湖南理工学院高等数学期末模拟(1)
- 格式:doc
- 大小:59.50 KB
- 文档页数:2
《高等数学》考试模拟题(一)一、求极限(每小题4分,共16分)1.1limcos 2n n n π→∞2.0tan limx kx x →4.1lim ()ln ln x x x x→∞-二、导数、微分及其应用(每小题6分,共30分)1.ln y x x =,求y '2.arccos y x x =y '3.求隐函数的导数求dy dx :cos()xy x = 3.1sin()sin()y xy x xy +-4.求x y x e =的n 阶导数。
5.利用微分求arcsin0.4983的近似值。
三、计算不定积分、定积分和反常积分(每小题6分,共36分) 1.121x x dx e ⎰2.arctan xdx ⎰ 2.21arctan ln(1)2x x x C -++3 111ln 21x C x x -+++4.42 0tan xdx π⎰5.⎰6. 0sin x x dx e -+∞⎰四、证明题(每小题6分,共18分)1.按极限定义证明3lim(31)8x x →-=。
2.证明sin sin a b a b -≤-, a b 、为任意实数。
3.若方程11100n n n n a x a x a x a --++++= 有一个正根0x ,证明方程 12121(1)20n n n n na x n a x a x a ---+-+++= 必有一个小于0x 的正根。
模拟题参考答案(一)一、1. 0 2. k 3. e 4. -1二、1.1ln x +2.arccos x3.1sin()sin()y xy x xy +- 4.()x x n e +5.0.00176π-或0.5216三、1.1x C e -+2.21arctan ln(1)2x x x C -++ 3.111ln 21x C x x -+++ 4.14π-5.3π+ 6.12四、1.0, =3εεδ∀>∃,当03x δ<-<时,318333x x δε--=-<=。
一、选择题1.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64B .81C .100D .1212.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B .4C .8D .93.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D4.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca -<<- B .113c a -<<- C .21c a -<<- D .112c a -<<- 5.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,已知5c =,3b =,23A π=,则sin sin A C=( ) A .75 B .57C .37D .736.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形7.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,CD =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m8.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m9.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .18910.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .25911.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( ) A 2B .2C .22D .412.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问相逢时驽马行几里?( ) A .540B .785C .855D .950二、填空题13.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 14.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.15.在下列函数中,①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.16.在ABC 中,内角A B C ,,的对边分别为a b c ,,,a =24sin cos sin 2Aa Bb A =,则ABC 外接圆的面积为_________. 17.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆,a =___________.18.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 19.数列{}n a 的通项()sin2n n a n n N π*=⋅∈,则前10项的和12310a a a a ++++=______20.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.三、解答题21.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.22.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin A C b cB a c--=+.(1)求角A ;(2)若ABC 的外接圆半径为2,求ABC 周长的最大值.23.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC的面积ABCS=a 的取值范围.24.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.25.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题). (1)求n a ﹔ (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 26.已知正项等比数列{}n a ,24a =, 1232a a a +=;数列{}n b 的前n 项和n S 满足n n S na =.(Ⅰ)求n a ,n b ;(Ⅱ)证明:312412233412n n n b b b b a a a a a a a a ++++++<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值. 【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += ,z ax by =+中,由于0,0a b >>,ab是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z ax by =+经过点()5,6时,z 取得最大值, 则561a b +=, 所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121.【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.2.D解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=, 所以141444()5529x y x yx y x y x y y x y x ⎛⎫+=++=++≥+⨯= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.3.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项.由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-,【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题5.A解析:A 【分析】利用余弦定理求得a,再利用正弦定理即得结果. 