第6章 贪心算法资料.
- 格式:ppt
- 大小:324.00 KB
- 文档页数:34
C语言的贪心算法贪心算法是一种在每一步选择中都采取当前状态下最优的选择,从而希望能够获得全局最优解的算法策略。
C语言中实现贪心算法相对简单,下面将详细介绍贪心算法的基本思想、应用场景以及一些常见问题。
一、贪心算法的基本思想贪心算法的基本思想是每一步选择中都采取当前状态下最优的选择,也就是局部最优解。
它的核心思想是:当面临一个问题时,选择当前最优解作为解决方案,并希望通过这种局部最优解的选择,最终能够获得全局最优解。
贪心算法的基本过程如下:1.建立数学模型来描述问题。
2.将问题分解为若干子问题。
3.选取当前最优解作为局部最优解,并保存,计算得出最优解。
4.利用局部最优解重新构建问题,然后继续迭代进行求解。
5.终止条件:达到最优解,或者不能再分解为子问题,或者满足特定条件。
二、贪心算法的应用场景贪心算法在很多问题的解决中都具有广泛的应用,但它并不是万能的,只适用于满足贪心选择性质的问题。
常见的应用场景包括:1. 最小生成树:如Prim算法和Kruskal算法。
2. 最短路径问题:如Dijkstra算法。
3.活动安排问题:如区间调度问题。
4.霍夫曼编码:用于数据压缩。
5.背包问题:如0-1背包问题和部分分数背包问题。
6.跳跃游戏:在一定规则下,从起点跳到终点,每一步跳跃的最大距离为当前位置上的数值,并判断是否能跳到终点。
三、贪心算法的示例问题1.区间调度问题假设有n个区间,每个区间都有一个开始时间和结束时间,现在需要选出不重叠的区间个数最多的子集。
贪心选择策略是:优先选择结束时间早的区间,然后从剩余区间中再次选择结束时间早的区间。
可以按照以下步骤实现:a.对区间按照结束时间进行升序排序。
b.选择第一个区间,结束时间最早。
c.从剩余区间中选择结束时间与前一个区间开始时间不重叠的区间。
d.重复步骤c,直到无法再选出满足条件的区间为止。
2.霍夫曼编码问题给定一个字母集合和其对应的概率,现需要将字母集合进行编码,使得总编码长度最短。
贪心算法的基本原理贪心算法(Greedy Algorithm)是一种常用的算法思想,它在求解最优化问题时通常能够得到较好的近似解。
贪心算法的基本原理是:每一步都选择当前状态下的最优解,从而希望最终能够得到全局最优解。
在实际应用中,贪心算法常常用于解决一些最优化问题,如最小生成树、最短路径、任务调度等。
一、贪心算法的特点贪心算法具有以下特点:1. 简单:贪心算法通常比较简单,易于实现和理解。
2. 高效:贪心算法的时间复杂度通常较低,能够在较短的时间内得到结果。
3. 局部最优:每一步都选择当前状态下的最优解,但不能保证最终能够得到全局最优解。
4. 适用范围:贪心算法适用于一些特定类型的问题,如无后效性、最优子结构等。
二、贪心算法的基本原理贪心算法的基本原理可以概括为以下几个步骤:1. 初始状态:确定问题的初始状态,定义问题的输入和输出。
2. 状态转移:根据当前状态,选择局部最优解,并更新状态。
3. 筛选解:判断当前状态下是否满足问题的约束条件,若满足则保留该解,否则舍弃。
4. 终止条件:重复以上步骤,直至满足终止条件,得到最终解。
三、贪心算法的应用举例1. 找零钱:假设有 25、10、5、1 四种面额的硬币,需要找零 41 元,如何使得找零的硬币数量最少?贪心算法可以先选择面额最大的硬币,然后逐步选择面额较小的硬币,直至找零完毕。
2. 区间调度:给定一组区间,如何选择最多的互不重叠的区间?贪心算法可以先按照区间的结束时间排序,然后依次选择结束时间最早的区间,直至所有区间都被覆盖。
3. 最小生成树:在一个连通的带权无向图中,如何选择边使得生成树的权值最小?贪心算法可以按照边的权值从小到大排序,然后依次选择权值最小且不构成环的边,直至所有顶点都被连接。
