奥数夏令营讲义之平面几何(11)调和点列、线束
- 格式:docx
- 大小:650.86 KB
- 文档页数:9
调和点列在平面几何中的应用调和点列在几何证明中有着十分广泛的应用,它与梅尼劳斯定理、极线都有着十分密切的关联。
下面先给出调和点列的定义:定义:直线上依次四点A 、B 、C 、D 满足AB ADBC DC=,则称A 、B 、C 、D 四点构成调和点列。
由交比的定义:交比(A 、B 、C 、D )=AC D C D A B B: 知A 、B 、C 、D 四点构成调和点列的充要条件是交比(A 、C 、B 、D )=-1 调和点列具有以下常用性质: 性质1:在梅尼劳斯图形中,三角形ABC 被直线DEF 所截,BE 、CD 交与点G ,AG 的延长线交BC 与点H ,则B 、H 、C 、F 成调和点列证明:由塞瓦定理,1AD BH CE DB HC EA =,故BH DB EAHC AD CE=由梅尼劳斯定理,1BF CE AD FC EA DB =,故BF EA DBFC CE AD=所以BH BF HC FC =由定义知,B 、H 、C 、F 成调和点列性质2:若A 、B 、C 、D 成调和点列,O 为平面上一点,则任意一条直线截OA 、OB 、OC 、OD 得到的四个点也成调和点列。
我们称由OFB发出的4条射线OA 、OB 、OC 、OD 为调和线束。
这是调和点列的一个重要性质。
证明:如图,设直线l 交OA 、OB 、OC 、OD 于E 、F 、G 、H 过A 作l 的平行线交OB 、OC 、OD 于B 1、C 1、D 1由平行线分线段成比例知 交比(E 、G 、F 、H )=交比(A 、C 1、B 1、D 1) 由梅尼劳斯定理,1111AB OC BA B C C O CB =,1111AD OC DAD C C O CD= 所以交比(A 、C 1、B 1、D 1)=BA DACB CD:=交比(A 、C 、B 、D )=-1 故交比(E 、G 、F 、H )=-1即E 、F 、G 、H 成调和点列。
数学奥赛教练员培训班讲义(1)第一讲 平面几何平面几何是数学竞赛中的一个基本内容。
它以严密的逻辑结构、灵活的证题方法,在发展学生的逻辑思维能力和空间想象能力等方面起着特殊的作用。
因此在数学竞赛中平面几何的内容占有十分突出的地位。
平面几何主要研究度量关系的证明、位置关系的证明、面积关系解题、几何量的计算、轨迹问题等。
一、与三角形有关的重要定理1.梅涅劳斯定理一直线分别截△ABC 的边BC 、CA 、AB (或其延长线)于D 、E 、F ,则1=∙∙FBAF EA CE DC BD 。
说明:(1)结论的图形应考虑直线与三角形三边交点的位置情况,因而本题图形应该有两个。
(2)结论的结构是三角形三边上的6条线段的比,首尾相连,组成一个比值为1的等式。
(3)其逆定理为:如果D 、E 、F 分别在△ABC 的边BC 、CA 、AB (或其延长线上),并且1=∙∙FBAF EA CE DC BD ,那么D 、E 、F 三点在同一条直线上。
(4)梅氏定理及其逆定理不仅可以用来证明点共线问题,而且是解决许多比例线段问题的有力工具。
用梅氏定理求某个比值的关键,在于恰当地选取梅氏三角形和梅氏线。
2.塞瓦定理设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于D ,E ,F ,则1=∙∙FBAF EA CE DC BD 。
说明:(1)该定理可借助于梅氏定理来证明(也可用面积法来证明)。
如果O 点在三角形外,结论仍然是成立的。
(2)其逆定理为:分别在△ABC 三边(所在直线)BC 、CA 、AB 上各取一点D 、E 、F ,若有1=∙∙FBAF EA CE DC BD ,则AD 、BE 、CF 平行或共点。
(3)塞瓦定理及其逆定理是证明三直线交于一点(线共点)问题的重要定理,应用塞瓦定理很容易证明三角形中的主要线段的共点问题。
3.三角形的五心三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。
调和点列(一)一、线段调和分割的基本概念如果线段AB被两点C,D内分与外分成同一比例,则称线段AB被点C和D 调和分割•亦称点列A,B;C,D为调和点列.显然,当C,D调和分割AB时,也可称A、B两点调和分割CD有时也称点C 和D 是线段AB的调和共轭点.若从共点直线外任一点P作射线PA,PC,PB,PD则可称射线束为调和线束,且PA与PB共轭,PC与PD共轭.二、调和点列的性质调和点列联系了众多的图形,因而它有一系列有趣的性质.性质1设A,C,B,D是共线四点,点M为AB中点,则C,D调和分割线段AB的充要条件是满足下述六个条件之一•(1) 点AB调和分割CD.⑵+AC AD AB -⑶AB *CD 二:2AD * BC二2AC • DB .⑷CA*CB = CM ・CD .⑸DA * DB = DM ・DC.⑹MA2二MB 2 = MC ・MDA M CB D性质2设A,C,B,D是共线四点,过共点直线外一点P引射线PA,PC,PB,PD则C,D调和分割线段AB的充要条件是满足下述两个条件之一.(1)线束PA,PC,PB,PD其中一射线的任意平行线被其他三条射线截出相等的两线段•⑵ 另一直线I分别交射线PA,PC,PB,PD于点A ,C' ,B ' ,D '时,点C' ,D '调和分割线段A' B'.P性质3对线段AB的内分点C和外分点D,以及直线AB外一点P,给出如下四个论断:①PC是/APB的平分线.②PD是Z APB的外角平分线.③C,D调和分割线段AB. ④ PCL PD.以上四个论断中,任选两个作题设,另两个作结论组成的六个命题均为真命题.性质4三角形的一边被其边上的内(旁)切圆的切点和另一点调和分割的充要条件是,另一点与其余两边上的两个切点三点共线•性质5从圆0外一点A引圆的割线交圆0于C,D,若割线ACD与点A的切点弦交于点B,则弦CD被A,B调和分割.三、几个推论1、性质2的推论:推论1梯形的两腰延长线的交点和两对角线的交点调和分割两底中点的连线.N推论2完全四边形的一条对角线被其他两条对角线调和分割推论3过完全四边形对角线所在直线的交点作另一条对角线的平行线,所作直线与平行的对角线的同一端点所在的边或其延长线相交,所得线段被此对角线所在直线上的交点平分•EC N2、性质3的推论:推论4三角形的角平分线被其内心和相应的旁心调和分割.推论5两外离不等圆圆心连线被两圆的外公切线交点和内公切线交点调和分割•推论6若C,D两点调和分割圆的直径AB则圆周上任一点到C,D两点的距离之比是不等于1的常数•反之,若一动点到两定点的距离之比为不等于1的常数,则该动点的轨迹是一个圆.(Apollonius 圆) 推论7从圆周上一点作两割线,它们与圆相交的非公共的两点连线,垂直于这条连线的直径所在的直线与两割线相交,则这条直径被这两割线调和分割•推论8 一已知圆的直径被另一圆周调和分割的充要条件是, 已知直径的圆周与过两分割点的圆周正交(即交点处切线相互垂直).推论9 设点C 是厶AEF 的内心,角平分线 AC 交边EF 于点B,射线AB 交厶AEF推论10设厶AEF 的角平分线AB 交EF 于点B ,交△ AEF 的外接圆于点0,则2 20E =0F = 0A *0B .3、性质4的推论:推论11若凸四边形有内切圆,则相对边上的两切点所在直线与凸四边形一边 延长线的交点和这一边上的内切圆切点调和分割这一边4、性质5的推论:推论12从圆0外一点A 引圆的两条割线交圆于四点,以这四点为顶点的四边 形的对角线相交于点B,设直线AB 交圆0于C,D ,则A,B 调和分割CD 弦.的外接圆圆Q 于点0,则射线AB 上的点。
