12个基本初等函数的导数公式
- 格式:docx
- 大小:39.39 KB
- 文档页数:2
导数基木知识汇总试题基本知识点:知识点一、基本初等函数的导数公式表(须掌握的知识点)1、c'=02、(n为正整数)3、Ca x y=a x Int/ (e x y=e x(long a xy=-^—4、xlna(In xY= —5、x6、(sinxX= cosx7 (cosxX=-sinx、di8、x T知识点二:导数的四则运算法则]、(〃土v y=u r± v'2、(Hv)r=u'v + zrv r3、(c“y=cu,4、v v知识点三:利用函数导数判断函数单调性的法则1、如果在(“,”),((同>°,则/(X)在此区间是增区间,(",b)为/对的单调增区间。
2、如果在(“」'),广(x)v°,则在此区间是减区间,(",b)为了(X)的单调减区间。
一、计算题1、计算下列函数的导数:(1)(2)'=广(工=0)5(3)(»o)2(4)),=/ (»o)(5)y = x‘ (xsO)(6)y=r(7) )' = sinx (8)y = cosx(9) >=2、 (10) y = mx (11) I2、求下列函数在给定点的导数: (1))' = / , x = 16x =—(2) V = sinx ,27T •X =—(4)y = xsinx ,4(7)声,¥(3)y = cos xX = 2TT 3⑸ >,=V3、计算下列各类函数的导数:(1)y = X7+X6-3/⑵ y = x+”(3)y = x'_cosx(4)y = x'+2cosx(5)y =(3x~+2)(x~5)(6)V= 6x3-7) Gx + 8)y =—,(7)k+1sinxy = -----(8)x(SI) (产+捋一。
(X£+0=g (E)XUTSfX = *<(£1)XUIS+f X =4< (乙I)/+/+x = g (II)愁+知=《(6)(17) y = cos3xsin2xPJOM*呻+[xsoo(91)(18))'= Q+cosx)sinx(19)y=(E) (x+2) (x + 3)(20))'=Q X T)'(2-3X)3(21)y = (3x+2)sin5x(22)y = /*cos3x(24))' =(3—5)1。
基本初等函数的求导公式
基本初等函数的求导公式包括:常数函数的导数为零,指数函数的导数为零,对数函数的导数为零,三角函数的导数如下:
- 正弦函数的导数是余弦函数,即 $(sinx)" = cosx$
- 余弦函数的导数是正弦函数,即 $(cosx)" = -sinx$
- 正切函数的导数是余切函数,即 $(tanx)" = -cscx$
- 余切函数的导数是正切函数,即 $(cotx)" = cscx$
- 自然对数的导数是自然对数,即 $(lnx)" = 1/x$
- 换底公式的导数是换底公式,即 $(ex)" = e^x$
此外,还有一些其他的基本初等函数的求导公式,例如反三角函数、双曲函数等。
这些函数的导数可以通过基本的求导法则推导出来。
常用求导积分公式及不定积分基本方法常用求导公式:1.一元函数求导公式:- 反函数求导法则:若y=f(u),则u=f^(-1)(y),则有(dy)/(dx) =1/(du/dy)- 常数乘法法则:若y=kf(x),则(dy)/(dx) = kf'(x)-基本初等函数求导法则:- 常数函数求导法则:若y=c,则(dy)/(dx) = 0- 幂函数求导法则:若y=x^n,则(dy)/(dx) = nx^(n-1)- 指数函数求导法则:若y=a^x,则(dy)/(dx) = (lna) * a^x- 对数函数求导法则:若y=loga(x),则(dy)/(dx) = 1 / (xlna)- 三角函数求导法则:若y=sin(x)、cos(x)、tan(x)、cot(x)、sec(x)、csc(x),则(dy)/(dx) = cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x)tan(x)、-csc(x)cot(x),对应地还有反三角函数的求导公式- 反函数求导法则:若y=f^(-1)(x),则(dy)/(dx) = 1 / (dx/dy)-两个函数的和、差、积、商求导法则:- 和、差法则:若y=u+v,则(dy)/(dx) = (du)/(dx) + (dv)/(dx),若y=u-v,则(dy)/(dx) = (du)/(dx) - (dv)/(dx)- 积法则:若y=uv,则(dy)/(dx) = u(dv)/(dx) + v(du)/(dx)- 商法则:若y=u/v,则(dy)/(dx) = (v(du)/(dx) - u(dv)/(dx))/ v^22.多元函数求导公式:-偏导数:对多元函数,其对其中其中一个自变量求导,其它自变量当作常数,即得到偏导数-偏导函数的求导法则:对偏导函数重复使用一元函数求导公式常用不定积分基本方法:1.基本初等函数的不定积分法则:- 幂函数积分法则:∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n≠-1- 指数函数与对数函数积分法则:∫a^x dx = (1/lna) * a^x + C,∫(1/x) dx = ln,x, + C-三角函数与反三角函数积分法则:- ∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C,∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C,∫csc(x)cot(x) dx = -csc(x) + C- ∫(1/√(1-x^2)) dx = arcsin(x) + C,∫(1/√(1+x^2)) dx = arctan(x) + C- 反函数的不定积分法则:若F'(x) = f(x),则∫f^(-1)(x) dx =x * f^(-1)(x) - F(f^(-1)(x)) + C-特殊函数的不定积分法则:包括指数函数幂倍积分法则、二次函数积分法则等2.基本不定积分运算:- 基本线性运算:若∫f(x) dx = F(x) + C₁,∫g(x) dx = G(x) +C₂,则∫(af(x) + bg(x)) dx = aF(x) + bG(x) + C₃,其中a、b为实数- 递推公式:若∫f(x) dx = F(x) + C,则∫f(x)Ⓓ(x) dx = FⒹ(x) - ∫FⒹ(x) fⒹd(x) dx + C3. 分部积分法:设u(x)和v(x)具有连续一阶导数,根据分部积分公式,有∫u(x)v(x) dx = u(x)v(x) - ∫v(x)uⒹ(x) dx4.换元积分法(含有待定变量):设y=f(u),u=g(x),当g(x)可导、f(u)的原函数可积时5.改线积分法:将不定积分中的自变量换成关于自变量的函数。