【详解】由余弦定理:2222cos a b c bc A =+-,得7a =, 由正弦定理:sin 7sin 5A a C c ==. 故选A 【点睛】本题考查正弦定理和余弦定理公式的应用,属于基础题型.6.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 7.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.8.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos15033h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.9.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.10.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.11.C解析:C 【分析】先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可.【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列,2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x x x x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x =“等号“),92010x x∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.12.C解析:C 【分析】由已知条件转化为两个等差数列的前n 项和为定值问题,进而计算可得结果. 【详解】由题可知,良马每日行程构成一个首项为103,公差13的等差数列{}n a , 驽马每日行程构成一个首项为97,公差为﹣0.5的等差数列{}n b , 则a n =103+13(n ﹣1)=13n +90,b n =97﹣0.5(n ﹣1)=97.5﹣0.5n , 则数列{a n }与数列{b n }的前n 项和为1125×2=2250, 又∵数列{a n }的前n 项和为2n ×(103+13n +90)=2n×(193+13n ), 数列{b n }的前n 项和为2n ×(97+97.5﹣0.5n )=2n ×(194.5﹣2n), ∴2n ×(193+13n )+2n ×(194.5﹣2n)=2250,整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0,解得:n =9或n =﹣40(舍),即九日相逢,相逢时驽马行了92×(194.5﹣92)=855. 故选:C 【点睛】本题以数学文化为背景,考查等差数列及等差数列的前n 项和,考查转化思想,考查分析问题、解决问题的能力,属于中档题.二、填空题13.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】 变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,222178321163216162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立. 故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 14.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利 解析:(1,2].【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解.【详解】设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯,所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m nm n t t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2]. 故答案为:(1,2].【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键. 15.①③【分析】结合基本不等式对四个函数逐个分析可得出答案【详解】对于①函数是定义域为的偶函数当时当且仅当时等号成立根据对称性可知函数的最小值为2满足题意;对于②因为所以则当且仅当即时等号成立所以即函数 解析:①③【分析】结合基本不等式,对四个函数逐个分析,可得出答案.【详解】对于①,函数1y x x =+是定义域为()(),00,-∞+∞的偶函数,当()0,x ∈+∞时,12x x +≥=,当且仅当1x =时等号成立, 根据对称性可知,函数1y x x =+的最小值为2,满足题意; 对于②,11123214124212112y x x x x x x ⎛⎫=++=-++=--+- ⎪---⎝⎭, 因为12x <,所以120x ->,则11244212x x -+-≥=--,当且仅当11212x x -=-,即0x =时等号成立, 所以1124212y x x ⎛⎫=--+-≤ ⎪-⎝⎭,即函数1123212y x x x ⎛⎫=++< ⎪-⎝⎭的最大值为2,没有最小值,不满足题意; 对于③,222114144141x x x y x x x x x +⎛⎫=++=+ ⎪++⎝⎭, 因为1x >,所以2104x x+>,所以2214241x x y x x +=+≥=+,当且仅当221441x x x x +=+,即2x = 所以()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭的最小值为2,符合题意; 对于④,22221sin cos sin cos y x x x x =+, 因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以sin cos 0x x >,所以22221sin cos 2sin cos x x x x +≥=,当且仅当22221sin cos sin cos x x x x=,即sin cos 1x x =时等号成立, 因为11sin cos sin 222x x x =≤,所以sin cos 1x x ≠, 即函数22221sin cos sin cos y x x x x=+的最小值不是2,不符合题意; 故答案为:①③.【点睛】 本题考查函数的最值,考查基本不等式的应用,考查学生的推理能力与计算能力,属于中档题.16.【分析】由正弦定理及降幂角公式可求得角的余弦值进而求得角的正弦值以及外接圆半径故可得解【详解】由正弦定理得:则设外接圆的半径为则外接圆的面积为故答案为:【点睛】解三角形的基本策略:一是利用正弦定理实 解析:7π【分析】由正弦定理及降幂角公式可求得角A 的余弦值,进而求得角A 的正弦值以及外接圆半径,故可得解.【详解】 由正弦定理得:sin sin a b A B=则 sin sin a B b A =24sin cos sin 2A a B b A = ∴21cos 24A = ∴21cos 2cos 122A A =-=-∴sin2A===设ABC∆外接圆的半径为R,则2sinaRA===∴R=ABC∆外接圆的面积为27S Rππ==.故答案为:7π.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.17.【分析】利用同角三角函数计算出的值利用三角形的面积公式和条件可求出的值再利用余弦定理求出的值【详解】且的面积是由余弦定理得故答案为【点睛】本题考查利用余弦定理解三角形同时也考查了同角三角函数的基本关【分析】利用同角三角函数计算出sin A的值,利用三角形的面积公式和条件23b c=可求出b、c 的值,再利用余弦定理求出a的值.【详解】1cos3A =,sin3A∴==,23b c=,且ABC∆,1sin2ABCS bc A∆∴=,1223cc=⨯,c∴=,b=由余弦定理得2229192cos222322a b c bc A=+-=+-=,2a∴=.