调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定【答案】B .【解析】因为 ax +by =1 是圆 x 2+y 2=1 的切点弦方程, 所以直线与圆相交, 故选 B .类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【答案】 x9+y 2=1.【解析】该题实质上就是求椭圆 x 29+y 25=1 内一点 M (1,2) 对应的极线方程,答案为 x9+y 2=1.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB|=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.【答案】 (1)x 24+y 22=1;(2) 见解析.【解析】(1)由题意得:c 2=22a 2+1b 2=1c 2=a 2-b 2 ,解得a 2=4b 2=2 ,所求椭圆方程为x24+y 22=1.(2) 解法 1: 定比点差法设点 Q 、A 、B 的坐标分别为 (x ,y ),x 1,y 1 ,x 2,y 2由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |, 则 λ>0 且 λ≠1又 A ,P ,B ,Q 四点共线, 从而 AP =-λPB ,AQ=λQB 于是 4=x 1-λx 21-λ,1=y 1-λy 21-λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ,从而:4x =x 21-λ2x 221-λ2⋯⋯⋯⋯(1)y =y 21-λ2y 221-λ2⋯⋯⋯.. (2)又点 A 、B 在椭圆 C 上,即:x 21+2y 21=4⋯⋯⋯⋯⋯(3)x 22+2y 22=4⋯⋯⋯⋯⋯(4)(1)+(2)×2, 并结合(3)(4)得 4x +2y =4,即点 Q (x ,y ) 总在定直线 2x +y -2=0 上.解法 2:构造同构式设点 Q (x ,y ),A x 1,y 1 ,B x 2,y 2 ,由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |,又 A ,P ,B ,Q 四点共线, 可设 PA =-λAQ ,PB =λBQ(λ≠0,±1)于是 x 1=4-λx 1-λy 1=1-λy 1-λ (1), x 2=4+λx 1+λy 2=1+λy 1+λ(2)由于 A x 1,y 1 ,B x 2,y 2 在椭圆 C 上, 将(1)(2)分别代入 C 的方程 x 2+2y 2=4,整理得:x 2+2y 2-4 λ2-4(2x +y -2)λ+14=0(3)x2+2y 2-4 λ2+4(2x +y -2)λ+14=0(4)(4)-(3)得:8(2x +y -2)λ=0,∵λ≠0,∴2x +y -2=0,即点 Q (x ,y ) 总在定直线 2x +y -2=0 上.解法 3:极点极线由 |AP |⋅|QB |=|AQ |⋅|PB | 可得 AP PB =AQ QB,说明点 P ,Q 关于桞圆调和共轭, 点 Q 在点 P 对应的极线上,此极线方程为4⋅x4+1⋅y 2=1, 化简得 2x +y -2=0.故点 Q 总在直线 2x +y -2=0 上.【注】点 Q 的轨汖方程为 2x -y -2=0( 在椭圆内的部分)类型3:证明直线过定点或三点共线【例4】如图, 过直线l :5x -7y -70=0上的点P 作椭圆x 225+y 29=1的切线PM 和PN , 切点分别为M ,N , 连结MN .(1)当点P 在直线l 上运动时, 证明:直线MN 恒过定点Q ;(2)当MN ⎳l 时, 定点Q 平分线段MN .【答案】见解析.【解析】解法 1: 常规解法(1) 证明:设 P x 0,y 0 ,M x 1,y 1 ,N x 2,y 2 .则椭圆过点 M ,N 的切线方程分别为:x 1x 25+y 1y 9=1,x 2x25+y 2y 9=1.因为两切线都过点 P, 则有:x1x025+y1y09=1,x2x025+y2y09=1.这表明 M,N 均在直线 x0x25+y0y9=1 (1)上.由两点确定一条直线知, 式(1)就是直线 MN 的方程, 其中 x0,y0满足直线 l 的方程.当点 P 在直线 l 上运动时,可理解为 x0 取遍一切实数,相应的 y0 为 y0=57x0-10 .代入(1)消去 y0 得 x025x+5x0-7063y-1=0 (2)对一切 x0∈R 恒成立.变形可得 x0x25+5y63-10y9+1=0 ,对一切 x0∈R 恒成立,故有x25+5y63=010y9+1=0⇒x=2514y=-910故直线 MN 恒过定点 Q2514,-910 .(2)当 MN⎳l 时,由式(2)知 x0255-5x0-7063-7≠-1-70. 解得 x0=4375533 . 代入(2),得 MN 的方程5x-7y-53335=0 (3)将此方程与椭圆方程联立,消去 y 得 53325x2-5337x-1280681225=0 .由此可得, 此时 MN 截圆所得弦的中点横坐标恰好为点 Q2514,-910的横坐标, 即x=x1+x22=--53372×53325=2514代入(3)式可得弦中点纵坐标恰好为点 Q2514,-910的纵坐标,即y=57×2514-5337×35=1491252-5332=-910这就是说, 点 Q2514,-910平分线段 MN.解法 2:(1) 动点 P 在定直线 l 上, 则相应的切点弦过定点, 可知定点 Q 必为极点,于是只需求极点即可:由 5x-7y-70=0⇔x14-y10=1, 得到极点坐标 Q2514,-910, 即为所求定点.(2) 由椭圆内一点极线方向与以极点为中点弦的方向相同, 也即 OQ 与极线方向共轭, 即得结论 (2).【注】“极点在已知直线上,则极线过定点”. 这是一类常考的直线过定点问题.【例5】已知A,B分别为椭圆E:x2a2+y2=1(a>1)的左、右顶点, G为E的上顶点, AG⋅GB=8,P为直线x=6上的动点, PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【答案】(1)x29+y2=1;(2) 见解析【解析】(1)易得椭圆 E 的方程为 x29+y2=1;(2)利用极点极线角度 1: 如下图, 设 CD 交 AB 于 Q,AD 交 CB 于 R, 则 QR 为 P 对应的极线,即点 Q 在点 P 对应的极线上. 极点 P(6,t) 对应的极线方程为 6x9+ty=1,即 2x3+ty=1, 极线恒过定点32,0, 故直线 CD 也过定点 32,0.角度 2: 如图, 设 CD 交 AB 于 Q(m,0),则点 P(6,t) 在点 Q(m,0) 对应的极线上,极点 Q(m,0) 对应的极线方程为 mx9+0⋅y=1, 即 x=9m, 由9m=6 得 m=32, 所以直线 CD 过定点 Q32,0.角度 3: 如图, 设直线 x=6 交 x 轴于点 H, 由极点极线的性质可知: |OQ|⋅|OH|=|OB|2即 6|OQ|=32, 所以 |OQ|=32, 故直线 CD 过定点 Q32,0.【注】本题的背景是极点极线, 上面解法从三个不同角度进行了“秒杀”,令人回味无穷. 极点极线 是高等几何中的内容, 高中数学教材中虽然没有介绍相关的定义及性质, 但是以此为背景的高考和竞赛试 题层出不穷、常考常新. 我们用其他解法求解本题时,可以用求极线对应极点的解法得到这个定点, 目标 已然心中有数, 那么就能降低运算难度,避免计算错误.类型4:证明两直线垂直【例6】已知A(-2,0),B(2,0), 点C是动点, 且直线AC和直线BC的斜率之积为-3 4.(1)求动点C的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P , 与直线x =4相交于点Q , 且F (1,0), 求证:∠PFQ =90∘.