浙教版初中数学解二元一次方程组(1)(含答案)
- 格式:doc
- 大小:112.13 KB
- 文档页数:7
浙教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题02 二元一次方程组及其解法知识网络重难突破知识点一有关概念及应用1.二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。
2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。
同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。
【典例1】(2019春•诸暨市期末)下列方程中,属于二元一次方程的是()A.x+xy=8B.y=x﹣1C.x+=2D.x2﹣2x+1=0【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解析】解:A、含有两个未知数,但是含有未知数的项的最高次数是2,故本选项错误;B、符合二元一次方程定义,是二元一次方程,故本选项正确;C、不是整式方程,故本选项错误;D、x含有一个未知数,不是二元一次方程,故本选项错误.故选:B.【点睛】此题考查二元一次方程定义,关键是根据二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.【变式训练】1.(2019春•余姚市校级月考)若方程x|a|﹣1+(a﹣2)y=3是二元一次方程,则a的值为﹣2.【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面确定a的取值.【解析】解:根据二元一次方程的定义,得|a|﹣1=1且a﹣2≠0,解得a=﹣2.故答案是:﹣2.【点睛】本题考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(2019春•嘉兴期末)已知是二元一次方程mx+4y=2的一个解,则代数式m﹣2n的值为()A.﹣2B.2C.﹣1D.1【点拨】把x与y代入方程计算,即可求出所求.【解析】解:把代入方程得:﹣2m+4n=2,整理得:﹣2(m﹣2n)=2,即m﹣2n=﹣1,故选:C.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.3.(2019春•余姚市期末)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.【点拨】把x、y的值代入方程,看看左边和右边是否相等即可.【解析】解:A、把代入方程2x﹣3y=1得:左边=﹣1,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;B、把代入方程2x﹣3y=1得:左边=1,右边=1,左边=右边,所以是方程2x﹣3y=1的解,故本选项符合题意;C、把代入方程2x﹣3y=1得:左边=﹣5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;D、把代入方程2x﹣3y=1得:左边=5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;故选:B.【点睛】本题考查了二元一次方程的解,能熟记方程的解的定义是解此题的关键.知识点二二元一次方程组的解法常用方法:代入消元法、加减消元法解方程组的基本思想是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习一、选择题1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹,若设小马有x匹,大马有y匹,则下列方程组中正确的是( )A. B. C. D.2.我校举行春季运动会系列赛中,九年级(1)班.(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班的得分为6:5;乙同学说:(1)班的得分比(2)班的得分的2倍少40分;若设(1)班的得分为x分,(2)班的得分为y分,根据题意所列方程组应为( )A. B. C. D.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A. B. C. D.4.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题,原题如下:“九百九十九文钱,甜果.苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果.苦果的数量分别为x个.y个,则可列方程组为( )A. B. C. D.5.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金.银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金.白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A. B.C. D.6.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江.黄河的长分别是x千米,y千米,则下列方程组中正确的是 ( )A. B. C. D.7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.8.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲.乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲.乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是( )A. B.C. D.9.某校七年级(2)班40名同学为“希望工程”捐款,共捐款100元。
2.5 三元一次方程组及其解法(选学)知识点 解三元一次方程组基本思路:用代入法或加减法消去一个未知数,化成二元一次方程组,再解这个二元一次方程组. [点拨] 一般步骤:三元(方程组)――→消元二元(方程组)――→消元一元(方程). 解方程组:⎩⎪⎨⎪⎧x -2y =9,x +y -z =7,2x -3y +z =12.一 方程组中每个方程都是三元一次方程的三元一次方程组的解法教材例1变式题解方程组: ⎩⎪⎨⎪⎧2x +4y -3z =9,3x -2y -4z =8,5x -6y -5z =7.[归纳总结] 当三元一次方程组中的每一个方程都是三元一次方程(即每个方程含三个未知数)时,有两种解法.解法一(代入法):首先选择未知数的系数的绝对值较小的方程,在这个方程中,用其他两个未知数表示这个系数绝对值较小的未知数,然后分别代入另外两个方程,得到一个二元一次方程组,并解之;解法二(加减法):当方程组中相同未知数的系数的绝对值之间存在相等或成整数倍数关系或最小公倍数较小时,就可消去这个未知数,转化为二元一次方程组.二 用特殊的方法解三元一次方程组教材补充题解方程组:(1)⎩⎪⎨⎪⎧x +y =7,y +z =8,z +x =9;(2)⎩⎪⎨⎪⎧x∶y=3∶2,y ∶z =5∶4,x +y +z =66.[反思] 本节学习的数学知识是三元一次方程组的概念及其解法,数学思想是消元思想和转化思想.若x 3=y4=z 5≠0,则 x +2y +3z 2x=________.一、选择题1.下列方程组中,是三元一次方程组的是( )A .⎩⎪⎨⎪⎧a =1,b =2,b -c =3B .⎩⎪⎨⎪⎧x +y =2,y +z =1,z +c =3 C .⎩⎪⎨⎪⎧4x -3y =7,5x -2y =14,2x -y =4 D .⎩⎪⎨⎪⎧xy +z =3,x +yz =5,xz +y =7 2.解为⎩⎪⎨⎪⎧x =1,y =1,z =2的方程组是( )A .⎩⎪⎨⎪⎧x +y +z =4,2x +y -z =1,3x +2y -4z =-3B .⎩⎪⎨⎪⎧x -y -z =0,z +y -x =1,2x +y -2z =5 C .⎩⎪⎨⎪⎧x +y =4,y +z =5,x +z =6 D .⎩⎪⎨⎪⎧2x +3y -z =5,x +y +z =4,x -y +2z =2 3.三元一次方程组⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6的解是( )A .⎩⎪⎨⎪⎧x =1,y =0,z =5B .⎩⎪⎨⎪⎧x =1,y =2,z =4 C .⎩⎪⎨⎪⎧x =1,y =0,z =4 D .⎩⎪⎨⎪⎧x =4,y =1,z =04.解三元一次方程组:⎩⎪⎨⎪⎧a +b -c =1,①a +2b -c =3,②2a -3b +2c =5.③具体过程如下:(1)②-①,得b =2,(2)①×2+③,得4a -2b =7.(3)所以⎩⎪⎨⎪⎧b =2,4a -2b =7.(4)把b =2代入4a -2b =7,得4a -2×2=7(以下求解过程略).其中错误的一步是( )A .(1)B .(2)C .(3)D .(4)5.若x ,y 同时满足下列三个等式:①5x+2y =a ,②3x -2y =7a ,③4x +y =a +1,则a 的值为( ) A .-2 B .-1 C .1 D .2二、填空题6.已知三元一次方程2x -3y +4z =8,用含x ,y 的代数式表示z 是______________. 7.若⎩⎪⎨⎪⎧x =-1,y =2,z =1是关于x ,y ,z 的方程3x +2y +mz =0的解,则m =________.8.已知⎩⎪⎨⎪⎧x +y =5,y +z =-2,z +x =3,则x +y +z =________.9.解三元一次方程组⎩⎪⎨⎪⎧x +2y -z =3,2x +y +z =5,3x +4y +z =10时,先消去z ,得二元一次方程组__________,再消去y ,得一元一次方程________,解得 ________,从而得y =________,z =________.三、解答题10.解下列方程组:(1)⎩⎪⎨⎪⎧2x +y -3z =3,3x -y +2z =-1,x -y -z =5;(2)x +3y =y -2z =x +z =5;(3)⎩⎪⎨⎪⎧2x +3y +z =6,x -y +2z =-1,x +2y -z =5.11.若|x -2|+|3x -6y|+(3y +z)2=0,求x +y +z 的值.12.某单位职工在植树节当天去植树,甲、乙、丙三个小组共植树50棵,乙组植树的棵数是甲、丙两组和的14,甲组植树的棵数恰好是乙组和丙组的和,问每组各植树多少棵?13.