第三章 贪心算法
- 格式:ppt
- 大小:1.23 MB
- 文档页数:42
贪心算法实验报告算法实验贪心法实验报告西安邮电大学(计算机学院)课内实验报告实验名称:贪心算法专业名称:班级:学生姓名:学号(8指导教师:实验日期:一. 实验目的及实验环境1.练习掌握最有分解问题的规划设计与实现;2.熟练掌握递归算法的设计及应用,怎样才能使算法的空间复杂度和时间复杂度最低;基于Linux系统下的ubuntu或其他的编辑器二. 实验内容1. 设n是一个正整数,现在要求将n分解为若干互不相同的自然数的和,且使这些自然数的乘积最大三.方案设计1.先将这个数分解成以2开始的连续的若干因子,它们的和加起来是n,将此数在后项优先的方式下均匀地分给前面各项。
保证正整数所分解出的因子之差的绝对值最小,即| a – b |最小,可以保证分解乘积越大。
四.测试数据及运行结果1.正常测试数据(3组)及运行结果;A.2.非正常测试数据(2组)及运行结果A.B.五.总结1.实验过程中遇到的问题及解决办法;在实验过程中错误不断地出现,我认真地查阅书籍,研究课本上例题,并且在同学的帮助下纠正了自己的错误,得出了正确的结果。
2.对设计及调试过程的心得体会。
在程序的运行与调试过程中出现了很多错误,但是通过自己复习课本知识、查询资料等,修改后得出了正确的结果。
而且我觉得自己一定要敢于尝试,即使没有结果但是勇于实践就会有意想不到的收获。
所以在以后的学习中我觉得我们一定要集中精力、端正自己态度,提高自己的成绩。
当然我也认识到了自己的薄弱之处,因此我一定争取做的能让自己满意,做的更好。
六.附录:源代码(电子版)#include#includevoid open_file(int n){FILE *fp;if((fp=fopen(“input.txt”,”wt”))==NULL) {printf(“the file write failed.\n”);exit(1);}fprintf(fp,”%2d\n”,n);fclose(fp);}void save_file(int sum){FILE *fp;if((f p=fopen(“output.txt”,”wt”))==NULL) {printf(“ the file save failed!.\n”);exit(1);}fprintf(fp,”%2d\n”,sum);fclose(fp);if((fp=fopen(“output.txt”,”r”))==NULL) {printf(“save file failed!\n”);exit(1);}fscanf(fp,”%2d”,&sum);printf(“\n鏈€澶х?d\n”,sum);fclose(fp);}int MAX(int n){int i=2,j=0,data[n],sum=0,max=1; int lenth; while(sum+i{sum+=i;data[j]=i;i++;j++;}lenth=j;i=n-sum;while(i>0){if(j{data[j+i]+=1;i--;j--;}else{data[j-1]+=1;i--;j--;}}for(i=0;imax*=data[i];return max;}int main(){int n,max;srand((unsigned)time(NULL)); n=rand()%100; open_file(n);printf(“ 杩欎釜鏁版槸%d:\n”,n); max=MAX(n); save_file(max);return 0; }百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。
贪心算法的基本原理贪心算法(Greedy Algorithm)是一种常用的算法思想,它在求解最优化问题时通常能够得到较好的近似解。
贪心算法的基本原理是:每一步都选择当前状态下的最优解,从而希望最终能够得到全局最优解。
在实际应用中,贪心算法常常用于解决一些最优化问题,如最小生成树、最短路径、任务调度等。
一、贪心算法的特点贪心算法具有以下特点:1. 简单:贪心算法通常比较简单,易于实现和理解。
2. 高效:贪心算法的时间复杂度通常较低,能够在较短的时间内得到结果。
3. 局部最优:每一步都选择当前状态下的最优解,但不能保证最终能够得到全局最优解。
4. 适用范围:贪心算法适用于一些特定类型的问题,如无后效性、最优子结构等。
二、贪心算法的基本原理贪心算法的基本原理可以概括为以下几个步骤:1. 初始状态:确定问题的初始状态,定义问题的输入和输出。
2. 状态转移:根据当前状态,选择局部最优解,并更新状态。
3. 筛选解:判断当前状态下是否满足问题的约束条件,若满足则保留该解,否则舍弃。
4. 终止条件:重复以上步骤,直至满足终止条件,得到最终解。
三、贪心算法的应用举例1. 找零钱:假设有 25、10、5、1 四种面额的硬币,需要找零 41 元,如何使得找零的硬币数量最少?贪心算法可以先选择面额最大的硬币,然后逐步选择面额较小的硬币,直至找零完毕。