【答案】 (1)x 24+y 23=1(y ≠0);(2) 证明见解析.【解析】(1)设 C (x ,y ), 则依题意得 k AC ⋅k BC =-34, 又 A (-2,0),B (2,0),所以有 y x +2⋅y x -2=-34(y ≠0),整理得 x 24+y 23=1(y ≠0), 即为所求轨迹方程.(2)解法 1:设直线 l :y =kx +m , 与 3x 2+4y 2=12 联立得3x 2+4(kx +m )2=12 ,即 3+4k 2 x 2+8km x +4m 2-12=0 ,依题意 Δ=(8km )2-43+4k 2 4m 2-12 =0, 即 3+4k 2=m 2,∴x 1+x 2=-8km 3+4k 2, 得 x 1=x 2=-4km 3+4k2,∴P -4km 3+4k 2,3m 3+4k2 , 而 3+4k 2=m 2, 得 P -4k m ,3m , 又 Q (4,4k +m ),又 F (1,0), 则 FP ⋅FQ =-4k m -1,3m ⋅(3,4k +m )=0. 知 FP⊥FQ , 即 ∠PFQ =90∘.解法 2:设 P x 0,y 0 ,则曲线 C 在点 P 处切线 PQ :x 0x 4+y 0y 3=1 , 令 x =4 ,得 Q 4,3-3x 0y 0, 又 F (1,0) , ∴FP ⋅FQ =x 0-1,y 0 ⋅3,3-3x 0y 0 =0 ,知 FP ⊥FQ , 即 ∠PFQ =90∘ . 解法 3:x =4 为椭圆的右准线, 椭圆右焦点为 F (1,0),由椭圆极点极线性质 5 可知:PF ⊥FQ , 即 ∠PFQ =90∘.【注】模型:已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的右焦点为 F , 直线 l 与椭圆 C 相切于 P , 且与右准线交于点 Q , 则有 PF ⊥FQ .类型5:证明向量数量积(或线段长度之积)为定值【例7】如图, 椭圆有两顶点A (-1,0),B (1,0), 过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点, 并与x 轴交于点P , 直线AC 与直线BD 交于点Q .(1)当|CD |=322时, 求直线l 的方程A (-1,0);(2)当点P 异于A 、B 两点时, 求证:OP ⋅OQ为定值.【答案】 (1)y =±2x +1; (2) 定值为 1 .【解析】解法 1:设 P (t ,0), 则点 P 的极线过 Q . 易得椭圆方程 x 2+y 22=1, 则 P 的极线为 0⋅y 2+tx =1, 即 x =1t .于是点 Q 在直线 x =1t 上, 设 Q 1t ,y 0 , 则 OP ⋅OQ =(t ,0)⋅1t ,y 0 =t ⋅1t+0⋅y 0=1.解法 2:根据极点极线几何性质, 点 p 关于敉圆 x 2+y 22=1 的极线为过点 Q 且与 x 轴垂直的直线上.设该直线交 x 轴于 Q , 由 “调和点列” 的 “等比性” , 可知 OQ ⋅OP =OB 2, 从而 OP ∙OQ=1.类型6:与斜率有关的定值问题【例8】设P x 0,y 0 为桞圆x 24+y 2=1内一定点(不在坐标轴上), 过点P 的两条直线分别与椭圆交于点A ,C 和B 、D , 且AB ⎳CD .(1)证明:直线AB 的斜率为定值;(2)过点P 作AB 的平行线, 与椭圆交于E 、F 两点, 证明:点P 平分线段EF .【答案】见解析【解析】(1)因为 AB ⎳CD , 所以点 P 对应的极线 x 0x4+y 0y =1 平行于 AB ,即 AB 的斜率是 -y 04x 0(定值);(2) 直线 EF :y =-x 04y 0x -x 0 +y 0, 代入椭圆x 24+y 2=1, 得x 24+-x 04y 0x -x 0 +y 02=1x 20+4y 2016y 20⋅x 2-x 0x 20+4y 20 8y 20⋅x +x 4016y 20+x 202+y 20-1=0则x E +x F =--x 0x 20+4y 20 8y 20x 0x 20+4y 28y 20=2x 0此时点 P 是 EF 中点, 即点 P 平分线段 EF .【例9】如图, 椭圆E :x 2a 2+y 2b2=1(a >b >0的离心率为22, 直线l :y =12x 与椭圆E 相交于A 、B 两点, AB =25,C 、D 是椭圆E 上异于A 、B 的任意两点, 且直线AC 、BD 相交于点M , 直线AD 、BC 相交于点N , 连结MN .(1)求椭圆E 的方程;(2)求证:直线MN 的斜率为定值.【答案】 (1)x 26+y 23=1;(2) 见解析.【解析】 (1)x 26+y 23=1.( 过程略)(2) 设点 N 的坐标为 (m ,n ), 直线 DC 与 BA 交于点 P ,则 MP 为点 N 对应的极线, 其方程为 mx 6+ny 3=1. 结合 y =12x , 得到 P 点坐标为 6m +n ,3m +n . 所以, 点 P 对应的极线 MN 的方程为 16⋅6m +n x +13⋅3m +n x =1, 即 x +y =m +n ,所以直线 MN 的斜率为定值 -1.【注】本题需要极点、极线之间的两次转化, 通过点 P 在点 N 对应的极线上, 以及 MN 是点 P 对应的 极线, 使问题得以解决.【例10】四边形ABCD 是椭圆x 23+y 22=1的内接四边形, AB 经过左焦点F 1,AC ,BD 交于右焦点F 2, 直线AB 与直线CD 的斜率分别为k 1,k 2.(1)证明:k 1k 2为定值;(2)证明:直线CD 过定点, 并求出该定点的坐标.【答案】见解析.【解析】(1)设 A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4则直线 AC 的方程为 x =x 1-1y 1y +1, 代入椭圆方程 x 23+y 22=1 整理得2-x 1 y2+x 1-1 y 1y -y 21=0∵y 1⋅y 3=-y 212-x 1,∴y 3=y 1x 1-2, 从而 x 3=x 1-1y 1y 3+1=2x 1-3x 1-2,故点 C 2x 1-3x 1-2,y 1x 1-2, 同理,点 D 2x 2-3x 2-2,y 2x 2-2 . 因为三点 A 、F 1,B 共线,所以 y 1x 1+1=y 2x 2+1, 从而 x 1y 2-x 2y 1=y 1-y 2.从而k 2=y 4-y 3x 4-x 3=y 2x 2-2-y 1x 1-22x 2-3x 2-2-2x 1-3x 1-2=y 2x 1-2 -y 1x 2-2 2x 2-3 x 1-2 -2x 1-3 x 2-2=x 1y 2-x 2y 1 +2y 1-y 2x 1-x 2=3y 1-y 2 x 1-x 2=3k 1故k 1k 2=13 .(2)解法 1:由(1)知:C 2x 1-3x 1-2,y 1x 1-2,D 2x 2-3x 2-2,y 2x 2-2,设直线 CD 交 x 轴于点 M x 0,y 0 ,则x 0=x 3y 4-x 4y 3y 4-y 3=2x 1-3x 1-2⋅y 2x 2-2-2x 2-3x 2-2⋅y 1x 1-2y 2x 2-2-y 1x 1-2=2x 1-3 y 2-2x 2-3 y 1y 2x 1-2 -y 1x 2-2 =2x 1y 2-x 2y 1 +3y 1-y 2 x 1y 2-x 2y 1 +2y 1-y 2=5y 2-y 1 3y 1-y 2 =53故直线 CD 过定点 53,0.解法 2:设 AB ,DC 交于点 P , 则 P 在 F 2 对应的极线1⋅x 3+0⋅y 2=1 即 x =3 上,可设 P (3,m ),由对称性可知:直线 CD 过定点必在轴上,不妨设定点为 T (t ,0), 则 k 1=k PF 1=m 4,k 2=k PT =m3-t,由(1)知 k 1k 2=13, 得 3-t 4=13⇒t =53, 所以 T 53,0 , 故直线 CD 过定点 53,0 .