为确保信息安全,信息需加密传输,发送方由明文―→密文(加密),接收方由密文―→明文(解密).已知加密规则为明文x ,y ,z 对应密文2x +3y ,3x +4y ,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,请你求解密得到的明文.14.若规定⎪⎪⎪⎪⎪⎪ac bd =ad -bc ,如⎪⎪⎪⎪⎪⎪2 -13 0=2×0-3×(-1)=3.解方程组:⎪⎪⎪⎪⎪⎪3y 2x =1,⎪⎪⎪⎪⎪⎪x z -3 5=8, ⎪⎪⎪⎪⎪⎪3 z 6y =-3.[技巧性题目] 已知方程组⎩⎪⎨⎪⎧x +y =3a ,y +z =5a ,z +x =4a 的解使代数式x -2y +3z 的值等于-10,求a 的值.详解详析【预习效果检测】[解析] ⎩⎪⎨⎪⎧x -2y =9,①x +y -z =7,②2x -3y +z =12,③①中缺少未知数z ,解法一:由①得x =2y +9,把x =2y +9分别代入②③,得到一个关于y ,z 的二元一次方程组;解法二:既然①中不含z ,那么在②和③中消去z 后,得到一个关于x ,y 的方程3x -2y =19与①联立,得到一个关于x ,y 的二元一次方程组.解:⎩⎪⎨⎪⎧x -2y =9,①x +y -z =7,②2x -3y +z =12,③解法一:由①,得x =2y +9.④把④分别代入②③,得⎩⎪⎨⎪⎧3y -z =-2,y +z =-6.解这个方程组,得⎩⎪⎨⎪⎧y =-2,z =-4.把y =-2代入④,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2,z =-4.解法二:②+③,得3x -2y =19.④ 联立①与④,得⎩⎪⎨⎪⎧x -2y =9,3x -2y =19.解这个方程组,得⎩⎪⎨⎪⎧x =5,y =-2.把x =5,y =-2代入②,得5-2-z =7, 所以z =-4.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2,z =-4.【重难互动探究】例1 [解析] ⎩⎪⎨⎪⎧2x +4y -3z =9,①3x -2y -4z =8,②5x -6y -5z =7,③解法一(用代入法):方程组中,未知数的系数绝对值较小的方程有①和②.若选用①,则用含y ,z 的式子表示x ,并分别代入②③消去x ,得关于y ,z 的二元一次方程组;若选用②,则用含x ,z 的式子表示y ,并分别代入①③,消去y ,得到关于x ,z 的二元一次方程组,其中选用先消去y 的解法较简单;解法二(用加减法):方程组中,相同未知数的系数绝对值之间存在相等或成整数倍的关系时,可用加减法.如本题可消去y.解:⎩⎪⎨⎪⎧2x +4y -3z =9,①3x -2y -4z =8,②5x -6y -5z =7,③解法一(用代入法):由②, 得-2y =8-3x +4z , y =-4+32x -2z.④把④代入①,得2x +4⎝ ⎛⎭⎪⎫-4+32x -2z -3z =9, 即8x -11z =25.⑤把④代入③,得5x -6⎝ ⎛⎭⎪⎫-4+32x -2z -5z =7, 即-4x +7z =-17.⑥⑤与⑥组成方程组为⎩⎪⎨⎪⎧8x -11z =25,-4x +7z =-17,解这个方程组,得⎩⎪⎨⎪⎧x =-1,z =-3.把x =-1,z =-3代入④,得y =12,所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =12,z =-3.解法二(用加减法):②×2,得6x -4y -8z =16.④①+④,得8x -11z =25.⑤ ②×(-3),得-9x +6y +12z =-24.⑥③+⑥,得-4x +7z =-17.⑦以下解法同解法一,略.例2 [解析] (1)⎩⎪⎨⎪⎧x +y =7,①y +z =8,②z +x =9,③因为三个方程相同未知数的系数之和相等,所以三个方程相加,除以2后,再分别与①②③相减,依次得到z ,x ,y 的值;(2)⎩⎪⎨⎪⎧x∶y=3∶2,①y ∶z =5∶4,②x +y +z =66,③解法一:由比例的性质,将①②分别变形为2x =3y 和4y =5z ;解法二:因为①②中的y 的份数分别为2份、5份,其最小公倍数为10份,所以将①化为x∶y =15∶10,将②化为y∶z=10∶8,则x∶y∶z=15∶10∶8,故可设x =15k ,y =10k ,z =8k(k≠0),然后代入③中,求出k 的值,即可求出x ,y ,z 的值.解: (1)⎩⎪⎨⎪⎧x +y =7,①y +z =8,②z +x =9,③①+②+③,得2x +2y +2z =24,x +y +z =12.④ ④-①,得z =5.④-②,得x =4.④-③,得y =3.所以原方程组的解是⎩⎪⎨⎪⎧x =4,y =3,z =5.(2)⎩⎪⎨⎪⎧x∶y=3∶2,①y ∶z =5∶4,②x +y +z =66,③由①,得x∶y=15∶10, 由②,得y∶z=10∶8, 所以x∶y∶z=15∶10∶8.设x =15k ,y =10k ,z =8k ,并代入③,得 15k +10k +8k =66,所以k =2, 所以x =30,y =20,z =16. 所以原方程组的解是⎩⎪⎨⎪⎧x =30,y =20,z =16.【课堂总结反思】 [反思] 133[解析] 解法一:设x =3k ,y =4k ,z =5k(k≠0),代入 x +2y +3z 2x ,得3k +8k +15k 6k =133.解法二:特值法(仅针对填空、选择题):假设x =3,y =4,z =5,代入求得x +2y +3x 2x =133.【作业高效训练】[课堂达标]1.A2.[解析] A 把⎩⎪⎨⎪⎧x =1,y =1,z =2代入四个选项逐一检验.3.[解析] A 把三个方程的两边分别相加,再除以2,得x +y +z =6或将选项逐一代入方程组验证.前一种解法称之为直接法;后一种解法称之为逆推验证法.4.[解析] B ①×2+③,得4a -b =7.⑤ 故(2)错,选择B . 5.C6.[答案] z =2-12x +34y[解析] 4z =8-2x +3y ,z =2-12x +34y.7.[答案] -1[解析] 把⎩⎪⎨⎪⎧x =-1,y =2,z =1代入方程,得3×(-1)+2×2+m·1=0,得m =-1.8.[答案] 3[解析] 三个方程相加得2x +2y +2z =6,所以x +y +z =3.9.[答案] (答案不唯一)⎩⎪⎨⎪⎧3x +3y =8,x +3y =5 2x =3x =32 76 5610.[解析] 利用加减法消掉一个未知数,将三元一次方程组转化为二元一次方程组,再进行解答. 解:(1)⎩⎪⎨⎪⎧2x +y -3z =3,①3x -y +2z =-1,②x -y -z =5,③由①+③,得3x -4x =8.④由②-③,得2x +3z =-6.⑤联立④⑤,得⎩⎪⎨⎪⎧3x -4z =8,④2x +3z =-6,⑤解得⎩⎪⎨⎪⎧x =0,z =-2.把x =0,z =-2代入③,得y =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =-3,z =-2.(2)依题意,得⎩⎪⎨⎪⎧x +3y =5,y -2z =5,x +z =5,①②③②+③×2,得2x +y =15.④由①④组成方程组,得⎩⎪⎨⎪⎧x +3y =5,2x +y =15,解得⎩⎪⎨⎪⎧x =8,y =-1.把x =8代入③,得z =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =8,y =-1,z =-3.(3)⎩⎪⎨⎪⎧2x +3y +z =6,①x -y +2z =-1,②x +2y -z =5,③③+①,得3x +5y =11.④ ③×2+②,得3x +3y =9.⑤ ④-⑤,得2y =2,y =1.将y =1代入⑤,得3x =6,x =2. 将x =2,y =1代入①,得z =-1. 所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =1,z =-1.11.解:由题意,得⎩⎪⎨⎪⎧x -2=0,3x -6y =0,3y +z =0,解得⎩⎪⎨⎪⎧x =2,y =1,z =-3,所以x +y +z =2+1+(-3)=0.12.解:设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意,得⎩⎪⎨⎪⎧x +y +z =50,14()x +z =y ,x =y +z ,解得⎩⎪⎨⎪⎧x =25,y =10,z =15.答:甲、乙、丙三个小组各植树25棵、10棵和15棵.13.解:依题意,得⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17,3z =27, 解得⎩⎪⎨⎪⎧x =3,y =2,z =9.答:解密得到的明文是3,2,9.14.解:根据规定得⎪⎪⎪⎪⎪⎪3 y 2 x =3x -2y =1,⎪⎪⎪⎪⎪⎪x z -3 5=5x +3z =8,⎪⎪⎪⎪⎪⎪3 z 6 y =3y -6z =-3.所以⎩⎪⎨⎪⎧3x -2y =1,①5x +3z =8,②3y -6z =-3,③②×2+③,得10x +3y =13.④①与④组成二元一次方程组为⎩⎪⎨⎪⎧3x -2y =1,10x +3y =13, 解得⎩⎪⎨⎪⎧x =1,y =1.把y =1代入③,得z =1, 所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =1,z =1.[数学活动]解:⎩⎪⎨⎪⎧x +y =3a ,①y +z =5a ,②z +x =4a ,③解法1:②-①,得z -x =2a.④③+④,得2z =6a ,z =3a.把z =3a 分别代入②和③,得y =2a ,x =a.∴⎩⎪⎨⎪⎧x =a ,y =2a ,z =3a.将其代入x -2y +3z =-10,得a -2×2a+3×3a=-10,解得a =-53. 解法2(技巧解法):①+②+③,得2(x +y +z)=12a ,即x +y +z =6a.⑤⑤-①,得z =3a ;⑤-②,得x =a ;⑤-③,得y =2a.∴⎩⎪⎨⎪⎧x =a ,y =2a ,z =3a.以下同解法1.。
浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.若(m −1)x +my =3是关于x 、y 的二元一次方程,则m 的值不可以是( ) A .−1 B .1 C .2 D .3 【答案】B【解析】∵(m −1)x +my =3是关于x 、y 的二元一次方程, ∴m −1≠0,m ≠0,即m ≠1,m ≠0,故B 符合题意. 故答案为:B .2.下列各组数中,是二元一次方程2x ﹣y =﹣6的解的是( )A .{x =−2y =−2B .{x =0y =−6C .{x =1y =8D .{x =3y =1【答案】C【解析】A 、2x-y=2×(-2)-(-2)=-2,错误; B 、2x-y=2×0-(-6)=6,错误; C 、2x-y=2×1-8=6,正确; D 、2x-y=2×3-1=5,错误; 故答案为:C.3.用加减消元法解二元一次方程组{x −y =7①2x −3y =2②时,下列能消元的是( )A .①×2+②B .①×3+②C .①×2-②D .①×(-3)-② 【答案】C【解析】对于二元一次方程组{x −y =7①2x −3y =2②,①×2+②,得4x −5y =16,故A 选项不能消元,不合题意; ①×3+②,得5x −6y =23,故B 选项不能消元,不合题意; ①×2-②,得y =12,故C 选项能消元,符合题意; ①×(-3)-②,得−5x +6y =−23,故D 选项不能消元,不合题意; 故答案为:C .4.已知方程组{x +y =−1ax +5y =4和{x −y =35x +by =1有相同的解,则a −2b 的值为()A .9B .10C .11D .12 【答案】B【解析】将第一个方程组中的x +y =−1和第二个方程组中的x −y =3联立,组成新的方程组{x +y =−1x −y =3, 解这个方程组,得{x =1y =−2.将{x =1y =−2代入ax +5y =4和5x +by =1,得, a ﹣10=4,5﹣2b =1. 解得,a =14,b =2. ∴a −2b =10. 故答案为:B .5.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,长沙市举办了青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共20个,若桌子腿数与凳子腿数的和为64条,则每个比赛场地有几张桌子和几条凳子?设有x 张桌子,有y 条凳子,根据题意所列方程组正确的是( )A .{x +y =644x +3y =20B .{x +y =204x +3y =64C .{x +y =643x +4y =20D .{x +y =203x +4y =64【答案】B【解析】根据题意可列方程组, {x +y =204x +3y =64 . 故答案为:B.6.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置( )个球.A .5B .6C .7D .8 【答案】C【解析】设球的质量是x ,小正方形的质量是y ,小正三角形的质量是z .根据题意得: {4x +2y =x +2z3x +z =4y , 解得: {y =32x z =3x; 图③中左边是:x +2y +z =x +2× 32x +3x =7x , 因而需在它的右盘中放置7个球. 故答案为:C .7.有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,则一个大桶比一个小桶可以多盛酒( ) A .14 斛 B .12 斛 C .15 斛 D .13斛【答案】A【解析】设1个大桶盛酒 x 斛,1个小桶盛酒 y 斛,依题意,得: {5x +y =3x +5y =2 , 解得: {x =1324y =724 , ∴x −y =14 . 故答案为: A .8.方程 2x +3y =10 的正整数解的个数是( ) A .1个 B .2 个 C .3 个 D .无数个 【答案】A【解析】由2x +3y =10得: x =10−3y2,令y =2,得到x =2,则方程2x +3y =10的正整数解个数是1个. 故答案为:A9.已知关于 x ,y 的方程组 {x +y =2+ax −y =3a −6,给出下列结论:①当 x ,y 互为相反数时, a =−2 ;②当 a =−5 时解得 x 为 y 的2倍;③不论 a 取什么实数, x +2y 的值始终不变;④使 x ,y 为自然数的 a 的值共有4个.上述结论正确的有( ) A .①③ B .②④ C .①②③ D .①③④ 【答案】D【解析】当x ,y 互为相反数时,x +y =0, ∴2+a =0,∴a =−2,故①符合题意;当a =−5时,方程组为 {x +y =−3①x −y =−21②,①+②得,x =−12,将x =−12代入①得,y =9,∴方程组的解为 {x =−12y =9 ,故②不符合题意; {x +y =2+a①x −y =3a −6②, ①+②得,x =2a−2,将x =2a−2代入①,得y =4−a ,∴x +2y =2a−2+8−2a =6,故③符合题意; 由③得,x =2a−2≥0时,a≥1, y =4−a≥0时,a≤4, ∴1≤a≤4,∴当a =1,2,3,4时,x 、y 的值为自然数,∴使x ,y 为自然数的a 的值共有4个,故④符合题意; 故答案为:D .10.已知实数 x , y 同时满足三个条件:①x −y =4−p ;②x +y =2+3p ;③x >y ,那么实数 p 的取值范围是( ) A .p >43 B .p <43C .p >4D .p <4【答案】D【解析】由已知得:{x −y =4−p①x +y =2+3p②解得x=3+p ,y=2p-1 ∵x >y∴3+p >2p-1 ∴p <4故答案为:D .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.把二元一次方程 3x −5y −3=0 化成用x 表示y 的形式,则y= .【答案】y=- 35 + 35x【解析】移项,得-5y=3-3x ,系数化1,得y=- 35 + 35 x .故答案为:y=- 35 + 35x .12.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,那么甲、乙、丙三个数分别是 . 【答案】10,9,7【解析】设甲数为x ,乙数为y ,丙数为z ,根据题意得: {x +y +z =26x −y =12x +z −y =18, 解得: {x =10y =9z =7,则甲数是10,乙数是9,丙数是7, 故答案为:10,9,7.13.已知m 为整数,方程组 {4x −3y =66x +my =26有正整数解,则m= .【答案】-4或4【解析】∵{4x −3y =66x +my =26 , 解得, {x =3m+392m+9y =342m+9, ∵方程组有正整数解,m 为整数, ∴m = -4或4, 故答案为:-4或4.14.若关于x ,y 的方程组 {3x −ay =162x +by =15 的解是 {x =7y =1 ,则方程组 {3(x −2y)−ay =162(x −2y)+by =15的解是 .【答案】{x =9y =1【解析】∵{x =7y =1 是方程组 {3x −ay =162x +by =15的解 ∴{21−a =1614+b =15 ∴a=5,b=1将a=5,b=1代入 {3(x −2y)−ay =162(x −2y)+by =15得 {3x −11y =16①2x −3y =15② ①×2,得6x-22y=32③ ②×3,得6x-9y=45④ ④-③,得13y=13 解得y=1将y=1代入①,得3x=27 解得x=9∴方程组的解为 {x =9y =1故答案为: {x =9y =115.在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是 cm 2.【答案】44【解析】设这六个形状、大小相同的长方形的长为xcm ,宽为ycm ,由图形得: {2y +6=x +y x +3y =14,解得:{x =8y =2, ∴AB=10cm ,∴阴影部分的面积为14×10-8×2×6=44cm 2; 故答案为44.16.对于问题“若方程组 {a 1x +b 1y =c 1a 2x +b 2y =c 2 的解是 {x =6y =8 ,求方程组 {3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”有同学提出了把第二个方程组的两个方程的两边都除以5,然后用“换元法”来解决,请用“换元法”求出该方程组的解为 .【答案】{x =10y =20【解析】∵方程组 {a 1x +b 1y =c 1a 2x +b 2y =c 2的解是 {x =6y =8 , ∴将第二个方程组的两个方程的两边都除以5,得:{a 1⋅3x5+b 1⋅2y 5=c 1a 2⋅3x5+b 2⋅2y 5=c 2 , ∴{3x 5=62y 5=8 , 解得: {x =10y =20 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.解方程组(1){x +y =−12x −y =−8 (2){2x +3y =−75x −4y =17【答案】(1)解:{x +y =−1①2x −y =−8②解:①+②得, 3x =−9, ∴x =−3,把x =−3代入①,得 y =2,∴方程组的解为{x =−3y =2.(2)解:{2x +3y =−7①5x −4y =17②解:①×4,得8x +12y =−28③ ②×3,得15x −12y =51④ ③+④,得23x =23, ∴x =1,把x =1代入①得,2+3y =−7, ∴y =−3,∴方程组的解为{x =1y =−3.18.已知{x =3y =−2与{x =−1y =6都是方程ax −y +b =0的解,求a 、b 的值.【答案】解:根据题意得:{3a +2+b =0−a −6+b =0解得:{a =−2b =419.2022年冬奥会上智慧化全覆盖,机器人得到广泛应用,冬奥会组委会针对不同的物品运送场景选取了几个不同类型的智能物流机器人.这样不仅能高效运输,同时也能减少人员接触.具体运输情况如下表所示:【答案】解:设每个A 型机器人可以运输x 件物品,每个B 型机器人可以运输y 件物品.根据题意,得{2x +5y =344x +3y =26解得{x =2y =6答:每个A 型机器人可以运输2件物品,每个B 型机器人可以运输6件物品.20.阅读材料:善思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代入”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y )+y=5③;把方程①代入③,得:2×3+y=5,所以y=-1; 把y=-1代入①得,x=4,所以方程组的解为{x =4y =−1.