2. 区间调度:给定一组区间,如何选择最多的互不重叠的区间?贪心算法可以先按照区间的结束时间排序,然后依次选择结束时间最早的区间,直至所有区间都被覆盖。
3. 最小生成树:在一个连通的带权无向图中,如何选择边使得生成树的权值最小?贪心算法可以按照边的权值从小到大排序,然后依次选择权值最小且不构成环的边,直至所有顶点都被连接。
四、贪心算法的优缺点1. 优点:贪心算法简单高效,适用于一些特定类型的问题,能够在较短的时间内得到近似最优解。
2. 缺点:贪心算法不能保证一定能够得到全局最优解,可能会出现局部最优解不是全局最优解的情况。
贪心算法(Greedy Algorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。
贪心算法并不总是得到问题的最优解,但对许多问题它能产生整体最优解或整体最优解的近似解。
下面是一个简单的贪心算法模板,用于解决一些优化问题:pythondef greedy_algorithm(input_data):# 初始化结果变量result = []# 根据输入数据的特性进行排序或预处理sorted_data = sort_or_preprocess(input_data)# 遍历排序后的数据for item in sorted_data:# 检查是否满足某个条件,例如是否可以选择该元素if can_choose(item, result):# 如果满足条件,则选择该元素并更新结果result.append(item)# 可能还需要执行一些额外的操作,例如更新状态或计数器update_state(result, item)return result# 根据具体问题的需要,实现排序或预处理函数def sort_or_preprocess(input_data):# 对输入数据进行排序或预处理pass# 根据具体问题的需要,实现选择条件函数def can_choose(item, result):# 检查是否可以选择该元素pass# 根据具体问题的需要,实现状态更新函数def update_state(result, item):# 更新状态或计数器pass请注意,这只是一个通用的贪心算法模板,具体实现会根据问题的不同而有所变化。
在实际应用中,你需要根据问题的特点来设计合适的排序、选择和状态更新策略。
同时,也需要验证贪心策略是否能够得到全局最优解,或者是否能够得到满意的近似解。
1。
第三章名词解释1.最小化(minimize)指DFA M状态数的最小化,是指构造一个等价的DFA M',而后者有最小的状态。
2.标示符(IDentifier)是指用来标识某个实体的一个符号。
在不同的应用环境下有不同的含义。
3.正规表达式(regular expression)是说明单词的模式(pattern)的一种重要的表示法(记号),是定义正规集的工具。
4.正规式(Normal form)正规式也称正则表达式,也是表示正规集的数学工具。
5.正规集(Normal set)如果把每类单词视作一种语言,那么每一类单词的全体单词组成了相应的正规集。
6. 有限状态自动机(finite state automaton)有限状态自动机拥有有限数量的状态,每个状态可以迁移到零个或多个状态,输入字串决定执行哪个状态的迁移。
有限状态自动机可以表示为一个有向图。
有限状态自动机是自动机理论的研究对象。
7.词法分析器(Lexical analyzer)词法分析是指将我们编写的文本代码流解析为一个一个的记号,分析得到的记号以供后续语法分析使用。
8.确定的有限自动机(DFA: Deterministic Finite Automata)自动机的每个状态都有对字母表中所有符号的转移。
9.五元式(Five element type)由五个要素组成的式子K:由有限个状态组成的集合∑:由有限个输入字符组成的字母表f:从K到∑的单值映射,q),(,指明当前态为p,输入字符a,下一个状态为qf=pas:一个属于K的特定状态,称之为初始状态Z:若干个属于K的特定状态,它们组成的集合称之为终态集,记为Z。
10.非确定的有限自动机(NFA:Non deterministic finite automaton)自动机的状态对字母表中的每个符号可以有也可以没有转移,对一个符号甚至可以有多个转移。
自动机接受一个字,如果存在至少一个从q0 到 F 中标记(label)著这个输入字的一个状态的路径。
贪心算法及几个常用的例题贪心算法:一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。
必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
二、贪心算法的基本思路:1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。
三、贪心算法适用的问题贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。
一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