类型7:等角问题【例11】设椭圆C :x 22+y 2=1的右焦点为F , 过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时, 求直线AM 的方程;(2)设O 为坐标原点, 证明:∠OMA =∠O MB .【答案】(1)AM 的方程为 y =-22x +2 或 y =22x -2;(2) 证明见解析.【解析】(1)由已知得 F (1,0),l 的方程为 x =1.由已知可得, 点 A 的坐标为 1,22 或 1,-22 . 所以 AM 的方程为 y =-22x +2 或 y =22x -2.(2)解法 1:设直线 l 的方程为:x =my +1,A x 1,y 1 ,B x 2,,y 2 ,k AM =y 1-0x 1-2,k BM =y 2-0x 2-2联立方程组得:x =my +1x 22+y 2=1, 消去 x 并整理得:m 2+2 y 2+2my -1=0(1)因为点 F 为椭圆的右焦点, 所以方程(1)有两个实数根分别为 y 1,y 2.由韦达定理可得:y 1+y 2=-2m 2+m 2,y 1y 2=-12+m 2因为:k AM +k BM =y 1-0x 1-2+y 2-0x 2-2=y 1my 1-1+y 2my 2-1=2my 1y 2-y 1+y 2 my 1-1 my 2-1整体代入可得:k AM +k BM =2my 1y 2-y 1+y 2 my 1-1 my 2-1 =-2m 2+m 2+2m2+m 2my 1-1 my 2-1 =0则直线 AM 的倾斜角与直线 BM 的倾斜角互补, 故 ∠OMA =∠O MB .解法 2:过点 A ,B 分别作椭圆右准线的垂线, 垂足分别为 A 1,B 1(如图所示)由椭圆的第二定义可得: e =AF AA 1=BF BB 1, 所以有: AFBF =AA 1BB 1(1),因为 AA 1⎳x 轴⎳ BB 1 ,所以 AFBF =A 1M B 1M(2) 由(1)(2)得AA 1BB 1=A 1M B 1M ,即有 AA 1A 1M=BB 1B 1M 且 ∠AA 1M =∠BB 1M , 所以 △AA 1M ∼ΔBB 1M , 即可得 ∠AMA 1=∠B MB 1,故 ∠OMA =∠O MB .【例12】如图, 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F , 点-1,32 在椭圆C 上, 过原点O 的直线与椭圆C 相交于M 、N 两点, 且|MF |+|NF |=4.(1)求椭圆C 的方程;(2)设P (1,0),Q (4,0), 过点Q 且斜率不为零的直线与椭圆C 相交于A 、B 两点, 证明:∠APO =∠BPQ【答案】(1)x24+y2=1;(2) 见解析.【解析】(1) 如图, 取椭圆 C 的左焦点 F , 连 MF ,NF , 由椭圆的几何性质知 |NF|=MF, 则MF+|MF|=2a=4, 得 a=2, 将点 -1,3 2代入椭圆 C 的方程得:1a2+34b2=1, 解得:b=1, 故椭圆C 的方程为:x24+y2=1.(2) 设点 A 的坐标为 x1,y1, 点 B 的坐标为 x2,y2解法 1:y1x1-4=y2x2-4⇒y21x1-42=y22x2-42⇒1-x214x1-42=1-x224x2-42⇒4-x21x2-42=4-x22x1-42⇒2x1x2x1-x2-5x21-x22+8x1-x2=0因为 x1≠x2, 所以 2x1x-5x1+x2+8=0所以k x1-4x1-1+k x2-4x2-1=k x1-4x2-1+k x2-4x1-1x1-1x2-1=k2x1x2-5x1+x2+8x1x2-x1+x2+1=0所以直线 AP 与 BP 的斜率互为相反数, 故 ∠APO=∠BPQ.解法 2:设直线 AB 的方程为 x=ty+4, 联立方程x2+4y2=4x=ty+4, 消去 x 得:t2+4y2+8ty+12=0则y1+y2=-8tt2+4y1y2=12t2+4, 所以y1y2y1+y2=-32t, 所以 2ty1y2=-3y1+y2所以k AP+k BP=y1x1-1+y2x2-1=y1ty1+3+y2ty2+3=2ty1y2+3y1+y2ty1+3ty2+3=-3y1+y2+3y1+y2ty1+3ty2+3=0所以直线 AP 与 BP 的斜率互为相反数, 故 ∠APO=∠BPQ.类型8:三斜率成等差数列引理:二次曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0与直线PQ交于点P,Q, 定点O在直线PQ 上, PQ 与O 点关于曲线C 的极线交于点R . 曲线C 上有两动点A ,B , 且直线AO 、BO 分别交曲线Γ于点C , D , 直线AB ,CD 分别交PQ 于点M ,N . 则M ,O ,N ,R 成调和点列.【证明】延长XO 交BC 于点E , 由定理5可知:B ,E ,C ,Y 成调和点列(完全四边形中的调和点列), 故M ,O ,N ,R 也成调和点列(调和点列在射影变换下的不变性).【例13】椭圆C :x 2a 2+y 2b2=1,P 的坐标是x 0,0 ,Q 点在P 关于椭圆的极线x =a 2x 0上. 过P 作直线交椭圆于点A ,B . 求证:直线AQ ,PQ ,BQ 的斜率成等差数列.该结论对于拋物线, 双曲线同样适用. 特别地,当Q 点在x 轴上时, 就是等角线, 此时PQ 斜率为0 , PQ 平分∠AQB .【答案】见解析.【解析】 解法 1:作出以下辅助线:作 PR ⊥x 轴于 R , 设 AB 与 CD 交于点 P , 由引理可知:M 、P 、N 、R 成调和点列,于是有:1RM +1RN =2RP所以k AQ +k cQ =k MQ +k NQ =QR RM +QR RN =2QR RP =2k PQ 即直线 AQ ,PQ ,BQ 的斜率成等差数列.解法 2:由 A 、P 、B 共线可得: k PA =k PB , 即y A x A -x 0=y B x B -x 0所以y2Ax A-x02=y2Bx B-x02即a2b2-b2x2Aa2x A-x02=a2b2-b2x2Ba2x B-x02化简可得:2x0x A x B-x20+a2x A+x B+2a2x0=0恒等变形后得到:x0a2-x0x A+x0a2-x0x B=2x0a2-x20注意到恒等变形:x0a2-x0x A-x0a2-x20=-x20x0-x Aa2-x0x Aa2-x20于是我们将 (1)式等号的右边的式子移到左边, 还可以得到一个与(1)式等价的(2)式:x0-x Aa2-x0x A+x0-x Ba2-x0x B=0则y Ax Q-x A+y Bx Q-x B=y Aa2x0-x A+y Ba2x0-x B=x0y Aa2-x0x A+x0y Ba2-x0x Bk AQ+k BQ=y Q-y Ax Q-x A+y Q-y Bx Q-x B=y Q⋅1x Q-x A+1x Q-x B-y A xQ-x A+y Bx Q-x B所以=y Q⋅x0a2-x0x A+x0a2-x0x B-k AB⋅x0⋅x0-x Aa2-x0x A+x0-x Ba2-x0x B=y Q⋅x0a2-x0x A+x0a2-x0x B=2y Q x0a2-x20=2y Qx Q-x0=2k PQ故直线 AQ,PQ,BQ 的斜率成等差数列.【例14】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0), 过焦点F任作一直线交椭圆C于A,B两点, 交F相应的准线于点M,P为过F与x轴垂直的直线上的任意一点, 则直线PA,PM,PB的斜率成等差数列.