请你模仿小军的“整体代入”法解方程组{3x −2y =5①9x −4y =19②【答案】解:{3x −2y =5①9x −4y =19②将方程②变形:3(3x-2y )+2y=19.将方程①代入③,得3×5+2y=19.y=2 把y=2代入①得 x=3∴方程组的解为{x =3y =2.21.甲、乙两人解关于x 、y 的方程组{3x −by =−1①ax +by =−5②时,甲因看错a 得到方程组的解为{x =1y =2,乙将方程②中的b 写成了它的相反数得到方程组的解为{x =−1y =−1. (1)求a 、b 的值; (2)求原方程组的解. 【答案】(1)解:甲看错方程组中的 {3x −by =−1①ax +by =−5②的a ,得到方程组的解为{x =1y =2. ∴将{x =1y =2代入①得:3−2b =−1,∴b =2∵乙把方程②中的b 看成了它的相反数,得到方程组的解{x =−1y =−1,∴将{x =−1y =−1代入ax −by =−5中 得:a =7;(2)解:将{a =7b =2代入{3x −by =−1①ax +by =−5②中得:{7x +2y =−53x −2y =−1 , 解得{x =−35y =−25 . 22.已知:关于x ,y 方程组 {2x +y =1+3m①x +2y =1+2m②(1)当y=5时,求m 的值.(2)若方程组的解x 与y 满足条件x+y=1,求m 的值.【答案】(1)解: {2x +5=1+3m①x +10=1+2m②,①-② ×2得:1+3m-2(1+2m )=5-20, -m=-14, m=14.(2)解: {2x +y =1+3m①x +2y =1+2m②, ①+②得:3(x+y )=2+5m , ∴2+5m=3, 解得:m = 15.23.(1)点点在解方程组 {2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法: 解:将方程 ② 变形: 4x +10y +y =5 ,即 2(2x +5y)+y =5.③ 把方程 ① 代入 ③ 得: 2×3+y =5 ,所以 y =−1 . 把 y =−1 代入 ① 得, x =4 .所以方程组的解为 {x =4y =−1 .请你模仿点点的“整体代换”法解方程组 {5a −2b =515a −4b =25.(2)a5̅̅̅̅ 表示一个两位数,其中 a 为 1~9 的整数.圆圆在研究 a5̅̅̅̅ 平方的规律时发现: 152=15×15=225=(1×2)×100+25 . 252=25×25=625=(2×3)×100+25 .352=35×35=1225=(3×4)×100+25.… 猜想 (a5̅̅̅̅)2 的结果,并说明理由. 【答案】(1)解: {5a −2b =5①15a −4b =25②将方程 ② 变形得: 3(5a −2b)+2b =25③ , 把方程 ① 代入 ③ 得: 3×5+2b =25 , 解得: b =5 ,将 b =5 代入 ① 得: a =3 ,所以原方程组的解为 {a =3b =5;(2)解:由 152=15×15=225=(1×2)×100+25 . 252=25×25=625=(2×3)×100+25 . 352=35×35=1225=(3×4)×100+25 .…可猜想: (a5̅̅̅̅)2=100a(a +1)+25. 理由如下: ∵(a5̅̅̅̅)2 =(10a +5)2 =100a 2+100a +25=100a(a +1)+25 , ∴(a5̅̅̅̅)2=100a(a +1)+25 . 24.已知关于x ,y 的方程组{x +2y −6=0x −2y +mx +5=0(1)请直接写出方程x +2y -6=0的所有正整数解; (2)若方程组的解满足x +y =0,求m 的值;(3)无论实数m 取何值时,方程x -2y +mx +5=0总有一个固定的解,求出这个解. (4)若方程组的解中x 恰为整数,m 也为整数,求m 的值.【答案】(1){x =2y =2,{x =4y =1(2)解:{x +y =0x +2y −6=0,解得{x =−6y =6把{x =−6y =6代入x −2y +mx +5=0,解得m=−136(3)解:∵方程x-2y+mx+5=0总有一个固定的解, ∴x=0,把x=0代入x-2y+mx+5=0中得:y=2.5,∴{x =0y =2.5(4)解:{x +2y −6=0①x −2y +mx +5=0②①+②得:(2+m)x =1解得x =12+m,∵x 恰为整数,m 也为整数, ∴2+m=1或2+m=-1, 解得m =−1或−3 【解析】(1)x+2y-6=0, ∴x+2y=6, ∴x=6-2y ,当y=1时,x=4, 当y=2时,x=2,∴方程x+2y-6=0的所有正整数解为:{x =2y =2,{x =4y =1;。
浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。
第2章 二元一次方程 第1讲 二元一次方程组命题点一:二元一次方程的定义 【思路点拨】二元一次方程需满足三个条件:①是整式方程;②方程中共含有两个未知数;③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程. 例1若(m -1)x +10y |2m -1|=250是关于x 的二元一次方程,则m 的值是(B )A .0或1B .0C .1D .任何数例2若3x 3m +5n +9+4y 4m -2n -7=2是关于x ,y 的二元一次方程,则m n等于(D )A .73B .37C .-73D .-37命题点二:解二元一次方程组 例3解下列方程组:(1)⎩⎨⎧4x -3y =17,y =7-5x . (2)⎩⎨⎧5x -2y =4,2x -3y =-5. 解:⎩⎨⎧x =2,y =-3. 解:⎩⎨⎧x =2,y =3.【思路点拨】对于(3),运用整体叠加法解;对于(4),可以整体设元后解决.(3)⎩⎨⎧2 017x -2 018y =2 016,2 016x -2 015y =2 017.(4)⎩⎪⎨⎪⎧2x +3y 4+2x -3y3=7,2x +3y 3+2x -3y 2=8.解:(3) ⎩⎨⎧2 017x -2 018y =2 016,①2 016x -2 015y =2 017.②①-②,得x -3y =-1.③ ①+②,得4 033x -4 033y =4 033,即x -y =1.④ ④-③,得2y =2,解得y =1.把y =1代入③,得x =2,则方程组的解为⎩⎨⎧x =2,y =1.(4)设2x +3y =a ,2x -3y =b ,则⎩⎨⎧a 4+b3=7,a 3+b2=8,解得⎩⎨⎧a =60,b =-24.即⎩⎨⎧2x +3y =60,2x -3y =-24.则方程组的解为⎩⎨⎧x =9,y =14.(5)⎩⎨⎧3x +2y +z =13,x +y +2z =7,2x +3y -z =12.解:⎩⎨⎧x =2,y =3,z =1.例4解下列方程组:(1)⎩⎨⎧2a -b =32,a -3b =1. (2)⎩⎨⎧3(x -1)=y +5,x +22=y -13+1. (3)⎩⎨⎧217x +314y =2,314x +217y =2.解:(1)⎩⎨⎧a =19,b =6. (2)⎩⎨⎧x =6,y =10.(3)⎩⎨⎧217x +314y =2,①314x +217y =2.②①+②,得531(x +y )=4,即x +y =4531. ③①-③×217,得97y =2-4×217531,解得y =2531. 将y =2531代入③,得x =2531,则方程组的解为⎩⎪⎨⎪⎧x =2531,y =2531.(4)⎩⎨⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.(5)⎩⎨⎧3x -2y +z =6,2x +3y -z =11,x +2y +z =8.解:⎩⎨⎧x =4.y =3.解:⎩⎨⎧x =3,y =2,z =1.命题点三:方程组的解 例5(1)若关于x ,y 的方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =5,y =6,则方程组⎩⎨⎧5a 1(x -1)+3b 1(y +1)=4c 1,5a 2(x -1)+3b 2(y +1)=4c 2的解为 ⎩⎨⎧x =5,y =7. (2)甲、乙两人同时解方程组⎩⎨⎧mx +y =5,①2x -ny =13. ②甲解题看错了①中的m ,解得⎩⎨⎧x =72,y =-2,乙解题时看错②中的n ,解得⎩⎨⎧x =3,y =-7,则原方程组的解为 ⎩⎨⎧x =2,y =-3.例6(1)如果关于x ,y 的二元一次方程组⎩⎨⎧a 1x +b 1y =-2,a 2x -b 2y =4的解为⎩⎨⎧x =1,y =2,那么方程组⎩⎨⎧a 1x +b 1y =-2+a 1,a 2x -b 2y =4+a 2的解为(C ) A .⎩⎨⎧x =2,y =3 B .⎩⎨⎧x =1,y =3 C .⎩⎨⎧x =2,y =2 D .⎩⎨⎧x =1,y =2(2)已知方程组⎩⎨⎧2x +5y =-26,ax -by =-4和方程组⎩⎨⎧3x -5y =36,bx +ay =-8的解相同,则b -2a 的值是 -3 .命题点四:整数解问题【思路点拨】求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解. 例7阅读下列材料,然后解答后面的问题.我们知道方程2x +3y =12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x +3y =12,得y =12-2x 3=4-23x .(x ,y 为正整数)∴⎩⎨⎧x >0,12-2x >0,则有0<x <6.又∵y =4-23x 为正整数,则23x 为正整数.由2与3互质,可知x 为3的倍数,从而x =3,代入y =4-23x =2.∴2x +3y =12的正整数解为⎩⎨⎧x =3,y =2.(1)请你写出方程2x +y =5的一组正整数解: ⎩⎨⎧x =1,y =3或⎩⎨⎧x =2,y =1(只要写出其中的一组即可) .(2)若6x -2为自然数,则满足条件的x 值有(C ) A .2个 B .3个 C .4个 D .5个(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?解:设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支. 根据题意,得3m +5n =35,其中m ,n 均为正整数.变形,得n =35-3m 5=7-35m ,得⎩⎨⎧m >0,7-35m >0.