四、贪心算法的优缺点1. 优点:贪心算法简单高效,适用于一些特定类型的问题,能够在较短的时间内得到近似最优解。
2. 缺点:贪心算法不能保证一定能够得到全局最优解,可能会出现局部最优解不是全局最优解的情况。
贪心算法程序设计贪心算法程序设计1. 什么是贪心算法贪心算法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法的核心思想是局部最优解能导致全局最优解。
2. 贪心算法的基本步骤贪心算法的基本步骤如下:1. 定义问题的优化目标。
2. 将问题分解成子问题。
3. 选择当前最优的子问题解,将子问题的解合并成原问题的解。
4. 检查是否达到了问题的优化目标,如果没有达到,则回到第二步,继续寻找下一个最优子问题解。
5. 在所有子问题解合并成原问题解后,得到问题的最优解。
3. 贪心算法的应用场景贪心算法的应用非常广泛,几乎可以用于解决各种优化问题。
以下几个常见的应用场景:1. 零钱找零问题:给定一定面额的纸币和硬币,如何找零使得所需纸币和硬币的数量最小?2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得可以办理的活动数量最大?3. 背包问题:给定一些具有重量和价值的物品,如何选择物品使得背包的总价值最大?4. 最小树问题:给定一个带权无向图,如何找到一棵树,使得它的边权之和最小?5. 哈夫曼编码问题:给定一组字符和相应的频率,如何构造一个满足最低编码长度限制的二进制编码?4. 贪心算法的优缺点贪心算法的优点是简单、高效,可以快速得到一个近似最优解。
而且对于一些问题,贪心算法能够得到全局最优解。
贪心算法的缺点在于它不一定能够得到全局最优解,因为在每一步只考虑局部最优解,无法回溯到之前的选择。
5. 贪心算法的程序设计在使用贪心算法进行程序设计时,通常需要以下几个步骤:1. 定义问题的优化目标。
2. 将问题分解成子问题,并设计子问题的解决方案。
3. 设计贪心选择策略,选择局部最优解。
4. 设计贪心算法的递推或迭代公式。
5. 判断贪心算法是否能够得到全局最优解。
6. 编写程序实现贪心算法。
6.贪心算法是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法的常用范围一、什么是贪心算法?听我说,贪心算法其实就像你身边那些总是想着“现在最好的”那一类人。
啥意思呢?就是他们做事从来不考虑长远,只看眼前能捞多少,想法很简单,行动也特别直接。
比如说你去吃自助餐,眼前有一盘热腾腾的牛排,你只顾着夹那块,脑袋里想的就是“现在不吃,等下没了怎么办”。
这就有点像贪心算法,它在每一步选择中都追求局部的最优解。
问题是,这种做法能得出全局最优解吗?不一定哦。
所以,贪心算法适用的地方就有点挑剔,它只适合那些能通过局部最优解来推导出全局最优解的情况。
二、贪心算法的常见应用1. 活动安排问题咱们先来说个生活中常见的例子,活动安排问题。
假设你是一个忙碌的白领,今天有好多活动要参加,可惜你一整天的时间有限。
怎么安排才能把活动都参加个遍呢?如果你是那种贪心心态的家伙,你会选择哪个活动呢?肯定是选那些花费时间最少,能带来最大回报的活动嘛!简单粗暴的办法就像贪心算法一样,选择每一个最短时间的活动,把空余的时间都填满。
最终,你可能会发现,虽然你参加了很多活动,但并不一定能让你得到最大的收益。
所以说,这个问题就是一个典型的贪心算法的使用场景。
2. 找零问题还有个经典的例子是找零问题。
你去商店买东西,店员找给你零钱。
那如果你是商店的老板,应该怎么挑零钱呢?你肯定会选择把金额大的零钱先找给顾客吧,简单快捷又高效。
比如,顾客给你100块钱,你就找个50块、20块,再来几张5块,剩下的用1块来凑,最后一结账,顾客就满意地走了。