【答案】见解析【解析】易知 A,B,F,M 成调和点列, 从而直线 PA,PB,PF,PM 成调和线束, 又因为 PF⊥x 轴, 故由定理 3 知 k1,k2,k3 成等差数列.【注】类似地, 可得下面结论成立:已知椭圆 C:x2a2+y2b2=1(a>b>0), 过点 E(t,0)(0<t<a) 任作一直线交椭圆 C 于 A,B 两点, 交直线 l:x=a2t 于点 M,P 为椭圆上的点且满足 PE⊥x 轴, 则直线 PA、PM、PB 的斜率成等差数列.【例15】如下图, 椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点为A 1,B 1,Q 为直线x =m 上一点, QA 1,QB 1分别于椭圆交于点A ,B , 过点P 作直线交桞圆于A ,B 两点, 直线AB 与x 轴交于点P , 与直线x =m 交于点M , 记直线QA 1,QB 1,QP 的斜率分别为k 1,k 2,k 0, 则:(1)k 1,k 0,k 2成等差数列;(2)x P xQ =a 2.【答案】见解析.【解析】由完全四边形性质可知 Q 在 P 的极线 x =m 上, 则 P ,H 调和分割 A 1B 1.而 k 1+k 2=2k 0⇔QH A 1H+QH B 1H =2×QH PH ⇔A 1H HB 1=A 1P PB 1⇔P ,H 调和分割 A 1B 1⇔|OP |⋅|OH |=OB 1 2⇔x P x Q =a 2, 于是(1)(2)成立.【注】设与直线 AB 与直线 x =m 交于点 M , 则 P ,M 调和分割 BA .【例16】椭圆x 2a 2+y 2b2=1(a >b >0)经过点M 1,32 , 离心率e =12.(1)求椭圆的方程;(2)设P 是直线x =4上任意一点, AB 是经过椭圆右焦点F 的一条弦(不经过点M ). 记直线PA ,PF ,PB 的斜率依次为k 1,k 2,k 3. 问:是否存在常数λ, 使得k 1+k 3=λk 2. 若存在, 求λ的值;若不存在, 说明理由.【答案】 (1)x 24+y 23=1; (2) 见解析【解析】(1)易知椭圆为 x 24+y 23=1.(2) 设直线 AB 方程为 x =ty +1, 点 A x 1,y 1 ,B x 2,y 2 ,由 x 24+y 23=1x =ty +1消去 x , 整理得:3t 2+4 y 2+6ty -9=0.则 y 1,y 2 为上述方程的根, 设 s =y 1+y 2=-6t 3t 2+4,p =y 1y 2=-93t 2+4 于是 s p =6t 9, 即有:t =3s 2p 设点P 的坐标为 (4,m ), 则 k 2=m 3,k 1+k 3=m -y 14-x 1+m -y 24-x 2=m -y 13-ty 1+m -y 23-ty 2=6m -(3+mt )y 1+y 2 +2ty 1y 29-3t y 1+y 2 +t 2y 1y 2=6m -3+m 3s 2p s +23s 2p p 9-33s 2p s +3s 2p2p =6m -3ms 22p 91-s 24p=2m 3=2k 2这表明存在常数 λ=2, 使得 k 1+k 3=λk 2.【注】本题中, 点 P 所在直线刚好为椭圆的右准线. 如图, 设直线 PA ,PB 与 x 轴交于 C ,D , 准线与 x 轴交于点 E . 则本题结论用图中线段可表示为 EP CE +EP DE =2⋅EP FE , 即 2EF =1EC+1ED . 这表明 (C ,D ;F ,E )为 调和点列, 由定理 3 知 k 1,k 2,k 3 成等差数列, 即 k 1+k 3=2k 2.。
调和点列知二推二【原创版】目录1.调和点列的定义和性质2.调和点列的应用3.调和点列的推广和发展正文调和点列是指在平面直角坐标系中,满足如下条件的点集:对于任意一个点 P(x, y) 在该点列中,总存在另外两个点 Q(x1, y1) 和 R(x2, y2),使得 P、Q、R 三点共线,且 PR 的斜率为 -1。
这个性质使得调和点列在几何学、计算机图形学等领域有着广泛的应用。
首先,我们来介绍一下调和点列的定义和性质。
调和点列最早由法国数学家 Poncelet 在 19 世纪提出,他发现在满足一定条件下,可以通过三个共线的点来描述一个调和点列。
具体来说,如果点 P(x, y) 在调和点列中,那么可以通过以下公式来描述另外两个点 Q 和 R 的坐标:x1 = 2x - xy, y1 = 2y - xyx2 = 2x + xy, y2 = 2y + xy其中,x1、y1、x2、y2 分别为点 Q 和 R 的坐标。
可以看出,Q 和R 的坐标是关于 x 和 y 的一次函数,因此 P、Q、R 三点共线。
另外,根据斜率公式,可以证明 PR 的斜率为 -1,满足调和点列的定义。
接下来,我们来介绍一下调和点列的应用。
在计算机图形学中,调和点列常常用于生成平滑的曲线和曲面。
通过在起点和终点之间选择适当的点,可以得到一个近似于所需曲线或曲面的调和点列。
另外,在图像处理和模式识别领域,调和点列也有着广泛的应用,例如用于图像的缩放和插值等。
最后,我们来介绍一下调和点列的推广和发展。
随着调和点列研究的深入,人们逐渐发现了一些新的性质和应用。
例如,可以通过对调和点列进行推广,得到高维调和点列,用于描述空间中的曲线和曲面。
另外,调和点列还可以与其他数学概念相结合,如代数几何、拓扑学等,从而得到更深入的理论和应用。
总之,调和点列作为一种重要的数学概念,在几何学、计算机图形学等领域有着广泛的应用。
与平行线相关的几何结论:一、线束定理:过一点的三条直线截两条平行线,截得的线段对应成比例.如图所示,直线12l l ∥,过点O 的三条直线分别交1l 、2l 于A 、A ',B 、B ',C 、C ',求证AB BC ACA B B C A C ==''''''. 证明:因为AB A B ''∥,故AB OB OAA B OB OA ==''''. 同理可证BC OB B C OB =''',AC OAA C OA ='''. 故AB BC ACA B B C A C ==''''''. 特别地,当AB BC =时,有A B B C ''''=,反之亦然.点评:平行线的这种性质易于理解和掌握,它的证明利用了平行线截线段成比例定理,但它不同于后者,定理只考虑两条平行线上被截得的线段之间的关系,且由一条平行线上被截得的两线段相等,立即可得另一条平行线上被截得的两线段也相等,这一结论是证明两线段相等或线段被平分的重要依据.平行线的这一性质还可推广到两条平行线被过一点的n 条直线所截的情形,即“过一点的n (3n ≥,n ∈N)条直线截两条平行线,截得的线段对应成比例.”因为过一点的若干条直线叫作线束,故该定理叫作线束定理.二、线段等式:111x y z+=. 如图所示,AB CD EF ∥∥.若AB x =,CD y =,EF z =,则111x y z+=. 证明:由题意可得z CEx CA=,z AE y AC =, 则1z zx y +=, 即111x y z+=.三、线段等式:111EF AB CD λλλ=+++. 第5讲北京市初二数学竞赛专项训练FE DCBA在梯形ABCD 中,EF 平行于两条底边,交BC 和DA 于EF ,其中BE AFEC FDλ==,则有如下等式成立111EF AB CD λλλ=+++. 证明:由面积关系有:ABF BEC FCD ABE BEC ECD ABC ACD ABC BCD ABCD S S S S S S S S S S S ∆∆∆∆∆∆∆∆∆∆++=++==+=+梯形则由ABF BEC FCD ABC BCD S S S S S ∆∆∆∆∆++=+得到11111sin sin sin sin sin 22222AB BF EF BC CD FC AB BC CD BC θθθθθ⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅(θ为底边和腰BC 的夹角)所以AB BF EF BC CD FC AB BC CD BC ⋅+⋅+⋅=⋅+⋅ 即()()EF BC AB BC BF CD BC CF ⋅=⋅-+⋅-可化简为CF BF EF AB CD BC BC =+,即111EF AB CD λλλ=+++. 