数列求和方法专题课
- 格式:ppt
- 大小:247.50 KB
- 文档页数:15
高三数列求和专题优质课一、导入部分(200字)在导入部分,可以通过提出一个生活中的实际问题或者引用一个有趣的数学故事来引起学生的兴趣。
例如:“小明每天都会在家门口摆放一些花瓶,第一天放1个,第二天放2个,第三天放3个,以此类推。
请问,如果小明连续摆放了n天,那么总共摆放了多少个花瓶呢?”二、知识讲解部分(800字)在知识讲解部分,可以详细介绍数列求和的概念和相关公式。
首先,解释什么是数列和数列的常见表示方法,如通项公式和递推公式。
然后,介绍等差数列和等比数列的求和公式,并给出相应的例子进行讲解。
最后,讲解其他特殊数列求和的方法,如等差数列的部分和和等差数列的交错求和。
三、例题分析部分(600字)在例题分析部分,选取几个具体的例题,对其进行详细分析和解答。
可以包括不同类型的数列求和问题,如等差数列的前n项和、等差数列的部分和、等差数列的奇数项和等。
通过逐步解题的方式,讲解解题思路和方法,并注重引导学生理解解题过程中的关键步骤和思想。
四、练习部分(300字)在练习部分,可以给学生一些练习题目,包括基础题目和提高题目。
基础题目可以用来巩固学生对数列求和公式的掌握和运用,而提高题目则可以用来拓展学生的思维和解题能力。
建议在课后布置这部分的题目,并在下节课进行讲解和答疑。
五、总结部分(100字)在总结部分,可以回顾本节课所学内容,并强调数列求和的重要性和实际应用价值。
同时,激发学生对数学的兴趣和学习的动力,鼓励他们在数学学习中勇于探索和思考。
通过以上的教学设计,可以帮助学生系统地学习和掌握数列求和的相关知识和技巧。
同时,通过例题分析和练习部分的设置,可以提高学生的解题能力和应用能力。
最重要的是,要注重培养学生的数学思维和解决问题的能力,让他们在学习中体会到数学的乐趣和价值。
专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。
四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。
数列求和是知识掌握的重点,下面是为大家带来的数列求和教案,希望能帮助到大家!数列求和教案篇一汉滨高中李安锋教学目标:知识目标①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。
能力目标培养学生用联系和变化的观点,结合转化的思想来分析问题和解决问题的能力。
情感目标培养学生用数学的观点看问题,从而帮助他们用科学的态度认识世界. 教学重点与难点教学重点等差等比数列求和及特殊数列求和的常用方法教学难点分析具体数列的求和方法及实际求解过程.教学方法、手段通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围. 学法指导为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法(1)自主性学习法,(2)探究性学习法,(3)巩固反馈法,教学过程(一)情景导入复习回顾:等差数列和等比数列的前n项和公式?n(a1?an)n(n?1)?na1?d 等差数列求和公式Sn?22(q?1)?na1? 等比数列求和公式Sna1(1?qn)a1?anq ?(q?1)?1?q?1?q 教师引导学生回忆数列几种常见的求和方法?①公式法②分组求和法③裂项相消法④错位相减法(充分发挥学生学习的能动性,以学生为主体,展开课堂教学)(二)自学指导若已知一个数列的通项,如何对其前n项求和?①an?3n ②an?3n?2n?1 ③an?n(n?1)④an?1 ⑤an?n?3n n(n?1)(通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系)巩固检测题(1) a?a2?a3?an?________(2) 1+3+5+?+(2n+1)=(3)12?22?32n2?(复习等差与等比数列的求和公式:(1)中易忘讨论公比是否为1(2)中易错项数(3)与(4)是为用公式法求和作铺垫.)(三)例题展示例设Sn=1-3+5-7+9++101 求Sn分析: 拆并项求和思路? Sn=(1-3)+(5-7)+(9-11)+(97-99)+101=?Sn=1+(-3+5)+(-7+9)+(-11+13)+(-99+101)=? Sn=(1+5++101)-(3+7++99)=意图通过一题多解,开阔学生的思维.,分析①②③培养学生的拆项求和与并项求和的意识, 比较分析①②思考应留下。