故答案为2.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.18.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题【分析】 利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABC S ab C =,即可求出三角形的面积.【详解】由()224c a b =-+可得:22224c a b ab =+-+,在ABC 中,由余弦定理得:2222cos c a b ab C =+-,即222c a b ab =++,所以24ab ab -+=, 即43ab =,所以114sin 223ABC S ab C ==⨯=,【点睛】 本题主要考查了余弦定理,面积公式的应用,属于中档题.19.5【分析】利用的周期性求解即可【详解】的周期当时的值为10-10则前10项的和故答案为:5【点睛】本题考查利用数列的周期性求和属于基础题 解析:5【分析】 利用()sin 2n n N π*∈的周期性求解即可. 【详解】 ()sin 2n n N π*∈的周期2=42T ππ=,当1,2,3,4n =时sin 2n π的值为1,0,-1,0, 则前10项的和123101+0305070905a a a a ++++=-+++-+++=,故答案为:5【点睛】 本题考查利用数列的周期性求和,属于基础题.20.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数解析:21n n+ 【分析】 当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可;【详解】解:因为212n n a a a n a ++⋯+=⋅①; 当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n a n --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+, 所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+ 故答案为:()11n n + 【点睛】对于递推公式为()1n n a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;三、解答题21.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =. 【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解.【详解】作出可行域,如图ABC 内部(含边界),由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,, 作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.22.(1)3π;(2)3 【分析】(1)正弦定理角化边可得a cbc b a c --=+,利用余弦定理,结合角A 的范围,即可得答案;(2)由(1)得3A π=,由正弦定理可得a 的值,利用余弦定理及均值不等式,即可求得b+c 的最大值,进而可得答案.【详解】(1)由sin sin sin A C b c B a c --=+及正弦定理得:a c b c b a c--=+, 化简得222b c a bc +-=, ∴2221cos 222b c a bc A bc bc +-===, 又∵(0,)A π∈,∴3A π=. (2)∵ABC 的外接圆半径为2,3A π= ,∴由正弦定理得324sin aR π==,解得a =∴由余弦定理得2222cos a b c bc A =+-⋅, ∴2222212()3()32b c b c bc b c bc b c +⎛⎫=+-=+-≥+- ⎪⎝⎭,∴b c +≤b c =时,等号成立,∴ABC的周长的最大值为a b c ++=【点睛】本题考查正弦定理、余弦定理、均值定理的应用,考查分析理解,求值化简的能力,属中档题.23.(1)π3;(2)[)4,+∞. 【分析】(1)由条件和正弦定理化简得到2cos sin sin 0A C C -=,求得1cos 2A =,即可求解; (2)由(1)和三角形的面积公式,求得16bc =,结合余弦定理和基本不等式,即可求解.【详解】(1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=,又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=,所以2cos sin sin 0A C C -=,因为0πC <<,所以sin 0C ≠,所以1cos 2A =, 因为()0,πA ∈,所以,π3A =. (2)由(1)知π3A =,所以11πsin sin 223ABC S bc A bc ====△16bc =, 由余弦定理得22222π2cos 2cos 3a b c bc A b c bc =+-=+- 22216b c bc bc bc bc =+-≥-==,当且仅当4b c ==时取等号,所以216a ≥,因为0a >,所以a 的取值范围是[)4,+∞.【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.24.(1)120︒;(2)等腰钝角三角形.【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++,所以22(2)(2)a b c b c b c =+++,即222b c a bc +-=-, 所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1cos sin sin 60122B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.25.条件选择见解析;(1)32n a n =-;(2)证明见解析.【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明. 【详解】 (1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-.(2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++ 11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <. 【点睛】方法点睛:数列求和的常用方法: (1)对于等差等比数列,利用公式法可直接求解; (2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(Ⅰ)2n n a =;()112n n b n -=+⋅;(Ⅱ)证明见解析.【分析】(1)由题设求出数列{}n a 的基本量,即可确定n a ;再由1n n n b S S -=-确定n b ; (2)用错位相减法整理不等式左侧即可证明.【详解】(1)设正项等比数列{}n a 的公比为q ,由1232a a a +=,得22q q +=解得2q 或1q =-(舍)又242nn a a =⇒=由n n S na =,得12b =2n ≥时,()()11121212n n n n n n b S S n n n ---=-=⋅--⋅=+⋅则()112n n b n -=+⋅(2)()()11112212222n n n n n n n n b n a a +++++⎛⎫==+ ⎪⋅⎝⎭设31241223341n n n n b b b bT a a a a a a a a ++=++++则()2341111134522222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()341211111341222222n n n T n n ++⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()2341211111131112222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得()2111422n n T n +⎛⎫=-+⋅ ⎪⎝⎭得()112422n n T n +⎛⎫=-+⋅< ⎪⎝⎭【点睛】关键点睛:当数列{}n c 满足n n n c a b =,{}n a 为等差数列,{}n b 为等比数列时,数列{}n c 的前n 项求和可用错位相减法.。
