荧光光谱 FL概要
- 格式:ppt
- 大小:2.37 MB
- 文档页数:41
百泰派克生物科技
荧光光谱分析
荧光光谱法(又称荧光分析法或分光荧光测定)是一种电磁光谱法,可以测量样品吸收光子后发出的光子强度。
实际上,大多数荧光分子是芳香族的,如蛋白质/肽中的色氨酸。
光学技术,如UV-Vis、圆二色谱(CD)、傅立叶变换红外(FTIR)和荧光光谱,都被用于获取被测化合物的结构、相互作用和动力学信息。
荧光光谱是研究溶液状态和显微镜下蛋白质/肽的实时结构和动力学的重要研究工具。
荧光光谱分析。
生物制药,特别是蛋白质和多肽类药物,在整个研发过程中都面临着独特的挑战。
在成功批准和上市之前,需要对治疗性蛋白质/肽的生物物理、生化特性和3D结构有透彻的了解,因为产品的活性、稳定性、毒性、功效和保质期会因结构-活性关系而受到影响。
与小分子不同,这些大分子需要多种分析方法结合进行分析。
荧光光谱法可应用于:1,通过改变荧光强度来探测结构变化或两个分子的结合;2,通过色氨酸荧光的波长定位色氨酸残基(在蛋白质表面或深埋在蛋白质内部);3,通过荧光偏振和各向异性研究荧光团迁移率。
理解分子荧光分析的基本原理理解激发光谱发射光谱同步光谱三维荧光光谱的含义掌握分子荧光发射光谱的特性了解荧光光谱仪器的组成及各部分作用掌握影响荧光强度的内部结构因素和外部环境因素了解光谱分析法的应用范围第一章分子荧光光谱分析1概述分子荧光光谱分析也叫荧光分光光度法,是当前普遍使用并有发展前途的一种光谱分析技术。
物质的分子吸收了紫外和可见光后它的电子跃迁到激发态,然后以热能的形式将这一部分能量释放出来,本身回复到基态。
如果吸收辐射能后处于电子激发态的分子以发射辐射的方式释放这一部分能量,再发射的波长可以同分子所吸收的波长相同也可以不同,这个现象叫光致发光,最常见的光致发光现象是荧光和磷光。
当用一种波长的光照射某种物质时,这个物质会在极短的时间内发射出比照射波长更长的光,这种光称为荧光。
对于荧光来说,当激发光停止照射后,发光过程几乎立即(10-9-10-6 S)停止;当用一种波长的光照射某种物质时,这如果种物质在较长的时间内发射出比照射波长更长的光,这种光称为磷光。
对于磷光来说,当激发光停止照射后,发光过程将持续一段时间(10-1-10 S);磷光和荧光的发光机理是不同的。
由于物质分子结构不同,所吸收的光的波长和发射的荧光波长也有所不同,利用这个特性可以定性鉴别物质。
同一种分子结构的物质用同一波长的激发光照射可以发射相同波长的荧光,若该物质的浓度不同,则浓度大时,所发射的荧光强度也强,利用这个性质可以进行定量测定。
用荧光进行定性和定量的方法叫荧光分析法。
2荧光分析的原理2.1分子荧光发生过程2.1.1荧光与磷光2.1.1.1 分子的电子能级与激发过程分子除了电子不断运动外,分子本身还有振动和转动。
量子力学表明,这些运动的能量是量子化的,所以分子有电子能级,分子振动能级,及分子转动能级。
每个电子能级中有包含一系列的振动能级和转动能级。
..图1 分子电子能级,振动能级和转动能级示意图室温下大多数分子处于基态的最低振动能级。
荧光光谱原理荧光光谱原理荧光光谱是一种常见的分析方法,常用于化学、生物学、药学等领域。
下面,我们将详细介绍荧光光谱的原理及其应用。
一、荧光现象的基本原理荧光现象是指某些物质受到激发后,能够发出比激发光波长长的荧光。
这种现象的实现需要三个条件:激发光源,荧光物质及荧光检测系统。
其中,荧光物质是关键,只有某些物质具有这种特性。
二、荧光光谱图的基本构成荧光光谱图是用荧光物质受到特定波长的激发后,发出荧光的辐射能量与波长之间关系的曲线图。
其基本构成有以下四个参数:激发波长,发射波长,发射强度及荧光寿命。
激发波长:又称刺激波长,是激发荧光物质时所使用的波长。
发射波长:是荧光物质在受到激发后所发出的荧光辐射波长。
发射强度:是荧光物质发射的荧光辐射强度。
荧光寿命:是荧光物质在激发后发射荧光的时间长度。
三、荧光光谱的应用1. 化学分析:荧光光谱可以用于药物、生化试剂的分析,还可以用来探测污染物质和有毒化合物。
如气相色谱-荧光检测法(GC-FLD)检测环境中苯骈克星的浓度。
2. 生物医学:荧光光谱可以用于细胞成像、蛋白质分析、DNA测序、荧光定量PCR等领域。