∴0<m <353. 由于n =7-35m 为正整数,则35m 为正整数,可知m 为5的倍数.∴当m =5时,n =4;当m =10时,n =1.答:有两种购买方案:购买单价为3元的笔记本5本,单价为5元的钢笔4支;购买单价为3元的笔记本10本,单价为5元的钢笔1支.例8(北京“迎春杯”竞赛题)已知关于x ,y 的方程组⎩⎨⎧2x -ay =6,4x +y =7的解是整数,a 是正整数,那么a 的值为 2 .命题点五:解含参的二元一次方程组 【思路点拨】本题是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘或除以字母表示的系数时,也需要弄清字母的取值是否为零. 例9已知关于x ,y 的方程组⎩⎨⎧2x -3y +1=0, ①6x -my +3=0 ②有无数个解,则m 的值为 9 .例10已知关于x ,y 的方程组⎩⎨⎧ax +2y =1,①2x +3y =b .②(1)当a ,b 为何值时,方程组有唯一解? (2)当a ,b 为何值时,方程组无解? (3)当a ,b 为何值时,方程组有无穷解? 解:(1)当a ≠43时,方程组有唯一解.(2)当a =43,b ≠32时,方程组无解.(3)当a =43,b =32时,方程组有无穷解.课后练习1.已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值为(A )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =432.(2019·南通)已知a ,b 满足方程组⎩⎨⎧3a +2b =4,2a +3b =6,则a +b 的值为 (A )A .2B .4C .-2D .-43.已知方程组⎩⎨⎧x +2y =k ,2x +y =1的解满足x -y =3,则k 的值为(B )A .2B .-2C .1D .-14.已知方程组⎩⎨⎧4x -y =5,ax +by =-1和⎩⎨⎧3x +y =9,3ax +4by =18有相同的解,求a ,b 的值(B ) A .a =2,b =3 B .a =-11,b =7 C .a =3,b =2 D .a =7,b =-11 5.(2018·德州)对于实数a ,b ,定义运算“◆”:a ◆b =⎩⎨⎧a 2+b 2,(a ≥b )ab .(a <b )例如4◆3,因为4>3,所以4◆3=42+32=5.若x ,y 满足方程组⎩⎨⎧4x -y =8,x +2y =29,则x ◆y = 60 .6.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎨⎧3x -my =5,2x +ny =6的解是⎩⎨⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎨⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是 ⎩⎪⎨⎪⎧a =32,b =-12 .7.(2019·越城区期末)3x +2y =20的正整数解有 ⎩⎨⎧x =2,y =7或⎩⎨⎧x =4,y =4或⎩⎨⎧x =6,y =1 .8.(2019·天台期末)已知关于x ,y 的方程组⎩⎨⎧x +2y =k ,2x +3y =3k -1有以下结论:①当k =0时,方程组的解是⎩⎨⎧x =-2,y =1;②方程组的解可表示为⎩⎨⎧x =3k -2,y =1-k ;③不论k 取什么实数,x +3y 的值始终不变.其中正确的有 ①②③ .(填序号) 9.根据要求,解答下列问题.(1)解下列方程组.(直接写出方程组的解即可)①⎩⎨⎧x +2y =3,2x +y =3的解为 ⎩⎨⎧x =1,y =1 ; ②⎩⎨⎧3x +2y =10,2x +3y =10的解为 ⎩⎨⎧x =2,y =2 ; ③⎩⎨⎧2x -y =4,-x +2y =4的解为 ⎩⎨⎧x =4,y =4. (2)以上每个方程组的解中,x 值与y 值的大小关系为 x =y . (3)请你构造一个具有以上外形特征的方程组,并直接写出它的解. 解:⎩⎨⎧3x +2y =25,2x +3y =25,解为⎩⎨⎧x =5,y =5.10.如果⎩⎨⎧x =1,y =2是关于x ,y 的方程(ax +by -12)2+||ay -bx +1=0的解,求a ,b 的值.解:把⎩⎨⎧x =1,y =2代入方程,得(a +2b -12)2+||2a -b +1=0.又根据非负数性质,得方程组⎩⎨⎧a +2b -12=0,2a -b +1=0,解得⎩⎨⎧a =2,b =5.11.阅读材料:善于思考的小军在解方程组⎩⎨⎧2x +5y =3,①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形,得4x +10y +y =5,即 2(2x +5y )+y =5.③把方程①代入③,得2×3+y =5. ∴y =-1.把y =-1代入①,得x =4. ∴方程组的解为⎩⎨⎧x =4,y =-1.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组⎩⎨⎧3x -2y =5,①9x -4y =19. ②(2)已知x ,y 满足方程组⎩⎨⎧3x 2-2xy +12y 2=47,①2x 2+xy +8y 2=36. ②求x 2+4y 2的值. 解:(1)把方程②变形,得3(3x -2y )+2y =19.③ 把①代入③,得15+2y =19,即y =2. 把y =2代入①,得x =3, 则方程组的解为⎩⎨⎧x =3,y =2.(2)由①,得3(x 2+4y 2)=47+2xy , 即x 2+4y 2=47+2xy3.③把③代入②,得2×47+2xy3=36-xy .解得xy =2, 则x 2+4y 2=17.12.关于x ,y 的方程组⎩⎨⎧x +ay +1=0,bx -2y +1=0有无数组解,则a ,b 的值为(B )A .a =0,b =0B .a =-2,b =1C .a =2,b =-1D .a =2,b =1 13.若对任意有理数a ,b ,关于x ,y 的二元一次方程(a -b )x -(a +b )y =a +b 有一组公共解,则公共解为 ⎩⎨⎧x =0,y =-1.14.(全国初中数学竞赛)若4x -3y -6z =0,x +2y -7z =0(xyz ≠0),求代数式5x 2+2y 2-z 22x 2-3y 2-10z 2的值.解:由⎩⎨⎧4x -3y =6z ,x +2y =7z , 得⎩⎨⎧x =3z ,y =2z .代入,得原式=-13.。
浙教版2020七年级数学下册第二章二元一次方程组期中复习题1(附答案) 1.若△ABC 的边AB 、BC 的长是方程组的解,则边AC 的长可能是( )A .2B .4C .1D .82.用加减消元法解方程组231?354? y x x y +=⎧⎨-=-⎩①②,①-②得( )A .2y=1B .5y=4C .7y=5D .-3y=-33.三元一次方程组156x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是A .105x y z =⎧⎪=⎨⎪=⎩B .12? 4x y z =⎧⎪=⎨⎪=⎩C .10?4x y z =⎧⎪=⎨⎪=⎩D .410x y z =⎧⎪=⎨⎪=⎩4.一个两位数的两个数位上的数字之和为11,两个数字之差为5,则这个两位数有( ) A .0个 B .1个C .2个D .4个5.已知12x y =-⎧⎨=⎩是方程20x my +=的解,则m 的值为( )A .0B .-1C .1D .26.若方程组3x 5y a 42x 3y a +=+⎧⎨+=⎩的解x 与y 的和为3,则a 的值为( )A .7B .4C .0D .-47.望龙中学某年级学生共有128人,其中男生人数比女生人数的2倍少2人.设女生人数为x 人,男生人数为y 人,则下面所列的方程组中正确的是( )A .x y 1282y x 2+=⎧⎨=-⎩B .x y 128y 2x 2+=⎧⎨=+⎩C .x y 1282y x 2+=⎧⎨=+⎩D .x y 1282x y 2+=⎧⎨=+⎩8.代入法解方程组723212x y x y -=⎧⎨-=-⎩①②有以下步骤:(1)由①,得2y =7x -3③;(2)把③代入①,得7x -7x -3=3;(3)整理,得3=3;(4)∴x 可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是( ) A .第(1)步 B .第(2)步C .第(3)步D .第(4)步9.已知(a ﹣2)23ax -+y=1是一个二元一次方程,则a 的值为( )A .±2B .﹣2C .2D .无法确定10.下列方程组中不是二元一次方程组的是( ) A .23x y =⎧⎨=⎩B .12x y x y +=⎧⎨-=⎩C .51x y xy +=⎧⎨=⎩D .21y xx y =⎛-=⎝11.已知()10mm xy ++=是关于x ,y 的二元一次方程,则m =________.12.在二元一次方程4x -3y =14中,若x ,y 互为相反数,则x = ,y = . 13.已知|2x+y+1|+(x+2y ﹣7)2=0,则(x+y )2=________.14.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.(1) 32155423x y x y -=⎧⎨-=⎩消元方法___________.(2) 731232m n n m -=⎧⎨+=-⎩ 消元方法_____________.15.已知方程组232{238x y m x y m +=++=-的解x ,y 互为相反数,则m 的值是_____.16.已知二元一次方程:()121x y +=;()23211x y -=;()3438x y -=.从这三个方程中任选两个方程组成一个方程组,并求出这个方程组的解.所选方程组为________.17.甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,设原来甲车间有x 名工人,原来乙车间有y 名工人,可列方程组为___________. 18.若x +y +z≠0且222y z x y z xk x z y+++===,则k =_________. 19.三元一次方程组114x y y z x z -=-⎧⎪-=-⎨⎪+=⎩的解是________________.20.方程组3{?26x y x y +=-=-的解是________.21.