轨道的不同,井可以分为两大类:直井和定向井。
对于直井来说,井眼轴线就是一条铅垂线,不需要进行专门的设计。
定向井是指按照预先设计的井斜方位和井眼的轴线形状进行钻进的井,凡是设计目标偏离井口所在铅垂线的井都属于定向井。
1井轨道设计依据(1)以地质设计给定的入靶点、终止点垂深及大地测量坐标为依据。
(2)根据给定的井口坐标和靶点坐标,完成单井设计。
2设计原则(1)轨道设计应根据油藏特性及地质要求、区域地质资料和工程资料,结合造斜工具的造斜能力、井眼轨迹控制技术水平以及地面、地下条件,选择造斜率、靶前位移、造斜点深度,调整井段长度及位置,并应经过多次循环调整,优选上述参数。
(2)在地层岩性及造斜工具的造斜能力都确定时,增斜段应选择单增斜轨道。
在地层岩性及造斜工具的造斜能力都较稳定时,应选择靶前位移较小、造斜率较高和增斜段较少的轨道。
反之,在确定造斜率、靶前位移和增斜段的数量时要留有充分的控制余地。
(3)造斜点应选可钻性较好,无坍塌、无缩径的地层。
(4)调整井段的位置应放在最后一个增斜段之前。
(5)对确定的井眼轨道,应进行典型钻具组合的摩擦阻力和扭矩计算,并以此为根据进行钻机选型和钻具强度校核。
3设计步骤关键参数计算图1多靶三段式轨道给定t D 、t S 、a D 、a S 、a ∂、z K 、0θ、t ∂、m L ∆、b α,需计算的关键参数为t S 、w L ∆。
由图 可得)sin (sin )cos (cos tan z t a b a t b a z a t R D D R S S ∂-∂--∂-∂--=∂ (3-1)令:a z a t e R D D D ∂+-=sin (3-2) a z t R S S S ∂--=cos a e (3-3)z R R =e (3-4)则得:be e be b R D R S an ∂-∂+=∂sin cos t e (3-5)将 be e be e b R D R S ∂-∂+=∂sin cos sin (3-6)2tan 12tan 1cos 22bbb ∂+∂-=∂ (3-7) 代入式(3-5)中并简化,可得:222w e e e R S D L ++=∆ (3-8)ba b b a t a R D D S S ∂∂-∂--∂-+=cos )cos(1tan )(zt (3-9)4基础数据5井身剖面设计参数根据设计,选定造斜率m 30/391.2︒=K表2 轨迹主要点数据表126 3660 88.73 222.4 2437.83 -1047.95 -1076.33 1502.05 0 127 3690 88.73 222.4 2438.49 -1070.1 -1096.56 1532.01 0 128 3720 88.73 222.4 2439.15 -1092.25 -1116.78 1561.98 0 129 3750 88.73 222.4 2439.81 -1114.4 -1137 1591.94 0 130 3780 88.73 222.4 2440.48 -1136.55 -1157.23 1621.91 0 131 3810 88.73 222.4 2441.14 -1158.7 -1177.45 1651.87 0 132 3840 88.73 222.4 2441.8 -1180.85 -1197.68 1681.84 0 133 3870 88.73 222.4 2442.46 -1203 -1217.9 1711.8 0 134 3900 88.73 222.4 2443.13 -1225.14 -1238.12 1741.77 0 135 3930 88.73 222.4 2443.79 -1247.29 -1258.35 1771.73 0 136 3960 88.73 222.4 2444.45 -1269.44 -1278.57 1801.7 0 137 3990 88.73 222.4 2445.11 -1291.59 -1298.79 1831.66 0 138 4020 88.73 222.4 2445.78 -1313.74 -1319.02 1861.63 0 139 4050 88.73 222.4 2446.44 -1335.89 -1339.24 1891.59 0 140 4080 88.73 222.4 2447.1 -1358.04 -1359.46 1921.56 0 141 4110 88.73 222.4 2447.76 -1380.19 -1379.69 1951.52 0 142 4140 88.73 222.4 2448.42 -1402.33 -1399.91 1981.49 0 143 4170 88.73 222.4 2449.09 -1424.48 -1420.14 2011.45 0 144 4200 88.73 222.4 2449.75 -1446.63 -1440.36 2041.41 0145 4211.3488.73 222.4 2450 -1455 -1448 2052.74 0备注:施工前请地质、监督部门和定向井服务单位认真做好基础数据、包括海拔、钻机补心高的复核工作,以确定实际井深,以确保钻井施工顺利进行。
定向井井眼轨迹控制影响因素分析及对策定向井是石油钻井中的一种重要方式,它可以实现在垂直井的基础上对井眼轨迹进行控制,从而实现定向钻井。
而井眼轨迹控制是定向井施工中的一个重要环节,其受到诸多因素的影响。
本文将对定向井井眼轨迹控制的影响因素进行分析,并提出相应的对策。
一、地质条件地质条件是定向井井眼轨迹控制的第一影响因素。
地质条件的不同会对井眼轨迹控制产生影响。
在软岩层或者易塌陷地层中,井眼稳定性较差,容易造成井眼偏离预定轨迹。
而在钙质硬岩地层中,地质层中的钙质岩石非常坚硬,钻头容易磨损,施工难度增大。
对策:在软岩地层中,可采用增加泥浆密度、使用防塌剂等措施加强井眼的稳定性;在钙质硬岩地层中,可采用高硬度的钻头和强力的钻井液,同时加强对钻头的冷却和减少摩擦,从而降低钻头磨损,提高施工效率。
二、井眼轨迹设计井眼轨迹设计是定向井施工的基础。
井眼轨迹设计的合理与否直接影响到井眼轨迹的控制效果。
井眼轨迹设计不合理,很可能导致井眼偏离预定轨迹,甚至无法按设计要求完成。
对策:在井眼轨迹设计时,首先需要充分了解地质情况,选择合适的斜度和方向,同时要考虑到地层的变化情况,进行合理的设计。
同时还可以通过模拟软件进行仿真计算,进一步优化设计方案。
这样可以确保井眼轨迹的合理性和施工的可行性。
三、钻井液性能钻井液在定向井中起到润滑、扶正、冷却、防止井壁塌方等多种作用。
钻井液的性能对井眼轨迹控制有着重要的影响。
如果钻井液的密度不合适,那么井眼稳定性会受到影响,容易导致井眼的偏离。
对策:在选择钻井液时,首先要充分了解地质条件,选择合适的钻井液类型和密度,根据地层特点进行调整。
也要注重钻井液的循环和质量管理,确保钻井液的性能稳定。
四、钻具及工艺参数钻具及工艺参数也是影响井眼轨迹控制的重要因素。
如果选择的钻头强度不够,或者使用的扶正工艺参数错误,都会影响到井眼轨迹的控制效果。
对策:在选择钻头时,应充分考虑地层特点和井眼轨迹设计要求,选择合适的钻头型号和强度。