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.已知2244x y +=,则2211x y+的最小值为( ) A .52B .9C .1D .943.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .14.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .605.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC,则a =( ) A .2B .3C .4D .56.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形7.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( ) A .63BCD .138.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为 A.B .4C.D9.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .610.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .76611.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭12.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .12二、填空题13.0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1a =,3B π=,当ABC ∆的面积等tan C =__________.15.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 16.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.17.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和12c b =,则tan B =______ 18.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 19.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.20.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.三、解答题21.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22.已知函数()()231f x x a x b =-++.(1)当1a =,5b =-时,解不等式()0f x >;(2)当222b a a =+时,解关于x 的不等式()0f x <(结果用a 表示). 23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .请在①cos sin b b CB +=;②()2cos cos b aC c A -=;③2223ABCa b c S +-=这三个条件中任选一个,完成下列问题 (1)求角C ;(2)若5a =,7c =,延长CB 到点D ,使cos ADC ∠=,求线段BD 的长度. 注:如果选择多个条件分别解答,按第一个解答计分.24.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值. 25.设数列{}n a 满足()*122222n n a a a n n +++=∈N . (1)求数列{}n a 的通项公式;(2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 26.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.D解析:D 【分析】利用22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x yx y ⎛⎫+=++ ⎪⎝⎭2222222214149552444y x y x x y x y ⎛⎫⎛⎫=++≥+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122zy x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0. 故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.4.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以22949(3)(8)(4)(9)3737249b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.5.C解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C6.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.7.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos 3BAD ∠=,可得1sin 3BAD ∠=,则sin 3ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性8.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,4sin B=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.9.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n--=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=,()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.10.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.11.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.12.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q ==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.二、填空题13.【分析】由可得然后利用基本不等式可求出而不等式恒成立等价于小于等于最小值从而可求出的范围【详解】解:因为所以当且仅当即时取等号因为不等式恒成立所以小于等于最小值所以故答案为:【点睛】易错点睛:利用基解析:32m ≤由21a b +=可得1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭322a b b b a b+=+++,然后利用基本不等式可求出11322b a b +≥+1102m b a b+-≥+恒成立,等价于m 小于等于112b a b ++最小值,从而可求出m 的范围 【详解】解:因为21a b +=,所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭1122a b b b a b +=++++ 322a b b b a b+=+++333222≥+=+=+当且仅当2a b bb a b +=+,即1)a b =时,取等号, 因为不等式1102m b a b+-≥+恒成立, 所以m 小于等于112b a b++最小值,所以32m ≤,故答案为:32m ≤ 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【解析】由题意即则所以由余弦定理所以所以应填答案点睛:解答本题的思路是先借助三角形的面积公式求出边进而运用余弦定理求出边然后再运用余弦定理求出进而求出最后求出解析:-由题意1sin 323ac π=,即334c c =⇒=,则1116214132b =+-⨯⨯⨯=,所以由余弦定理cos 211313C ==-⨯⨯,所以112sin 11313C =-=,所以23tan (13)2313C =⨯-=-,应填答案23-. 