从A 城到B 城,水路比陆路近40千米,上午11时,一只轮船以每小时24千米的速度从A 城向B 城行驶,下午2时,一辆汽车以每小时40千米的速度从A 城向B 城行驶,轮船和汽车同时到达B 城,求A 城到B 城的水路和陆路各多长?22.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.()1若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?()2若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?()3若该工厂新购得65张规格为33m⨯的C型正方形板材,将其全部切割成A型或B 型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只.23.已知方程组4234ax byx y-=⎧⎨+=⎩与2432ax byx y+=⎧⎨-=⎩的解相同,试求a+b的值.24.小芳去商店购买甲、乙两种商品. 现有如下信息:信息1:甲、乙两种商品的进货单价之和是5元,按零售单价购买甲商品3件和乙商品2件,共付了19元;信息2:甲商品零售单价比甲进货单价多1元,乙商品零售单价比乙进货单价的2倍少1元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)若小芳准备用不超过400元钱购买100件甲、乙两种商品,其中甲种商品至少购买多少件?25.方程组2212x yx y●+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩★●,★代表两个常数,你能求出●,★的值吗?26.解方程组:(1)2311320y x x y +=⎧⎨--=⎩;(2)()3151135x y y x⎧-=+⎪⎨-=+⎪⎩27.解下列方程组:(1)23325x y x y +=⎧⎨-=⎩ (2)15422a b c a b c a b c ++=⎧⎪-+=⎨⎪++=⎩28.在解方程组3227ax y x by +=-⎧⎨-=⎩①②时,由于粗心,甲看错了方程组中的a ,而得解为11x y =⎧⎨=-⎩,乙看错了方程组中的b ,而得解为51x y =⎧⎨=⎩,根据上面的信息解答: (1)甲把a 看成了什么数,乙把b 看成了什么数? (2)求出正确的a ,b 的值;(3)求出原方程组的正确解,并求出代数式(x ﹣y )•(5x ﹣19y )﹣3的值.参考答案1.B【解析】【分析】解方程组可得AB、AC的长度,根据三角形的三边关系可求出AC边的取值范围即可得答案.【详解】解方程组得:,∴5-3<AC<5+3,即2<AC<8,观察各选项,只有B选项符合题意,故选B.【点睛】本题主要考查三角形的三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边,熟记三角形的三边关系是解题关键.2.C【解析】两式相减得,7y=5.故选C.3.A【解析】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后将该方程与方程组中的各方程分别相减,可求得15xyz=⎧⎪=⎨⎪=⎩.故选A.4.C【解析】试题解析:设十位数字为x,个位数字为y,根据题意得:115x yx y+=⎧⎨-=⎩或115x yy x+=⎧⎨-=⎩,解得:83xy=⎧⎨=⎩或38xy=⎧⎨=⎩,∴该两位数为83或38. 故选C. 5.C 【解析】 分析:将所给的方程的解代入原方程中得到关于m 的方程,解方程即可求得m 的值. 详解: ∵ 12x y =-⎧⎨=⎩是方程20x my +=的解, ∴2(1)20m ⨯-+=,解得:m=1. 故选C.点睛:熟记“二元一次方程的解”的定义:“能够使二元一次方程左、右两边相等的两个未知数的值组成的一对数叫做二元一次方程的一个解”是正确解答本题的关键. 6.A 【解析】 分析:由方程组35423x y a x y a+=+⎧⎨+=⎩的解x 与y 的和为3,可得x+y=3①,然后将方程2x+3y=a代入方程3x+5y=a+4得x+2y=4②,将①,②联立方程组解出x ,y 的值,然后将x ,y 的值代入方程2x+3y=a 即可求出a 的值. 详解:由题意得:x+y=3①,将方程2x+3y=a 代入方程3x+5y=a+4得:x+2y=4②, 将①,②联立方程组:324x y x y +⎧⎨+⎩=①=②, 解得:21x y ⎧⎨⎩==, 将21x y ⎧⎨⎩==代入方程2x+3y=a 得:a=4+3=7.故选:A.点睛:此题考查了二元一次方程组的解,解题的关键是:先求出x ,y 的值,然后将其代入即可求出a 的值. 7.D 【解析】分析:设女生人数为x 人,男生人数为y 人,等量关系:①某年级学生共有128人,则x+y=128;②男生人数比女生人数的2倍少2人,则2x=y+2,由此列方程组即可. 详解:设女生人数为x 人,男生人数为y 人,由题意得12822x y x y +=⎧⎨=+⎩. 故选:D点睛:本题考查了由实际问题抽象二元一次方程组的知识,解答本题的关键是仔细审题得到等量关系,根据等量关系建立方程. 8.B 【解析】试题解析:错的是第()2步,应该将③代入②. 故选B. 9.B 【解析】 【分析】二元一次方程是指含有两个未知数,且未知数的最高指数是1的整式方程,根据二元一次方程的定义进行解答即可求解. 【详解】 因为(a ﹣2)23ax -+y=1是一个二元一次方程,所以231a -=,且20a -≠, 所以2a =±,且2a ≠, 所以2a =-, 故选B. 【点睛】本题主要考查二元一次方程的定义,解决本题的关键是要熟练掌握二元一次方程的定义.10.C【解析】【分析】二元一次方程满足的条件:为整式方程;只含有2个未知数;含未知数的项的次数是1;两个二元一次方程组合成二元一次方程组.【详解】经过观察后可发现只有C选项的第二个方程的最高次项的次数为2,不符合题意.故选C.【点睛】本题主要考查二元一次方程组的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,含未知数的项的次数是1的整式方程.11.1【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m的值.【详解】根据二元一次方程的定义,得|m|=1且m+1≠0,解得m=1,故答案为1.【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.12.2,-2【解析】解:因为x、y互为相反数,∴x+y=0,与方程4x-3y=14联立方程组4314x yx y+=⎧⎨-=⎩.解得:22x y =⎧⎨=-⎩.故答案为:2,-2. 点睛:本题主要考查了二元一次方程组的解法,解题的关键是利用互为相反数的性质列出方程,与原方程联立方程组来解二元一次方程组. 13.4 【解析】∵|2x+y+1|+(x+2y ﹣7)2=0, ∴210270x y x y ++=⎧⎨+-=⎩,∴3x+3y=6,即x+y=2, ∴(x+y )2=22=4.点睛:(1)一个代数式的绝对值和平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.14.①×2-②消y ①×2+②×3消n 【解析】(1)因为y 的系数的最小公倍数是-4,所以消y 比较简单,方法是①×2-②;(2)因为n 的系数的最小公倍数是-6,所以消n 比较简单,方法是①×2+②×3,故答案为(1).①×2-②消y (2).①×2+②×3消n. 15.1 【解析】 试题解析:232238x y m x y m ++⎧⎨+-⎩=①=②,①+②得:3x+3y=6m-6,即3(x+y )=6(m-1), ∵x ,y 互为相反数, ∴x+y=2(m-1)=0, 解得:m=1. 故答案为:1.16.213211x y x y +=⎧⎨-=⎩【解析】【分析】选择(1)与(2)组成方程组,利用加减消元法求出解即可. 【详解】 所选方程组为:213211x y x y +=⎧⎨-=⎩①②,①+②得4x=12, 解得:x=3,把x=3代入①得2y=-2, 解得:y=-1,则方程组的解为31x y =⎧⎨=-⎩,故答案为213211x y x y +=⎧⎨-=⎩.【点睛】本题考查了解二元一次方程组以及二元一次方程组的定义,熟练掌握代入消元法与加减消元法是解题的关键. 17.10102(10)10x y y x -=+⎧⎨-=+⎩【解析】根据:若甲车间调10人到乙车间,则两车间人数相等,得:1010x y -=+,根据:若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,得:()21010y x -=+,所以得方程组:()101021010x y y x -=+⎧⎨-=+⎩,故答案为()101021010x y y x -=+⎧⎨-=+⎩. 点睛:本题主要考查二元一次方程组的应用,关键在于理解清楚题意,找出等量关系,列出方程组. 18.3 【解析】∵222y z x y z x k x z y+++===, ∴2?2?2y z kx x y kz z x ky +=+=+=,,, ∴222y z x y z x kx ky kz +++++=++,即3()()x y z k x y z ++=++.又∵0x y z ++≠,∴3k =.19.123x y z =⎧⎪=⎨⎪=⎩【解析】114x y y z x z --⎧⎪--⎨⎪+⎩=①=②=③①+②得:x-z=-2④,由③和④组成一个二元一次方程组:24x z x z --⎧⎨+⎩== 解得:x=1,z=3,把x=1代入①得:1-y=-1,解得:y=2, 所以原方程组的解是:123x y z ⎧⎪⎨⎪⎩===. 故答案是:123x y z =⎧⎪=⎨⎪=⎩.20.1{ 4x y =-= 【解析】利用加减消元法,可得3x=-3,解得x=-1,代入x+y=3可得y=4,所以方程组解为1{4x y =-=.故答案为:1{4x y =-=.21.水陆240千米,陆路280千米.【解析】【分析】设水路a 千米,陆路b 千米,根据行程问题中的等量关系可得:4032440a b a b +=⎧⎪⎨-=⎪⎩,解得:240280a b =⎧⎨=⎩. 【详解】设水路a 千米,陆路b 千米,根据题意可得:4032440a b a b +=⎧⎪⎨-=⎪⎩, 解得:240280a b =⎧⎨=⎩, 答:水路240千米,陆路280千米.【点睛】本题主要考查列二元一次方程组解决行程问题,解决本题的关键是要熟练掌握行程问题中的等量关系.22.(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或49.