基本初等函数求导公式(1)(C)' = o(2)(时)'=小妇(3) (sinx)' = cosx(4) (cosx)' = -sinx⑸(tan x)9 = sec 2 x (6)(cot xY = -esc 2 X (7) (secx)' = sec x tan x(8) (cscx)' = -cscxcotx⑼{a x Y = a x In a(10) (e x r = e v(log“x)一 .(lnx)z =—(11)x In a(12) X1, • 、, _ 1v di v b in A ) , ------\UIvvOb A) , ------ (13)Vl-X 2(14)Vl-X 2(arctan x\ = —z、, 1(arc cot x) = 一 ---- T(15) 1 + «T(16)l + «r函数的和、差、积、商的求导法则设⑴,心心)都可导,则⑴ (w±v)/ = z/,±v z (2) ©j = C/(C 是常数)⑶ (")'=心 + “”(4)[叮V反函数求导法则若函数x = 0()')在某区间4内可导、单调且则它的反函数)'=/3)在对应 区间八内也可导,且dy _ 1 dx 一 dx复合函数求导法则设)' = /("),而u =(p (x )且/伽)及0(x )都可导,则复合函数y = f [(p (x )]的导数为dy _ dy dudx du dx或y =2.双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出・可以推出下表列出的公式:在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程"3)=0 ⑴ 求它所确定的隐函数的方法。
基本初等函数的导数公式表
函数的导数是一个重要的概念,它可以帮助我们更好地理解函数的变化趋势。
函数的导数可以用公式表示,下面是基本初等函数的导数公式表:
1. 常数函数的导数:f'(x)=0
2. 一次函数的导数:f'(x)=ax+b
3. 二次函数的导数:f'(x)=2ax+b
4. 三次函数的导数:f'(x)=3ax2+2bx+c
5. 幂函数的导数:f'(x)=axn-1
6. 指数函数的导数:f'(x)=aex
7. 对数函数的导数:f'(x)=1/x
8. 反三角函数的导数:f'(x)=a/cosx
9. 反双曲函数的导数:f'(x)=a/coshx
10. 反正弦函数的导数:f'(x)=-asinx
11. 反余弦函数的导数:f'(x)=-acosx
12. 反正切函数的导数:f'(x)=1/tanx
13. 反双曲正切函数的导数:f'(x)=1/tanhx
14. 反双曲余弦函数的导数:f'(x)=-acoshx
15. 反双曲正弦函数的导数:f'(x)=-asinhx
以上就是基本初等函数的导数公式表,它们可以帮助我们更好地理解函数的变化趋势。
函数的导数可以用来计算函数的斜率,从而更好地理解函数的变化趋势。
此外,函数的导数
还可以用来计算函数的极值点,从而更好地理解函数的变化趋势。
因此,函数的导数是一个重要的概念,它可以帮助我们更好地理解函数的变化趋势。
基本初等函数导数推导定义1:设函数 f(x) 在 x_{0} 附近有定义,对应自变量的改变量 \Delta x ,有函数的改变量 \Deltay=f(x_{0}+\Delta x)-f(x_{0}) ,若极限 \underset{\Delta x \rightarrow 0}\lim\frac{\Delta y}{\Delta x} 存在,则称该极限为f(x) 在 x_{0}的导数,记作 f'(x_{0}) 。
引理1(导数公式1):常数函数的导数处处为零。
证明:设 f(x)=C 。
f'(x)=\underset{\Delta x \rightarrow0}\lim\frac{f(x+\Delta x)-f(x)}{\Deltax}=\underset{\Delta x \rightarrow 0}\lim\frac{C-C}{\Delta x}= \underset{\Delta x \rightarrow0}\lim\frac{0}{\Delta x}=0引理2:部分三角函数和差化积公式\sin\alpha-\sin\beta=\sin(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2})-\sin (\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2})=(\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})+\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alp ha-\beta}{2}))-(\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}))=2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})\cos\alpha-\cos\beta=\cos(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2})=(\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})-\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}))-(\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})+\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alp ha-\beta}{2}))=-2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})引理3:部分等价无穷小(1) \sin x\sim x(x\rightarrow 0)(2) e^{x}-1\sim x(x\rightarrow0)(3) \ln(1+x)\sim x(x\rightarrow0)(1)的证明略去,(2)(3)的证明见以下文章:引理4:导数的四则运算,设 u(x) 和 v(x) 可导。
数学 24个基本求导公式常见导数公式简介目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式四个基本的导数公式可以分为三类。
第一类是导数的定义公式,即差商极限。
然后由这个公式推导出17个基本初等函数的求导公式,这就是第二类。