点睛:解答本题的思路是先借助三角形的面积公式求出边4c =,进而运用余弦定理求出边1116214132b =+-⨯⨯⨯=,然后再运用余弦定理求出cos 211313C ==-⨯⨯,进而求出112sin 11313C =-=,最后求出23tan (13)2313C =⨯-=-. 15.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b aa b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b aa b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图. 由10y x y -=⎧⎨-=⎩ 可得点(1,1)B .当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=.所以282828()()101018b a a b a b a b a b +=++=++≥+=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 16.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.17.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 31sin 2tan 2A B A B B B +==+又因为132c b =+,所以31=2tan 2B +132+,所以1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.18.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型 解析:15【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解. 【详解】设BD DC x ==,ABD △中,22222cos 224x xADB x +-∠==⋅⋅,ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x-∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯,2115sin 14BAC ⎛⎫∴∠=--= ⎪⎝⎭, 11524152ABCS∴=⨯⨯=【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.19.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.20.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n an --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式; 三、解答题21.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或t = 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值; (2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可. 【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=- 又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++, 所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=-0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=, 由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =,原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-. (3) 因为函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根, 因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时,2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根,只有()21682102021t t tx t ⎧=+-=⎪⎨=>⎪-⎩对解得:t =, 综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 22.(1)()(),15,-∞-+∞;(2)1a >时,解集为()1,2a a +,1a =时,解集为∅,1a <时,解集为()2,1a a +.【分析】(1)求出()0f x =的根(由因式分解完成),根据二次函数的图象写出结论. (2)化简变形表达式[]()(2)(1)f x x a x a =--+,然后根据2a 和1a +的大小关系分类讨论. 【详解】(1)当1a =,5b =-时()()()24515f x x x x x =--=+-,∴()0f x >的解集为()(),15,-∞-+∞.(2)当222b a a =+时,()()()()22312221f x x a x a a x a x a =-+++=--+⎡⎤⎣⎦,()0f x <即()()210x a x a --+<⎡⎤⎣⎦,①当1a >时,21a a >+,此时不等式的解集为()1,2a a +, ②当1a =时,21a a =+,此时不等式的解集为∅, ③当1a <时,21a a <+,此时不等式的解集为()2,1a a +. 【点睛】本题考查解一元二次不等式,掌握一元二次不等式的解,二次函数的图象,一元二次方程的根之间的关系是解题关键. 23.(1)条件选择见解析,3C π=;(2)5BD =.【分析】(1)利用所选条件,应用正余弦定理的边角关系、三角形面积公式,化简条件等式,结合三角形内角的性质,求角C ;(2)由正余弦定理,结合诱导公式及两角和正弦公式求CD ,进而求BD 的长度. 【详解】(1)若选①:∵cos sin b b C B +=,∴sin sin cos sin B B C C B +=,又sin 0B ≠, ∴1cos C C +=,即1sin62C π⎛⎫-= ⎪⎝⎭,又0C π<<,∴5666C πππ-<-<,即66C ππ-=,故3C π=. 若选②:∵()2cos cos b a C c A -=, ∴()2sin sin cos sin cos B A C C A -=,即()2sin cos sin cos sin cos sin sin B C A C C A A C B =+=+=, 又sin 0B ≠,∴1cos 2C =,又0C π<<, ∴3C π=,若选③:由2223ABCa b c S +-=⋅,则有12cos sin 32ab C ab C =⨯, ∴tan C =0C π<<, ∴3C π=.