这个过程中,你是按照每次找最大的零钱进行选择,这就是贪心算法的一个典型应用。
找零问题背后就是一个在每一步都做出“局部最优选择”的过程,能够确保找到的零钱数量最少,操作也最为高效。
3. 最短路径问题再说个计算机里的例子,最短路径问题。
在一个图中,假如你是要从A点出发去B 点,你要怎么走才能最省力、最省时?这里的贪心算法会告诉你:每次从当前位置出发,选择一个最短的路径走,这样一步一步走下去,最后就能到达B点了。
贪心算法知识点总结1. 基本原理贪心算法的基本原理是每一步都选择当前状态下的最优解,以期望最终得到全局最优解。
具体来说,贪心算法通常可以分为以下几个步骤:1)从问题的某个初始解出发2)采用一种迭代的方式,逐步将初始解进行优化3)每一步都是基于当前状态的最优选择来进行优化4)直到无法再进行优化,得到问题的最优解由于贪心算法每一步都要选择局部最优解,因此贪心算法通常具有高效性。
然而,贪心算法并不适用于所有问题,其结果不一定是全局最优解。
因此,在使用贪心算法时需要注意问题的特性和约束条件,以免得到错误的结果。
2. 适用情况贪心算法通常适用于满足以下条件的问题:1)问题的最优解满足“最优子结构”性质:即问题的最优解包含了其子问题的最优解2)问题的求解过程具有“贪心选择性”:即每一步都选择当前状态下的最优解,并不需要考虑未来的后果3)问题的约束条件可以通过局部最优选择满足全局最优解:即问题的解空间中存在一些局部最优解,可以通过一系列的局部最优解构建全局最优解在实际应用中,贪心算法通常用于求解最优化问题,如最小生成树、最短路径、任务调度等问题。
由于贪心算法的高效性,它通常能够在较短的时间内得到较为接近最优解的结果。
然而,贪心算法并不适用于所有问题,对于一些问题,贪心算法将得到错误的结果。
因此,在使用贪心算法时需要谨慎选择问题类型和约束条件,以避免错误的结果。
3. 贪心算法实例在下面的部分,我们将介绍一些常见的贪心算法实例,包括背包问题、活动安排问题、霍夫曼编码等。
3.1 背包问题背包问题是一个经典的优化问题,它包括0-1背包问题、分数背包问题等多种类型。
在0-1背包问题中,给定n种物品和一个容量为C的背包,每种物品i的重量为w[i],价值为v[i],求在不超过背包容量的情况下,如何选择物品放入背包,可以使得背包中的总价值最大。
对于0-1背包问题,贪心算法通常不能得到最优解。
然而,在分数背包问题中,贪心算法通常可以得到近似的最优解。
贪心算法及几个常用的例题贪心算法:一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。
必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
二、贪心算法的基本思路:1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。
三、贪心算法适用的问题贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。
一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
四、贪心算法的实现框架从问题的某一初始解出发;while (能朝给定总目标前进一步)利用可行的决策,求出可行解的一个解元素;由所有解元素组合成问题的一个可行解;五、贪心策略的选择因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
几个经典的例子:一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。
也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。