这条关系式也可以通过平移梯形的腰,将梯形转化为三角形后用平行线截线段成比例定理证明.【例 1】 如图所示,在梯形ABCD 中,O 是底AB 的中点,OC 、OD 分别交对角线BD 、AC 于E 、F ,FE 交AD 、BC 于G 、H ,求证GF FE EH ==.GD FEHOC B A【例 2】 如图所示,M 、N 分别是矩形的边AD 、BC 的中点,在CD 的延长线上取点P ,PM 交对角线AC 于Q ,求证NM 平分PNQ ∠.板块一:线束定理Q NMP D CBA【例 3】如图所示,在ABC∆中,D、E、F分别是AB、BC、AC的中点,DM、DN分别是CDB∆和CDA∆的角平分线,MN交CD于O,EO、FO的延长线分别交AC、BC于Q、P,求证PQ CD=.PQONMFEDCBA【例 4】如图所示,H是ABC∆的高AD上的任意一点,BH、CH分别交AC、AB于E、F,求证EDH FDH∠=∠.FEHD CBA【例 5】如图所示,AD是ABC∆的外接圆O⊙的直径,过D的切线交CB的延长线于P,PO分别交AB、AC于M、N,求证OM ON=.NMPCBDOA【例 6】 (全国初中数学联合竞赛试题) 设凸四边形ABCD 的对角线AC 、BD 的交点为M ,过点M 作AD 的平行线分别交AB 、CD 于点E 、F ,交BC 的延长线于点O ,P 是以点O 为圆心、OM 为半径的圆上的一点,求证OPF OEP ∠=∠.F PO E MCBA D板块二:线段等式相关【例 7】 (前苏联数学奥林匹克竞赛试题) 如图所示,已知正七边形127A A A …,证明121314111A A A A A A =+.A 7A 6A 5A 4A 3A 2A 1【例 8】 (基辅数学奥林匹克竞赛试题) 在凸四边形ABCD 中,K 和M 分别是AB 和CD 边上的点,且有BK DMKA MC=.AM 与DK 交于点P ,BM 与CK 交于点Q ,求证KCD ADM BCM S S S ∆∆∆=+且 MPKQ ADP BCQ S S S ∆∆=+.QPK M DC BA【例 9】 如图所示,在四边形ABCD 中,DE EF FC ==,AG GH HB ==,求证四边形ABCD 的面积等于四边形EFHG 的面积的三倍.H DEG FCBA【例 10】 (2004年北京市初二数学竞赛)设111111A B C D E F ,,,,,分别是凸六边形ABCDEF 的边AB ,BC ,CD ,DE ,EF ,FA 的中点.1ABC ∆,1BCD ∆,1CDE ∆,1DEF ∆,1EFA ∆,1FAB ∆的面积之和为m ,六边形ABCDEF 的面积为S .证明:23S m =.A1AF1FE1ED1DC1CB1B习题 1.如图所示,AB是O⊙的直径,PA、PC是O⊙的切线,C是切点,CD AB⊥于D,PB交CD 于E.求证EC ED=.习题 2.如图所示,以线段AB为直径作半圆,在另一侧作矩形ABCD,使2AB AD=,P为半圆上的任意一点,PC、PD分别交AB于F、E两点,求证222AF BE AB+=.FEPD CBA习题 3. (苏州市数学竞赛试题)如图所示,D、E分别是ABC∆的边BC、AB上的点,AD、CE交于F,BF、DE交于G.过G作BC的平行线分别交AB、CE、AC于M、H、N,求证GH NH=.NMHGF E D CB A习题 4. 如图所示,已知梯形ABCD ,AB CD ∥且7AB =、4CD =.延长AD 、BC 交于点E ,过E 作平行于AB 的直线,分别交AC 、BD 的延长线于N 、M ,则MN = .BA CD ENM习题 5. 如图所示,直线l 同侧有三个相邻的等边ABC ∆、ADE ∆、AFG ∆,且G 、A 、B 都在直线l 上,设这三个三角形的边长依次分别为a 、b 、c ,连接GD 交AE 于N ,再连接BN 交AC 于L ,求证abcAL ab bc ca=++.lLNF DE GBA C两个简单的“悖论”你知道11111111-+-+-+-+等于多少?解:设23111x x x x=-+-++,则当1x =时,有111112=-+-+即1111111112-+-+-+-+=, 另解1:11111111(11)(11)(11)0000-+-+-+-+=-+-+-+=++++=,即111111110-+-+-+-+= 另解2:1111111(11)(11)(11)1001-+-+-+=+-++-++-++=+++=即111111111-+-+-+-+=大家觉得怪不怪,同一个式子,由于计算方法不同而得到了不同的值,这该怎样解释才使人信服?原来这是一个令大数学家欧拉既感兴趣又伤脑筋的问题,这里暂且用“悖论”作答吧.萨维尔村理发师给自己订了一条规则:"他给村子里不给自己刮胡子的人刮胡子,也只给这样的人刮胡子.于是有人问他:您自己的胡子由谁来刮呢?"理发师顿时哑口无言.因为,如果他给自己刮胡子,那么他就属于自己给自己刮胡子的那类人.但是,招牌上说明他不给这类人刮胡子,因此他不能自己给自己刮.如果由另外一个人给人刮,他就是不给自己刮胡子的人,而招牌上明明说他要给所有不自己刮胡子的男人刮胡子,因此,他应该自己为自己刮胡子.由此可见,不管作怎样的推论,理发师所说的话总是自相矛盾的.这就是著名的理发师悖论,是由英国哲学家罗素提出来的,这个通俗的故事表述了集合论中的一个著名的悖论——罗素悖论.罗素悖论还有其它一些通俗化问题,其中有一个是这么叙述的:假定有一个图书馆管理员,要给他的图书馆编辑一本参考书目:仅列入所有那些在他的图书馆里不把它们自己列入的参考书目的参考书目.。
2018奥数夏令营平面几何(教师版)2018年奥数夏令营讲义——平面几何目录一、等差幂线定理 (2)二、共边比例定理、分角张角 (7)2.1 共边比例定理 (7)2.2 分角定理 (10)2.3 张角定理 (12)三、Menelaus、Ceva、Pascal定理 (15)3.1 梅涅劳斯(Menelaus)定理 (15)3.2 赛瓦(Ceva)定理 (19)3.3 Pascal定理 (23)四、三角形五心 (28)4.1 三角形的内心 (28)4.2 三角形的外心 (31)4.3 三角形的重心 (34)4.4 三角形的垂心 (38)4.5 三角形的旁心 (42)五、等角共轭 (49)5.1 等角共轭 (49)5.2 等角共轭点 (50)六、Simson 定理、托勒密、三弦定理 (62)6.1 Simson 定理 (62)6.2 Ptolemy 定理 (65)6.3 三弦定理 (70)七、Stewart 定理 (73)八、欧拉定理、欧拉线、欧拉圆 (78)九、圆幂定理、根轴、根心 (86)十、内外角平分线定理、线段的“分割比”、阿波罗尼斯圆 (103)十一、调和点列、线束 (108)十二、顾冬华20题 (117)注:第81题、第104题、第124题为同一题,分别由三位老师提供,诠释角度不同,故仍然顺应内容重复编排在内,方便备课.1 / 1362 / 136一、等差幂线定理1. 如图,点P 为ABC △内部一点,PL PM PN 、、分别垂直于BC CA AB 、、,且AM AN =,BN BL =.求证:CL CM =.B【证明】由定差幂线定理PN AB ⊥?2222PA PB NA NB -=-;PL BC ⊥?2222PB PC LB LC -=-;PM CA ⊥2222PC PA MC MA ?-=-. 上述三式相加,结合AM AN =及BNBL =,得CL CM =.2. 在正方形对角线上一点(不与重合),. 求证:【证明】则D F3 / 1363. 