有机酸分析图谱
- 格式:doc
- 大小:134.50 KB
- 文档页数:3
目录1原料药结构确证研究一般手段汇总 (1)2核磁共振谱图解析 (4)2.1核磁共振-氢谱 (4)2.1.11HNMR常见溶剂化学位移 (4)2.1.2常见有机化合物官能团化学位移数值 (6)2.1.3 常见结构单元的偶合常数数值 (7)2.2核磁共振-碳谱 (9)2.3核磁共振二维谱 (10)2.3.1同核位移相关谱(1H-1H-COSY) (10)2.3.2异核位移相关谱(HMQC或HSQC) (11)2.3.3异核位移相关谱(HMBC) (12)3质谱解析 (14)3.1电子(轰击)电离质谱(EI-MS) (14)3.2软电离质谱(ESI) (14)4红外谱图 (15)4.1红外谱图解析 (15)4.2常用官能团的波数 (16)5药物晶型研究谱图分析 (19)5.1X射线粉末衍射-XRPD (19)5.2热分析法 (21)5.2.1热重分析(TG) (21)5.2.2差示扫描量热法(DSC) (23)6元素分析 (26)7结构确证送样基本要求与原则 (26)1原料药结构确证研究一般手段汇总2核磁共振谱图解析2.1核磁共振-氢谱2.1.11HNMR常见溶剂化学位移2.1.2常见有机化合物官能团化学位移数值化学位移数值大小反映了所讨论的氢原子核外电子云密度的大小。
由于氢原子核外只有S电子,因此氢原子核外电子云密度的大小即氢原子核外S电子的电子云密度大小。
S电子的电子云密度越大,化学位移的数值越小,相应的峰越位于核磁共振氢谱谱图的右方,反之亦然。
2.1.3 常见结构单元的偶合常数数值注意:在核磁共振氢谱中耦合裂分的信息的可靠性高于由化学位移得到的信息。
如果从这两种分析得到的结论不同,耦合裂分的信息应该优先。
这是因为准确的化学位移数值不能从任何计算得到,也不能从相似化学环境中的相同结构单元估计。
再者,化学位移数值是有例外的,而耦合裂分则极少有例外。
因此分析氢谱中峰组的耦合裂分是解析核磁共振氢谱最重要的事情。
以采用反相高效液相色谱法测定九种有机酸为例,探讨了流动相pH 值对分析结果的影响。
实验结果表明pH=2.40 时,九种有机酸得到有效分离,且峰形理想,而不同pH 值对分析结果影响很大,不仅会大大改变各有机酸的保留值,甚至会导致无法将各有机酸分离。
本文分析了影响测定流动相p H 值的因素。
应用反相高效液相色谱(RP-HPLC)进行分析测定时,常常采用离子抑制法即向含水流动相中加入酸、碱或缓冲溶液等改性剂,以使流动相的p H 值控制一定数值,抑制溶质的离子化,减少谱带拖尾、改善峰形,以提高分离的选择性[1]。
例如在分析有机弱酸时,常向流动相中加入磷酸(或乙酸、三氯乙酸、1% 的甲酸、硫酸),就可抑制溶质的离子化,获对称的色谱峰。
对于弱碱性样品,向流动相中加入1 % 的三乙胺,也可达到相同的效果[2~6]。
虽然RPC 方法建立时最好选用pH 微小改变不影响分离的流动相,但pH 值的较大变化往往会对分析结果产生很大影响,因此流动相pH 值的调节是分析过程中至关重要的一个环节,本文以反相高效液相色谱法测定九种有机酸为例考察了不同流动相p H 值对分析结果的影响,指出准确调节流动相p H 值的关键所在,有助于提高分析结果的准确性。
摘要以采用反相高效液相色谱法测定九种有机酸为例,探讨了流动相pH 值对分析结果的影响。
实验结果表明pH=2.40 时,九种有机酸得到有效分离,且峰形理想,而不同pH 值对分析结果影响很大,不仅会大大改变各有机酸的保留值,甚至会导致无法将各有机酸分离。
本文分析了影响测定流动相p H 值的因素。
应用反相高效液相色谱(RP-HPLC)进行分析测定时,常常采用离子抑制法即向含水流动相中加入酸、碱或缓冲溶液等改性剂,以使流动相的p H 值控制一定数值,抑制溶质的离子化,减少谱带拖尾、改善峰形,以提高分离的选择性[1]。
例如在分析有机弱酸时,常向流动相中加入磷酸(或乙酸、三氯乙酸、1% 的甲酸、硫酸),就可抑制溶质的离子化,获对称的色谱峰。