(2)ABC 中,由余弦定理:22525cos 493AC AC π+-⋅⋅=, 得8AC =或3AC =- (舍),由21cos 7ADC ∠=,可得27sin 7ADC ∠=, △ACD 中,()()32112757sin sin sin 72CAD C ADC C ADC π∠=--∠=+∠=⋅+⋅=, 由正弦定理得:sin sin CD AC CAD ADC =∠∠,即5727147=,解得10CD =, ∴5BD CD BC =-=.【点睛】关键点点睛:(1)根据所选条件,应用正余弦定理的边角关系、三角形性质求角;(2)利用正余弦定理及三角恒等变换求边长.24.(1)23π;(2)1. 【分析】(1)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小;(2)由题意结合(1)的结论和三角函数的性质可得sin sin B C +的最大值.【详解】(1)由己知,根据正弦定理得()()2222a b c b c b c =+++ 即222a b c bc =++由余弦定理得2222cos a b c bc A =+-故1cos 2A =-,所以23A π=. (2)由(1)得:1sin sin sin sin sin sin 3223B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭故当6B π=时,sin sin B C +取得最大值1.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)2n n a =;(2)2332n nn T +=-. 【分析】(1)当2n ≥时,112211222n n a a a n --+++=-与已知条件两式相减可得2n n a =,再令1n =,计算1a 即可求解;(2)由(1)得2n n a =,所以22211n n n n a --=,再利用乘公比错位相见即可求和. 【详解】(1)数列{}n a 满足122222n na a a n +++= 当2n ≥时,112211222n n a a a n --+++=- 两式作差有12nn a =,所以2n n a = 当1n =时,12a =,上式也成立所以2n n a = (2)22211n n n n a --= 则211113(21)222n n T n ⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭, 231111113(21)2222n n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()()2311111111111111131421221221231222222222212n n n n n n T n n n ++-+⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⨯+++⋯+--⨯=+⨯--=-+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-所以2332n nn T +=-.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1n n a f n =-类型,可采用两项合并求解.26.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T .【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b +=∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】 本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。
数学分析期末考试试题一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、 ∑∞=1n n a收敛的cauchy 收敛原理3、 全微分二、计算题:(每小题8分,共32分)1、40202sin lim x dtt x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。
3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和 4、已知z y x u = ,求yx u ∂∂∂2 三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数∑∞=1!n n n n 2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性 四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。
,参考答案一、1、设)(x f 在],[b a 连续,)(x F 是)(x f 在],[b a 上的一个原函数,则成立)()()(a F b F dx x f ba -=⎰2、,0.0>∃>∀N ε使得N n m >>∀,成立ε<+++++m n n a a a 213、设2R D ⊂为开集,D y x y x f z ∈=),(),,(是定义在D 上的二元函数,),(000y x P 为D 中的一定点,若存在只与点有关而与y x ∆∆,无关的常数A 和B ,使得)(22y x o y B x A z ∆+∆+∆+∆=∆则称函数f 在点),(000y x P 处是可微的,并称y B x A ∆+∆为在点),(000y x P 处的全微分二、1、分子和分母同时求导316sin 2lim sin lim 54060202==→→⎰x x x x dt t x x x (8分) 2、 、两曲线的交点为(0,0),(1,1)(2分) 所求的面积为:31)(102=-⎰dx x x (3分) 所求的体积为:103)(105ππ=-⎰dx x x (3分) 3、 解:设∑∞=+=1)1()(n n n n x x f ,1)1(1)2)(1(1lim =+++∞→n n n n n ,收敛半径为1,收敛域 [-1,1](2分)),10(),1ln(11)1()(121'<<---=+=∑∞=-x x x x n x x f n n )10(),1ln(11)()(0'<<--+==⎰x x x x dt t f x f x (3分) x =0级数为0,x =1,级数为1,x =-1,级数为1-2ln2(3分) 4、解: yu ∂∂=z x x z y ln (3分)=∂∂∂y x u 2zx x x x z y z y 1ln 1+-(5分) 三、1、解、有比较判别法,Cauchy,D’Alembert,Raabe 判别法等(应写出具体的内容4分)11)111(lim !)1()!1(lim -∞→+∞→=+-=++e n n n n n n n nn n (4分)由D’Alembert 判别法知级数收敛(1分) 2、解:⎰⎰⎰+∞----+∞--+=1110101dx e x dx e x dx e x x p x p x p (2分),对⎰--101dx e x x p ,由于)0(111+→→---x e x x x p p 故p >0时⎰--101dx e x x p 收敛(4分);⎰+∞--11dx e x x p ,由于)(012+∞→→--x e x x x p (4分)故对一切的p ⎰+∞--11dx e x x p 收敛,综上所述p >0,积分收敛3、解:221)(n x x S n +=收敛于x (4分)0)(sup lim ),(=-+∞-∞∈∞→x x S n x n 所以函数列一致收敛性(6分)四、证明题(每小题10分,共20分)1、证明:11123221213423-=-->=-n n n x x x x x x x x n n n )2(,112>->n x n x n (6分) ∑∞=-211n n 发散,由比较判别法知级数发散(4分)2、证明:||||022xy y x xy≤+≤(4分)22)0,0(),(lim y x xy y x +→=0所以函数在(0,0)点连续,(3分)又00lim 0=∆→∆xx ,)0,0(),0,0(y x f f 存在切等于0,(4分)但22)0,0(),(lim y x y x y x ∆+∆∆∆→∆∆不存在,故函数在(0,0)点不可微(3分)。