在中,. 求证:和边上的中线和互相垂直.【证明】连接,得4. 如图,在ABC △中,CD AB ⊥,BE AC ⊥,D 、E 是垂足,CD 与BE 交于点H . 证明:AH BC ⊥. ABC DH E证明:在凹四边形ACBH 中,由CH AB ⊥得2222AC BH BC AH +=+. 在凹四边形ABCH 中,由BH AC ⊥得2222AB CH BC AH +=+.于是,在凹四边形ABHC 中,得到2222AB CH AC BH +=+,则AH BC ⊥. 由此题可得ABC △垂线H 的一个性质:222222AB CH BC AH AC BH +=+=+.ABCDE5.在五边形中,为五边形内一点,.求证:.ABC【证明】连接延长交,由,得:两式相减:即:由凹四边形得:.6.如图,在四边形ABCD中,E和F是CD和BC上的点,AB=AD,DF求证:CDB证明:在四边形ADEF中,由DF及定差幂线定理得,又因为AB=AD,BACDEPQ4 / 136所以,即,由定差幂线定理知7.若点P在ABC△三边BC、CA、AB所在直线上的射影分别为X、Y、Z. 证明:自YZ、ZX、XY的中点分别向BC、CA、AB所作的垂线共点.B证明:由三角形中线长公式,有22221()42am b c a=+-.由DX BC'⊥,EY CA'⊥,FZ AB'⊥,则2222X B X C BD CD''-=-22211()24BZ BY YZ=+-22211()24CY CZ YZ-+-22221()2BY BZ CY CZ=+--.同理,2222221()2Y C Y A CZ CX AZ AX ''-=+--2222221()2Z A Z B AX AY BX BY ''-=+--.以上三式相加,得222222X B X C Y C Y A Z A Z B ''''''-+-+-2222221()2XCXB YA YC ZB ZA=-+-+-.因为,由定差幂线定理可得:以上三式相加得所以222222X B X C Y C Y A Z A ZB''''''-+-+-=0(*)设与交于M 点,则由定差幂线定理可得代入(*)得即所以M在过引AB的垂线上,所以、、三线共点.5 / 1366 / 1368. 以锐角△ABC 的一边AC 为直径作圆,分别与AB 、BC 交于点K 、L ,CK 、AL 分别与△ABC 的外接圆交于点F 、D (F ≠C ,D ≠A ),E 为劣弧AC 上一点,BE 与AC 交于点N . 若AF 2+BD 2+CE 2=AE 2+CD 2+BF 2. 求证:KNB BNL =∠∠.证明如图,由于以AC 为直径的圆分别与AB 、BC 交于点K ,L ,则CK AB ⊥,AL BC ⊥. 设CK 与AL 交于点H ,则H 为ABC △的垂心,故点H 与F 关于AB 对称,点H 与D 关于BC 对称. 从而,AF AH =,CD CH =,BD BH BF ==. 由222222AF BD CE AE CD BF ++=++,有 2222AH CE AE CH +=+.即2222AH CH AE CE -=-. 由定差幂线定理知,HE AC ⊥. 又注意到H 为垂心,有BH AC ⊥. 故知B 、H 、E 三点共线. 因为N 为边AC 与BH 的交点,则BN AC ⊥. 故KNB BNL =∠∠.7 / 136二、共边比例定理、分角张角2.1 共边比例定理9. 如图,ABC △中,DE BC ∥,BE 、CD 交于P . 求证:直线AP 平分BC 和DE .EPDC BA【证明】设直线AP 分别交BC 、DE 于M 、H . 由共边定理,得ACP BCP S AD BD S =△△,ABP CBP S AE CE S =△△,而DE BC ∥,则AD AEBD CE=,所以ACP ABPBCP CBPS S S S =△△△△,则ACP ABP S S =△△. 又由共边定理,得BAP CAP S BM CM S =△△,所以1BMCM=,即BM CM =,所以M 是BC 的中点. 又易知BPD CPE S S =△△,则DAP EAP S S =△△. 由共边定理,得1DAPEAPS DH HE S ==△△,则DH HE =,所以H 是DE 的中点. 故直线AP 平分BC 和DE .MH E PDCBA8 / 13610. 过圆外一点P 引圆的两条切线和一条割线,在上取一点使. 求证:.【证明】设由共边比例定理,得:(的高)又得连接,. .,. 11. 在内任取一点P ,连结P A 、PB 、PC 分别交对边于X 、Y 、Z 点. 求证:ABC证明:由共边比例定理知:9 / 13612. 已知O 是ABC △的内切圆,D 、E 、N 分别为AB 、AC 、BC 上的切点,连结NO 并延长交DE 于点K ,连结AK 并延长交BC 于点M . 求证:M 是BC 的中点.ABC证明:如图,联结OD ,OE ,由O 、D 、B 、N 及O 、N 、C 、E 分别四点共圆有KOD B ∠∠=,KOE C ∠=∠.由共边比例定理,有sin sin ODK OKE S DK OD OK DOK KE S OE OK KOE ??∠==??∠△△sin sin sin sin DOK B ACKOE C AB ∠===∠,及sin sin ADK AEK S DK DAKKE S EAK∠==∠△△. 于是,sin sin ABM ACM S BM AB BAM MC S AC CAM ?∠==?∠△△sin sin AB DAK AC EAK ?∠=?∠AB DK AC KE =?1AB ACAC AB=?=. 故M 是BC 的中点.B10 / 1362.2 分角定理13. 在等腰△ABC 中,∠A <90°,从边AB 上点D 引AB 的垂线,交边AC 于E ,交边BC 的延长线于F .求证:AD =CF 当且仅当△ADE 面积是△CEF 面积的两倍.ABCF【证明】连接BE ,则EA 外分BED ∠.设βα=∠=∠AEB AED ,,作BC EM ⊥. 由分角定理得:BE DEAB AD :sin sin =βα ①在BEF ?中,EC 内分BEF ∠,由分角定理得:BEEFBC CF :sin sin =βα②由①=②且CF AD =,得EF ABBCDE ?=. 设θ=∠ABC ,在等腰ABC ?中,有θcos 2=ABBC. ∴θcos 2?=EF DE ,∴EM DE 2=,∴CEF ADE S S ??=2.以上过程均可逆.11 / 13614. 设△ABC 是直角三角形,点D 在斜边BC 上,4BD DC =,已知圆过点C 与AC 交于F ,与AB相切于AB 的中点G . 求证:AD BF ⊥.【证明】设α=∠BAD ,β=∠ABF ,γ=∠DAC . 在ABC ?中,AD 内分BAC ∠,则:ABACAC AB DC BD 4:sin sin ==γα. 又ααπγcos )2sin(sin =-=,∴ABAC4tan =α. 又在ABF Rt ?中,AB AF=βtan . ∴24tan tan AB AFAC ??=?βα,又AG AB 2=,∴AC AF AG AB ?==4422(切割线定理)∴1tan tan =?βα,从而2πβα=+,.BF AD ⊥∴ 15. △ABC 是等腰直角三角形,∠BAC =90°,AB =AC . 以AB 为一边作△ABD ,且AD =BD .若∠ADC =15°,求证:△ABD 是等边三角形.DBA证明:设.在中,在AB 边上用分角定理可得:12 / 136在中,在AB 边上用分角定理可得:所以解得,所以ABD 是等边三角形2.3 张角定理16. 已知AM 是△ABC 的BC 边上的中线,任作一直线顺次交AM AC AB ,,于N Q P ,,. 求证:AQAC AN AM AP AB ,,成等差数列.【证明】令θβα=∠=∠=∠AMB MAC BAM ,,. 