【解析】【分析】()1表示出竖式箱子所用板材数量进而得出总金额即可得出答案;()2设制作竖式箱子a 只,横式箱子b 只,利用A 型板材65张、B 型板材110张,得出方程组求出答案;()3设裁剪出B 型板材m 张,则可裁A 型板材()6593m ⨯-张,进而得出方程组求出符合题意的答案.【详解】解:()1设最多可制作竖式箱子x 只,则A 型板材x 张,B 型板材4x 张,根据题意得3090410000x x +⨯≤ 解得252539x ≤. 答:最多可以做25只竖式箱子.()2设制作竖式箱子a 只,横式箱子b 只,根据题意,得26543110a b a b +=⎧⎨+=⎩, 解得:530a b =⎧⎨=⎩. 答:能制作竖式、横式两种无盖箱子分别为5只和30只.()3设裁剪出B 型板材m 张,则可裁A 型板材()6593m ⨯-张,由题意得:2659343a b m a b m +=⨯-⎧⎨+=⎩, 整理得,1311659a b +=⨯,()111345b a =-.Q 竖式箱子不少于20只,4511a ∴-=或22,这时34a =,13b =或23a =,26b =.则能制作两种箱子共:341347+=或232649+=.故答案为47或49.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式.23.32. 【解析】分析:根据题意先解方程组234432x y x y +=⎧⎨-=⎩ , 再求a b ,的值即可. 详解:依题意可有234432x y x y +=⎧⎨-=⎩,解得123x y =⎧⎪⎨=⎪⎩, 所以,有243223a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得332a b =⎧⎪⎨=-⎪⎩, 因此333.22a b +=-= 点睛:考查解二元一次方程组,常用的方法有加减消元法和代入消元法.24.(1)甲、乙两种商品的进货单价分别为2元、3元;(2)甲种商品至少购买50件.【解析】分析:(1)根据题意中的信息,找到等量关系,设甲、乙两种商品的进货单价分别为x 、y 元,列出方程组即可求解;(2)由⑴得:甲商品零售价为x+1=3(元),乙商品零售价为2y-1=35(元),根据小芳准备用不超过400元钱购买100件甲、乙两种商品,列不等式求解即可.详解:⑴设甲、乙两种商品的进货单价分别为x 、y 元.()()x 53122119y x y +=⎧⎨++-=⎩. x 23y =⎧⎨=⎩. 答:甲、乙两种商品的进货单价分别为2元、3元.⑵由⑴得:甲商品零售价为x+1=3(元),乙商品零售价为2y-1=35(元).设甲种商品购买m 件.3m+5(100-m)≤400,m≥50答;甲种商品至少购买50件.点睛:此题主要考查了二元一次方程组应用,阅读题目信息,找到相关的等量关系列方程组和不等量关系列不等式求解是解题关键.25.●=8,◣=-2【解析】【分析】先把x=5代入2x-y=12可求得y=-2,再把x=5,y=-2代入方程2x+y=●即可求得答案. 【详解】把x=5代入2x-y=12,得y=-2,当x=5,y=-2时,2x+y=2×5-2=8,所以●=8,◣=-2.【点睛】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握相关知识是解题的关键.26.(1)533xy⎧=⎪⎨⎪=⎩;(2)57xy=⎧⎨=⎩【解析】分析:(1)、利用①-②求出y的值,然后代入①求出x的值,从而得出方程组的解;(2)、首先将方程组进行化简,然后利用加减消元法得出方程组的解.详解:(1)、2311?32?y xx y①②+=⎧⎨-=⎩,①-②得:3y=9,解得:y=3,将y=3代入①可得:6+3x=11,解得:x=53,∴原方程组的解为:533xy⎧=⎪⎨⎪=⎩.(2)、将方程进行变形可得:38?3520?x yx y-=⎧⎨-=-⎩①②,①-②得:4y=28,解得:y=7,将y=7代入①可得:3x-7=8,解得:x=5,∴原方程组的解为:57 xy=⎧⎨=⎩.点睛:本题主要考查的就是二元一次方程组的解法,属于基础题型.解决这个问题的关键就是利用加减法进行消元.27.(1)212xy=⎧⎪⎨=⎪⎩;(2)122abc=⎧⎪=-⎨⎪=⎩.【解析】分析:(1)方程组利用加减消元法求出解即可;(2)根据解三元一次方程组的方法可以解答此方程.详解:(1)23325x y x y +=⎧⎨-=⎩①②①+②得48x =, 2x =, 把2x =代入①得12y =, 所以,原方程组的解为212x y =⎧⎪⎨=⎪⎩; (2)15422a b c a b c a b c ++=⎧⎪-+=⎨⎪++=⎩①②③①-②得2b =-,把2b =-分别代入①、③得346a c a c +=⎧⎨+=⎩,解之得:12a c =⎧⎨=⎩, 所以,原方程组的解为122a b c =⎧⎪=-⎨⎪=⎩点睛:此题考查了解二(三)元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.28.(1)甲把a 看成了1,乙把b 看成了3;(2)b=5;(3)-1【解析】【分析】(1)把11x y =⎧⎨=-⎩代入②,能求出a ,把51x y =⎧⎨=⎩代入②,能求出b ; (2)把51x y =⎧⎨=⎩代入①,能求出a ,把11x y =⎧⎨=-⎩代入②,求出b 即可; (3)求出原方程组的解,再代入求出即可.【详解】(1)把11xy=⎧⎨=-⎩代入②,得a﹣3=﹣2,解得a=1;把51xy=⎧⎨=⎩代入②,得10﹣b=7,解得b=3,所以甲把a看成了1,乙把b看成了3;(2)把51xy=⎧⎨=⎩代入①,得5a+3=﹣2,解得:a=﹣1,把11xy=⎧⎨=-⎩代入②,得2+b=7,解得:b=5;(3)原方程组为32257x yx y-+=-⎧⎨-=⎩,解得原方程组的正确解为:113xy=⎧⎨=⎩,∴(x﹣y)•(5x﹣19y)﹣3=8×(﹣2)﹣3=1818⎛⎫⨯-=-⎪⎝⎭.【点睛】本题考查了解二元一次方程组、二元一次方程组的解和求代数式的值等知识点,求出a、b 的值是解本题的关键.。
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
2.3 解二元一次方程组第1课时 代入消元法基础过关全练知识点 代入消元法1.(2022湖南株洲中考)对于二元一次方程组{y =x −1,①x +2y =7,②将①式代入②式,消去y 可以得到( ) A.x+2x-1=7 B.x+2x-2=7C.x+x-1=7D.x+2x+2=72.四名学生利用代入法解二元一次方程组{3x −4y =5,①x −2y =3②时,提出四种不同的解法,其中解法不正确的是( ) A.由①得x=5+4y 3③,将③代入② B.由①得y=3x−54③,将③代入② C.由②得y=-x−32③,将③代入①D.由②得x=3+2y ③,将③代入①3.(2022江苏无锡中考)二元一次方程组{3x +2y =12,2x −y =1的解为 .4.【新独家原创】 已知关于a,b 的二元一次方程组{a +m =3,b −3=m,则-a-b 的值为 .5.(2021浙江丽水中考)解方程组:{x =2y,x −y =6.6.【易错题】下面是老师在铭铭的数学作业本上截取的部分内容:解方程组{2x −y =3,①x +y =−12.②解:方程①变形,得y=2x-3③, 第一步把方程③代入方程①,得2x-(2x-3)=3, 第二步整理,得3=3, 第三步因为x 可以取任意实数,所以原方程组有无数个解.问题:这种解方程组的方法叫 ;铭铭的解法正确吗?如果不正确,错在哪一步?并求出正确的解.能力提升全练7.已知单项式-3x m-1y 3与52x n y m+n 是同类项,那么m,n 的值分别是 ( )A.2,1B.1,2C.0,-1D.-1,28.小明说{x =−1,y =2为方程ax+by=10的解,小惠说{x =2,y =−1为方程ax+by=10的解,两人谁也不能说服对方.若他们的说法都正确,则a,b 的值分别为 ( )A.12,10B.9,10C.10,11D.10,109.(2022浙江杭州西湖期中,9,)在解关于x,y 的方程组{ax −2by =8①,2x =by +2②时,小明将方程①中的“-”看成了“+”,得到的解为{x =2,y =1,则原方程组的解为 ( ) A.{a =2b =2 B.{x =2y =2 C.{x =−2y =−3 D.{x =2y =−110.如果|x-2y+1|+|x+y-5|=0,那么x= .11.(2022浙江杭州期中改编,15,)若 1 314x+17y=2y+x-5=2x-3,则2(x-2y)= .12.(2022浙江杭州萧山期中,14,)对于有理数x,y,定义一种新运算:x ⊕y=ax+by-5,其中a,b 为常数.已知1⊕2=9,(-3)⊕3=-2,则2a+b= .13.(2022浙江杭州余杭月考,15,)已知关于x,y 的二元一次方程(3x-2y+9)+m(2x+y-1)=0,无论m 取何值,方程总有一个固定不变的解,这个解是 .14.【一题多解】当关于x,y 的二元一次方程组{2x −y −4m =0,14x −3y −20=0中y 的值是x 值的3倍时,求x,y 的值.15.已知关于x,y 的二元一次方程组{ax +5y =4,5x +y =3与{x −2y =5,5x +by =1的解相同,求a,b 的值.素养探究全练16.【运算能力】材料:解方程组{x −y −1=0①,4(x −y)−y =5②时,可由①得x-y=1③,然后将③代入②得4×1-y=5,解得y=-1,将y=-1代入③,得x-(-1)=1,解得x=0,∴方程组的解为{x =0,y =−1,这种方法被称为“整体代入法”.请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.17.【运算能力】三个同学对问题“若关于x,y 的二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,求关于x,y 的二元一次方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决?”参考他们的讨论,解决上述问题.答案全解全析基础过关全练1.B 将①式代入②式,得x+2(x-1)=7,∴x+2x-2=7,故选B.2.C C 中,应该由②得y=x−32,故选项C 解法错误,符合题意,故选C.3.答案 {x =2y =3 解析 {3x +2y =12,①2x −y =1②,由②得y=2x-1③,将③代入①得3x+2(2x-1)=12,解得x=2,将x=2代入③得y=3,∴原方程组的解为{x =2,y =3. 4.