贪心算法的基本思路如下:1. .建立数学模型来描述问题。
2. 把求解的问题分成若干个子问题。
3. 对每个子问题求解,得到每个子问题的局部最优解。
4. 把每个子问题的局部最优解合成为原来问题的一个解。
贪心算法及其应用近年来,随着科技的发展和数据的爆炸式增长,优化问题成为了研究的热点。
在高效解决各种优化问题中,贪心算法发挥了重要作用。
本文将介绍贪心算法的定义、特点、优缺点及其常见应用。
一、什么是贪心算法贪心算法是一种常见的算法方法,通过贪心策略来求解问题的最优解。
其思想是在每一个阶段上,选择当前最优解的策略,最终得到的就是问题的最优解。
二、贪心算法的特点贪心算法具有以下特点:1、局部最优解一定是全局最优解的一个组成部分;2、求解过程中不需要回溯;3、贪心算法具有高效性,时间复杂度低。
三、贪心算法的优缺点1、优点贪心算法具有简单、高效等优点。
对于那些没有明确要求最优解的问题,贪心算法是一个不错的选择。
2、缺点贪心算法的局限性在于,有些问题不能用贪心策略求得最优解。
因为每一步选择的最优解并不一定能导致全局最优解。
此外,贪心算法需要注意到问题的结构性质,否则可能做出错误决策。
四、贪心算法的应用1、背包问题背包问题是一个最经典的贪心算法应用场景。
在这个问题中,我们需要将一组物品放到一个容器中。
每个物品有一个权值和一个体积。
容器有一个最大承载体积,求容器可以承载的最大权值。
使用贪心算法在背包问题中是具有局限性的。
但是,在有些情况下,贪心策略是可行的。
例如在只考虑单个维度时,贪心算法以效率极高的速度求得其最优解。
2、最小生成树最小生成树问题是一个常见的求解问题。
其问题的目标是在一张图中找到一棵生成树,该树的所有边权之和最小。
在这个问题中,我们采用贪心策略选择当前最优边并添加到生成树中,以此来求得最优解。
3、哈夫曼编码哈夫曼编码是一种广泛应用的数据压缩算法。
其通过根据字符出现频率选择具有最小权值的二叉树节点,最终构建出哈夫曼树,以此来表示字符的编码信息。
使用哈夫曼编码可以实现对数据的高效压缩和解压缩。
4、调度问题在调度问题中,我们需要找到一种方案,让若干任务在满足约束条件的前提下,以最短的时间完成。
例如,在机器调度问题中,我们需要为不同机器安排任务以最小化整体完成时间。
贪心算法的原理是
贪心算法是一种求解最优问题的常用算法思想,其基本原理是在每一步选择中都采取当前状态下最优的选择,从而希望最终得到全局最优解。
贪心算法的主要特点是局部最优策略同时也是全局最优策略。
贪心算法通常包含以下步骤:
1. 确定问题的最优子结构:即问题的整体最优解可以通过一系列局部最优解来达到。
这是贪心算法的基础,也是保证贪心选择性质的关键。
2. 构造贪心选择:通过局部最优策略来构造每一步的最优解,不考虑前面步骤的选择是否能够达到全局最优。
3. 解决子问题:将子问题缩小,通过递归或迭代的方式求解。
4. 合并子问题的解:将子问题的解合并起来,形成原问题的解。
贪心算法的正确性依赖于贪心选择性质和最优子结构性质。
贪心选择性质指的是,通过局部最优解就可以推导出全局最优解。
最优子结构性质指的是,问题的整体最优解可以通过一系列局部最优解来达到。
贪心算法的应用广泛,常见的问题包括:
1. 找零钱问题:给定一些面额不同的硬币和一个总金额,如何用最少数量的硬币凑出总金额。
2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得参加的活动数量最多。
3. Huffman编码问题:如何用最短的编码长度来表示一个给定概率分布的字符集。
虽然贪心算法通常能够在很短的时间内找到一个解,但并不是所有问题都适合使用贪心算法。
贪心算法不能保证得到最优解,只能保证得到一个近似最优解。
因此,在使用贪心算法解决问题时需要根据具体问题的特性来判断是否适合使用贪心算法。