以A 为视点,分别对Q N P ,,及C M B ,,应用张角定理,有AQAP AN αββαsin sin )sin(+=+,①AC AB AM αββαsin sin )sin(+=+.②又在ABM ?和AMC ?中,由正弦定理,有MC AC MB AB βθαθsin sin ,sin sin ==.由已知MC MB =,上述两式相除得ABAC βαsin sin =,于是②式可变为:AC AB AM αββαsin 2sin 2)sin(==+,即sin()sin 2AB AM αββ+=,sin()sin 2AC AM αβα+=.代入①得,).(21AQ AC AP AB AN AM +=13 / 136故AQAC AN AM AP AB ,,成等差数列.14 / 13617. 如图,在线段AB 上取内分点M ,使AM BM ≤,分别以MA ,MB 为边,在AB 的同侧作正方形AMCD 和M BEF ,P 和Q 分别是这两个正方形的外接圆,两圆交于M ,N . 求证:B ,C ,N 三点共线.证明连MD ,ME ,NE ,ND ,NM ,则90DNM ENM ==?∠∠,则D ,N ,E 三点共线,注意454590DME =?+?=?∠.设DMN NEM α==∠∠,P ,Q 的半径分别为1r ,2r ,则M C =,MB ,12cos MN r α=?= 22sin r α?. 对视点M ,考察点B ,C ,N 所在的三角形△MBN. 由22sin sin sin 902sin CMB CMN MN MB r α?+=+=∠∠()2111sin cos sin cos sin cos 2cos 2cos r r αααααααα+?-+?==?11cos sin 2r αα+===sin NMBMC==∠.由张角定理可知B ,C ,N 三点共线.15 / 136三、Menelaus 、Ceva 、Pascal 定理3.1 梅涅劳斯(Menelaus )定理设直线l 与ABC ?三边所在直线BC ,CA ,AB 分别交于点D ,E ,F ,则1=??FBAFEA CE DC BD 反之,若三角形三边所在直线上三点使得上述等式成立,则该三点共线. 利用面积转换,可得出如下两个角元形式:第一角元形式:1sin sin sin sin sin sin =∠∠?∠∠?∠∠FCBACFEBA CBE DAC BAD第二角元形式:1sin sin sin sin sin sin =∠∠?∠∠?∠∠FOBAOFEOA COE DOC BOD(O 为不再三边所在直线上的任意一点)18. AD 为锐角三角形ABC 的一条高,K 为AD 上任一点,BK 、CK 的延长线分别交AC 、AB 于点E 、F .求证:∠EDK =∠FDK .证明:过点A 作MN ∥BC ,与DE 、DF 的延长线分别交于点M 、N .BCAE FK MN由于AF FB ·BD DC ·CEEA=1.而AF FB =AN BD ,CE EA =DC AM . ?ANAM =1?AN =AM ,即DA 是等腰三角形DMN 的底边上的高,从而∠EDA =∠FDA .DBC AEFK16 / 13619. 在△ABC 中,AM 、AT 分别为BC 边上的中线与角平分线. TK ∥AC ,交AM 于K . 证明:AT ⊥CK .证明:由CD 截△ABM ,有AD DB ·BC CM ·MK KA =1. 故AD DB =1 2·AKKM.HBCAK D设AB =c ,BC =a ,CA =b ,则BT CT =c b ?BT =ac b +c ,CT =abb +c .MT =CM -CT =a 2-ab b +c =a (c -b )2(b +c ).但TK ∥AC ?AK KM =CT TM =2b c -b ,?AD DB =bc -b .AD AB =AD AD +DB =b c ,即AD c =bc ?AD =b =AC . 故证.20. 如图,四边形ABCD 中,AB 与CD 所在直线交于点E ,AD 与BC 所在直线交于点F ,BD 与EF所在直线交于点H ,AC 与EF 所在直线交于点G . 求证:HE FG HF EG ?=?.F【解析】考虑AEF ?被直线HBD 截,应用梅涅劳斯定理可知1=??DAFD HF EH BE AB ① HBC AM TK17 / 136考虑AEG ?被直线BCF 截,同理可得1=??CAGC FG EF BE AB ②考虑AGF ?被直线ECD 截,同理可得1=??DAFDEF GE CG AC ③ ②×③÷①可得1=?EHHFFG GE 所以原命题成立21. 如图,已知ABC ?的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P ,Q . 若直线FE 与BC 交于圆外一点R ,证明:P ,Q ,R 三点共线.RC【析】考虑ABC ?被直线EFR 截,应用梅涅劳斯定理可知RC1=??EA CE RC BR FB AF ,因为AF =AE 所以CE FBRC BR =,如图,设BE 与CF 交于点S ,则EFC ?~QEC ?,FEB ?~PFB ?,SEQ ?~SFP ?所以,EQFPSQ SP FB FE PB FP EF CE EQ CQ ===,,18 / 136考虑SBC ?及三个点P ,Q ,R ,RC BR QE CQ PB FP RC BR PB CQ EQ FP RC BR PB CQ SQ SP QS CQ RC BR PB SP ??=??=??=??1=??=CEFB EF CE FB FE 由梅涅劳斯定理的逆定理可知,P ,Q ,R 三点共线.22. 已知ABC △的内心为I ,外接圆圆心为O ,BC 中点为N ,NI 与AC 交于点P ,B 点相对的旁切圆圆心为M ,MI 与圆O 交于点E ,过M 点的直线l 与AC 平行且与BC 所在直线交于点F . 求证:P ,E ,F 三点共线.F【析】如图,连结BI,设MI 与AC 交于点D ,易知,B ,I ,D ,E ,M 五点共线.因为MC 平分ACF ∠,所以MF =CF ,且DC BCMF BF FC BF == 考虑BCD ?被NIP 截,应用梅涅劳斯定理知1=??IBDIPD CP NC BN又因为BC CD BI DI =,所以1=??BC CD PD CP NC BN . 所以CD BCPD CP =所以22CD BC PD CP FC BF =?. 又因为BCD ?~AED ?所以ED AECD BC =,所以22DE AE PD CP FC BF =?. 而ABE ?~DAE ?,则AEDE BE AE =,所以BE DE AE ?=2. 所以DE BE DE BE DE PD CP FC BF =?=?2,所以1=??BEDEPD CP FC BF . 所以由梅涅劳斯定理逆定理知,P ,E ,F 三点共线.19 / 1363.2 赛瓦(Ceva)定理设点P 不在ABC ?三边所在直线上,直线AP ,BP ,CP 分别与BC ,CA ,AB 交于点D ,E ,F ,则1=??FBAFEA CE DC BD ,反之,若三角形三边所在直线上的点使得上述等式成立,则AD ,BE ,CF 交于一点或互相平行.Ceva 定理角元形式:为了方便,我们可以从某个角开始,把六个角顺时针(或逆时针)标记为1∠至6∠,则16sin 5sin 4sin 3sin 2sin 1sin =∠∠?∠∠?∠∠.或者改为判断过ABC ?的顶点的三条直线AX ,BY ,CZ 是否共点,等价于1sin sin sin sin sin sin =∠∠?∠∠?∠∠YBACBY ZCB ACZ XAC BAX23. 在ABC △中,已知40BAC ∠=,60ABC ∠=,D ,E 分别为边AC ,AB 上的点,且使40CBD ∠=,70BCE ∠=,F 是BD 与CE 的交点,连结AF ,证明:AF BC ⊥.。