答案 -6解析 {a +m =3①,b −3=m②,把②代入①,得a+b-3=3, ∴a+b=6,∴-a-b=-6.5.解析 {x =2y①,x −y =6②,把①代入②得,2y-y=6,解得y=6, 把y=6代入①得,x=12, 则原方程组的解为{x =12,y =6. 6.解析 代入消元法.铭铭的解法不正确,错在第二步,正确解法:将方程①变形,得y=2x-3③,把③代入②,得x+2x-3=-12,解得x=-3,把x=-3代入③,得y=-9,所以原方程组的解为{x =−3,y =−9.能力提升全练7.A 根据题意得{m −1=n,m +n =3,解得{m =2,n =1.故选A. 8.D 由{x =−1,y =2为方程ax+by=10的解,{x =2,y =−1为方程ax+by=10的解,得{−a +2b =10,2a −b =10,解得{a =10,b =10.故选D. 9.C 把{x =2,y =1代入{ax +2by =8,2x =by +2,得{2a +2b =8,4=b +2,解得{a =2,b =2, ∴原方程组为{2x −4y =8,2x =2y +2,解得{x =−2,y =−3.故选C. 10.答案 3解析 ∵|x-2y+1|+|x+y-5|=0,∴{x −2y +1=0,①x +y −5=0,②由①得x=2y-1③,把③代入②,得2y-1+y-5=0,解得y=2,把y=2代入③,得x=2×2-1=3,∴原方程组的解为{x =3,y =2.11.答案 -4解析 由2y+x-5=2x-3得2y+x-2x=-3+5,∴2y-x=2,∴x-2y=-2.∴2(x-2y)=2×(-2)=-4.12.答案 13解析 根据题中的新定义得{a +2b −5=9,−3a +3b −5=−2,整理得{a +2b =14,①−a +b =1,②由②得b=1+a ③,把③代入①,得a+2(1+a)=14,解得a=4,把a=4代入③,得b=1+4=5.则原方程组的解为{a =4,b =5,则2a+b=8+5=13.13.答案 {x =−1y =3解析 ∵无论m 取何值,方程总有一个固定不变的解,∴{2x +y −1=0,3x −2y +9=0,解得{x =−1,y =3. 14.解析 解法一:∵y 的值是x 值的3倍,∴y=3x,∴{2x −3x −4m =0,14x −9x −20=0,解得{x =4,m =−1, ∴y=3×4=12.故x 的值为4,y 的值为12.解法二:{2x −y −4m =0,①14x −3y −20=0,② 由①得,y=2x-4m,③把③代入②,得14x-3(2x-4m)-20=0,∴x=−3m+52,∴y=-7m+5,∵y 的值是x 值的3倍,∴y=3x,∴-7m+5=3×−3m+52,解得m=-1.∴x=4,y=12.故x 的值为4,y 的值为12.15.解析 ∵两个方程组的解相同,∴可用方程5x+y=3,x-2y=5组成新方程组,得{5x +y =3,①x −2y =5,②由①得,y=3-5x ③,把③代入②,得x-2(3-5x)=5,解得x=1,把x=1代入③得y=-2,∴此方程组的解为{x =1,y =−2,把{x =1,y =−2代入{ax +5y =4,5x +by =1,得{a −10=4,5−2b =1,解得{a =14,b =2.素养探究全练16.解析 {2x −y −2=0,①6x−3y+45+2y =12,② 由①得2x-y=2③,将③代入②得3×2+45+2y=12,解得y=5,把y=5代入③得2x-5=2,解得x=3.5.所以原方程组的解为{x =3.5,y =5.17.解析 方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2中的两个方程的两边都除以5,得{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2, 因为方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,所以{35x =3,25y =4,解得{x =5,y =10.所以方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解是{x =5,y =10.。
4.3 解二元一次方程组(一)
索引档案
【知识提要】
1.解方程组的基本思路是“消元”,•也就是把二元一次方程组化为一元一次方程. 2.用代入法解二元一次方程组.
【学法指导】
1.•当方程组中的一个方程是用含有一个未知数的代数式表示另一个未知数时,可直接把此代数式代入另一个方程;如不是,则需把其中一个方程变形成用含有一个未知数的代数式表示另一个未知数,再代入另一个方程.
2.用代入法解二元一次方程组的一般步骤是:
(1)将方程组中的一个方程变形,•使得一个未知数用含有另一个未知数的代数式表示;
(2)用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,•求得一个未知数的值;
(3)把这个未知数的值代入代数式,求得另一个未知数的值;
(4)写出方程组的解.
3.方程组中的某个方程的某个未知数的系数的绝对值为1,或某个方程的常数项为0,此时用代入法比较简便.
范例积累
【例1】解下列方程组:
(1)
24,
531;
x y
x y
-=
⎧
⎨
-=-
⎩
(2)
5413,
71626.
x y
x y
+=
⎧
⎨
+=
⎩
【分析】方程组(1)中方程①中的系数为1,可变形成x=2y+4,然后代入方程②
解方程;方程组(2)可把方程①变形成y=135
4
x
-
,然后代入方程②解方程.
【解】(1)由①得:x=2y+4 ③
把③代入②得:5(2y+4)-3y=-1 10y+20-3y=-1
7y=-21
∴y=-3.把y=-3代入③得:x=-2,
∴方程组的解是
(2)由①得:y=135
4
x
-
③
把③代入②得:
7x+4(13-5x)=26
7x+52-20x=26 -13x=-26
∴x=2.
把x=2代入③得:y=3
4
.
∴方程组的解是
2,
3
.
4 x
y
=
⎧
⎪
⎨
=⎪⎩
【注意】(1)当方程组中的未知数系数不是1(或-1)时,常选择系数相对较小的未知数,用另一个未知数的代数式表示这个未知数.
(2)代入时要注意加括号.
(3)为了检查解答是否正确,可把所得解代入未变形的方程进行口算检验,•不必写过程.
【例2】解方程组
2(21)2,
2(2)3(21)3 x y
y x
+=+
⎧
⎨
+-+=⎩
【分析】思路一:把方程化简,再用代入法;思路二:把y+2看成整体,•直接代入求解.
【解】解法一:化简得
4, 262 y x
y x
=
⎧
⎨
-=⎩
把③代入④得:8x-6x=2 ∴x=1 把x=1代入③得:y=4
∴方程组的解是
1,
4. x
y
=⎧
⎨
=⎩
解法二:把①代入②得:
2×[2(2x+1)]-3(2x+1)=3 2x+1=3
∴x=1.
把x=1代入①得:y=4
∴方程组的解是
1,
4. x
y
=⎧
⎨
=⎩
【注意】当方程组中的方程出现相同的含未知数的代数式时,可把此代数式看成整体,然后代入求解.
基础训练
1.将方程5x-7y=14变形为用含x的代数式表示y:__________;用含y的代数式表示x:__________.
2.若x=-2,y=3为二元一次方程ax+by=-6的解,则当b=4时,a=________.
3.用代入法解下列方程组:
(1)
32,
321;
x y
x y
=-
⎧
⎨
+=
⎩
(2)
4,
327;
x y
x y
+=
⎧
⎨
-=
⎩
(3)
232,
5214.
x y
x y
-=-
⎧
⎨
+=
⎩
4.用代入法解下列方程组:
(1)
2
27,
5
32 4.
x y
x y
⎧
-=
⎪
⎨
⎪+=
⎩
(2)
32(21)5,
3(21)233.
x y
x y
--=
⎧
⎨
-+=
⎩
5.下面解方程组中的过程有没有错误,如有请指出,并加以改正.
37,
2314x y x y +=⎧⎨+=⎩
解:由①得:y=7-3x ③
把③代入②得:
2x+3×7-3x=14
-x=-7
∴x=7
把x=7代入③得:y=-14
∴方程组的解是7,
14.x y =⎧⎨=-⎩
6.如果a-4b+3=0,求15-3a+12b 的值.
提高训练
7.解下列方程组:
(1)21
1,
746
12
0.63()0;
55m n m m n ⎧-=⎪⎪⎨⎪--+=⎪⎩
(2)1,342;
23x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩
(3)
4, 0.10.5 3210. x y
x y
⎧
+=
⎪
⎨
⎪+=-
⎩
8.解方程组:
8(23)35, 4(23)3 1.
x y
x y
-+=⎧
⎨
-=+⎩
9.已知x、y互为相反数,且3x-7y=10,求x2005+500y的值.
10.若方程组
4322,
(3)3
x y
mx m y
+=
⎧
⎨
+-=
⎩
的解满足x=2y,求m的值.
11.甲、乙两人在求方程mx-ny=9的解时,甲求出一组解为
5,
2,
x
y
=
⎧
⎨
=
⎩
,而乙将其中的9•看
成了6,求得的解为
4,
1,
x
y
=
⎧
⎨
=
⎩
,试求出m、n的值.
应用拓展
12.已知二元一次方程组
921,
9
y x
ax by
=+
⎧
⎨
+=
⎩
的解也是二元一次方程组
18140,
2313
x y
ax y
-+=
⎧
⎨
-=
⎩
的解,
求a、b的值.
13.对任何x,代数式(3m+2n)x+3m与16x+n+1恒等,求m、n的值.
答案:
1.y=-2+5
7
x x=
147
5
y
+
2.9
3.(1)
1,
2
x
y
=-
⎧
⎨
=
⎩
(2)
3,
1
x
y
=
⎧
⎨
=
⎩
(3)
2,
2
x
y
=
⎧
⎨
=
⎩
4.(1)
3,
5
2
x
y
=
⎧
⎪
⎨
=-
⎪⎩
(2)
5,
3
x
y
=
⎧
⎨
=
⎩
5.略6.24
7.(1)
7,
4
m
n
=
⎧
⎨
=
⎩
(2)
60
,
17
12
17
x
y
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
(3)
2,
8
x
y
=
⎧
⎨
=-
⎩
8.
7
,
4
1
3 x
y
⎧
=
⎪⎪
⎨
⎪=⎪⎩
9.-499
10.m=3
2
11.m=1,n=-2
12.a=2,b=1
(提示,可先求出方程
921,
18140
y x
x y
=+
⎧
⎨
-+=
⎩
的解,然后代入其余两个方程即可)
13.m=2,n=5,
(提示:由于对于任何x两代数式值恒等,因而可取x=0,1时得到关于m、n的方程组再求解).。