四、贪心算法的实现框架从问题的某一初始解出发;while (能朝给定总目标前进一步)利用可行的决策,求出可行解的一个解元素;由所有解元素组合成问题的一个可行解;五、贪心策略的选择因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
几个经典的例子:一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。
也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。
贪心算法的基本思路如下:1. .建立数学模型来描述问题。
2. 把求解的问题分成若干个子问题。
3. 对每个子问题求解,得到每个子问题的局部最优解。
4. 把每个子问题的局部最优解合成为原来问题的一个解。
算法设计课程设计零钱问题一、课程目标知识目标:1. 学生能理解零钱问题的实际背景,掌握其转化为算法问题的方法。
2. 学生能够掌握贪心算法的基本概念及其在零钱问题中的应用。
3. 学生能够运用所学算法,解决至少三种不同组合的零钱问题,并能够解释算法的执行过程。
技能目标:1. 学生通过分析零钱问题,培养将实际问题抽象为算法问题的能力。
2. 学生能够编写简单的程序代码,实现零钱问题的算法解决方案。
3. 学生通过小组合作,提高沟通协作能力,共同完成算法的设计与优化。
情感态度价值观目标:1. 学生在解决零钱问题的过程中,培养对算法设计的兴趣,增强学习算法的自信心。
2. 学生通过探讨算法的优劣,形成批判性思维,学会从多角度分析问题。
3. 学生能够认识到算法在生活中的广泛应用,认识到学习算法的重要性,树立正确的价值观。
课程性质:本课程为零钱问题的算法设计,以实践操作和小组合作为主要教学方式,注重培养学生的实际操作能力和团队协作精神。
学生特点:学生处于能够理解基本算法概念,具备一定编程基础,对实际应用问题充满好奇的阶段。
教学要求:教师需引导学生通过实际案例导入课程,激发学生的学习兴趣,以任务驱动法组织教学,注重学生个体差异,提供个性化指导。
在教学过程中,关注学生的学习成果,及时给予反馈,确保课程目标的达成。
二、教学内容本课程以零钱问题为载体,结合以下教学内容,确保学生掌握算法设计的基本原理和方法。
1. 算法概述:- 算法的基本概念及分类- 算法的效率分析:时间复杂度和空间复杂度2. 贪心算法:- 贪心算法的定义及特点- 贪心算法在零钱问题中的应用3. 零钱问题算法设计:- 零钱问题的实际背景和数学模型- 贪心算法解决零钱问题的步骤和方法- 举例分析:至少三种不同组合的零钱问题4. 编程实践:- 编程环境与工具介绍- 编写代码实现贪心算法解决零钱问题- 小组合作:讨论、优化算法,提高解决问题的效率5. 教学进度安排:- 第一课时:算法概述、贪心算法基本概念- 第二课时:零钱问题背景、数学模型及贪心算法应用- 第三课时:编程实践、小组合作探讨优化算法- 第四课时:成果展示、评价与反馈教学内容关联教材章节:第三章 算法设计与分析,第三节 贪心算法及其应用。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
贪心算法在最优化问题中的应用研究第一章:引言贪心算法是在最优化问题中被广泛应用的一种算法。
在计算机科学领域中,贪心算法是一种启发式算法,通过在每个步骤中选择最优解决方案来达到整体最优解决方案。
贪心算法的特点是该算法快速简单且易于理解。
在不同的最优化问题中,贪心算法具有不同的应用方法和实现方式。
本文将介绍贪心算法的基本原理和应用方法,并从实际问题出发,分析贪心算法在最优化问题中的应用实例。
第二章:贪心算法基本原理贪心算法是一种求解最优解的启发式算法。
贪心算法在每个步骤中选择当前状态下的最优解,使得整体解决方案达到最优化。
贪心算法与动态规划、分支界限等算法相比较,贪心算法具有简单快速的特点。
贪心算法的过程如下:1、定义最优解。
2、根据问题定义选择一个最优解策略。
3、根据最优策略,在当前状态下选择最优的解。
4、对于已选择的最优解,在下一个状态下重复步骤3,直到达到最优解。
贪心算法的正确性需要证明,即要证明每一步选择的最优解可以达到整体最优解。
第三章:贪心算法应用方法针对不同的最优化问题,贪心算法具有不同的应用方法。
本节将从两个方面来介绍贪心算法应用的两种方法。
1、构造法贪心算法通过构造法实现。
通常情况下,构造法通过从剩余选项中选择当前状态下的最优解。
举例说明,对于背包问题,贪心算法以价值单位最高为准则优先选取物品装入背包中。
在霍夫曼编码问题中,贪心算法选择以最小的频率为基准选择编码,这样可以使总编码长度最小。
2、优化法贪心算法通过优化法实现。
通常情况下,优化法通过贪心算法的思路对问题进行重构。
这样,在选择最优状态时,将避免一些不必要的无效状态。
举例说明,对于旅行推销员问题,贪心算法可以通过选择离当前节点距离最近的邻居节点,避免重复和无效的状态。
第四章:应用实例贪心算法在不同的实际问题中得到了充分的应用。
在本章中,将通过两个实际问题来展示贪心算法的具体应用。
1、硬币找零贪心算法在硬币找零问题中得到了应用。