如荧光定量多聚酶链式反应(qPCR)检测病毒RNA的表达水平。
3. 材料检测:荧光光谱可以用于材料表面缺陷的检测、矿物物质含量的分析等,如纳米粒子的荧光检测。
四、荧光光谱技术的优越性与传统的分析技术相比,荧光光谱技术具有很多优势,如高灵敏度、快速、准确性高、无需预处理、不易受样品污染等。
综上所述,荧光光谱技术在许多领域都有着广泛的应用前景。
相信在未来的发展中,荧光光谱技术将会更加成熟和完善,驱动着科技的进步和实践的发展。
荧 光 光 谱(Fluorescence Spectroscopy)韩荣成(10303023)北京大学,03级生物医学工程一、背景知识:1.荧光,是指物质在吸收紫外光后发出的波长较长的紫外荧光或可见荧光,以及吸收波长较短的可见光后发出波长较长的可见荧光。
除了紫外荧光和可见荧光,还有红外荧光、X射线荧光等。
在很多情况下,分子从激发态回到基态过程中,能量通过热量等形式散失到周围。
但是在某些情况下,能量能以光子发射的形式释放出来。
分子的能量状态在光学分析中涉及的分子能量有:E0=Ee+Ev+Er,其中Ee:价电子运动能(electron);Ev:原子在平衡位置的振动能(vibration);Er:分子绕其重心的转动能(rotation)。
Ee 大约为1eV数量级;Ev大约为10-1~10-2 eV ;Er 大约为10-4~10-5eV数量级,可见⊿Ee>⊿Ev>⊿Er分子吸收能量后,处于激发态的分子通过非辐射过程丢失能量,首先到达S1的最低振动能级,这一过程称为内转换(internal conversion),发生在10-11s内。
从S1的最低振动能级以光子形式放出能量而回到基态的不同振动能级,这一过程称为荧光(fluorescence),发生在10-9s内;如果以非辐射的形式丢失能量则称为淬灭(quenching)。
如果某种物质在被某种波长的光照射以后能在较长的时间内发出比荧光波长更长的波长的光,则称这种光为磷光。
磷光产生的机制与荧光是不同的,虽然它们都属于发射光谱,但磷光不是处于第一电子激发态的最低振动能级的分子直接释放出光子回到基态的结果,而是从某种能量低于第一电子激发态的最低振动能级的另一种亚稳能级⎯三重态向基态的各振动能级以辐射方式产生跃迁时发出的光。
所谓三重态或三线态,是指分子中电子自旋量子数S=1,即原来两个配对的自旋方向相反的电子之一自旋方向改变,以至电子自旋之和不为0的情况。
荧光光谱教程一、化学发光反应的类型1.直接化学发光和间接化学发光化学发光反应可分直接发光和间接发光。
直接发光是被测物作为反应物直接参加化学发光反应,生成电子激发态产物分子,此初始激发态能辐射光子。
表示如下:式中A或B是被测物,通过反应生成电子激发态产物C*,当C*跃迁回基态时,辐射出光子hv。
间接发光是被测物A或B通过化学反应后生成初始态C*,C*不直接发光,而是将其能量转移给F,使F处于激发态,当F*跃迁回基态时,产生发光。
如下式表示式中C*为能量给予体,而F为能量接受体。
例如,用罗丹明B-没食子酸的乙醇溶液测定大气的O3,其化学发光反应就属这一类型。
没食子酸被O3氧化时吸收反应所产生的化学能,形成受激中间体A*,而A*又迅速将能量转给罗丹明B,并使罗丹明B分子激发,处于激发态的罗丹明B分子回到基态时,发射出光子。
该光辐射的最大发射波长为584nm。
2. 气相化学发光和液相化学发光按反应体系的状态来分类,如化学发光反应在气相中进行称气相化学发光,在液相或固相中进行称液相或固相化学发光,在两个不同相中进行则称为异相化学发光。
本节主要讨论气相和液相化学发光,其中液相化学发光在痕量分析中更为重要。
(1)气相化学分光主要有O3、NO、S的化学发光反应,可用于监测空气中的O3、NO、NO2、H2S、SO2和CO等。
☆臭氧与乙烯的化学发光反应机理是O3氧化乙烯生成羰基化合物的同时产生化学发光,发光物质是激发态的甲醛。
这个气相化学发光的最大波长为435nm,发光反应对O是特效的,线性响应范围为1ng·mL-1~1μg·mL-1。
☆一氧化氮与臭氧的气相化学发光反应有较高的化学发光效率,其反应机理为:这个反应的发射光谱范围为600~875nm,灵敏度可达1ng·mL-1。
若需同时测定大气中的NO2时,可先将NO2还原为NO,测得NO总量后,从总量中减去原试样中NO的含量,即为NO2 的含量。