高数一期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' - y = 0 \) 的通解是:A. \( y = e^x \)B. \( y = \sin(x) + \cos(x) \)C. \( y = e^{2x} \)D. \( y = x^2 \)答案:B4. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是:B. 1C. 3D. 27答案:C二、填空题(每题5分,共20分)1. 设 \( f(x) = x^2 - 4x + 4 \),则 \( f'(x) =\_\_\_\_\_\_\_\_ \)。
答案:\( 2x - 4 \)2. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_\_\_\_ \)。
答案:\( x\ln(x) - x + C \)3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 的交点坐标是\( \_\_\_\_\_\_\_\_ \)。
答案:\( (0,0) \) 和 \( (2,4) \)4. 函数 \( y = e^{3x} \) 的二阶导数是 \( \_\_\_\_\_\_\_\_ \)。
答案:\( 9e^{3x} \)三、计算题(每题15分,共30分)1. 计算定积分 \( \int_{0}^{1} (3x^2 - 2x + 1) dx \)。
\[\int_{0}^{1} (3x^2 - 2x + 1) dx = \left[ x^3 - x^2 + x\right]_{0}^{1} = (1 - 1 + 1) - (0 - 0 + 0) = 1\]2. 求函数 \( y = x^3 - 6x^2 + 9x + 1 \) 的极值。
大一高等数学期末模拟试卷(一)一、填空题(本题共5小题,每小题4分,共20分).(1)210)(cos lim x x x →=_____e 1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且0)1(=f ,则=)(x f ______=)(x f 2)(ln 21x _____.(4)曲线132+=x x y 的斜渐近线方程为.9131-=x y (5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y 二、选择题(本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是(D )(A)0111=⎰-dx x (B)21112-=⎰-dx x (C)+∞=⎰∞+141dx x (D)+∞=⎰∞+11dx x (2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则(D).(A)21,x x 都是极值点.(B)()())(,,)(,2211x f x x f x 都是拐点.(C)1x 是极值点.,())(,22x f x 是拐点.(D)())(,11x f x 是拐点,2x 是极值点.图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是(D ).(A)23e .xy y y x '''--=(B)23e .xy y y '''--=(C)23e .x y y y x '''+-=(D)23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h→--为(A).(A)()0f x '.(B)()0f x '-.(C)0.(D)不存在(5)下列等式中正确的结果是(A).(A)(())().f x dx f x '=⎰(B)()().=⎰df x f x (C)[()]().d f x dx f x =⎰(D)()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→.解ln 11(lim 1x x x x --→=xx x x x x ln )1(1ln lim1-+-→1分)(x f y '=y O1x 2x ab x=x xx x x ln 1ln lim1+-→2分=x x x x x x ln 1ln lim1+-→1分=211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==tt t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx yd .解,sin )()(t t t x t y dx dy =''=(3分).sin tan sin )()sin (22t t t t t x t t dxy d +=''=(6分)3.计算不定积分.2arctan 22(1) =2arctan arctan 2 =arctan 2d x C =----------+-------+---------⎰⎰分分(分4.计算定积分⎰++3011dxx x.解⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=3011(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分所以所求通解C 分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图220322203*********RR P g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰分)分[()]分分3.(本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b baabab b aaxf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4.(本题8分)过坐标原点作曲线xy ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)(3)求D 的面积A;(2)(4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+=----1分由该切线过原点知01ln 0=-x ,从而.0e x =所以该切线的方程为.1x ey =----1分平面图形D 的面积⎰-=-=1.121)(e dy ey e A y ----2分(2)切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为.3121e V π=2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 212)(⎰-=π,1分xyxyO1e1D因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.xf x e x =--则(0)0.f =1分因为() 1.xf x e '=-1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥=2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥=2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
湖南省岳阳市2024届数学高一下期末综合测试模拟试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.函数()cos 2f x x x π⎛⎫=- ⎪⎝⎭是( ) A .奇函数 B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数2.圆22:20C x y x +-=的圆心坐标和半径分别是( ) A .(1,0),2B .(1,0),1C .(1,0)-,2D .(1,0)-,13.在ABC ∆中,若222sin sin sin B C A +=,则此三角形为( )三角形. A .等腰B .直角C .等腰直角D .等腰或直角4.在平面直角坐标系xOy 中,已知点(1,21)A m m --,点()2,1B -,直线l :0ax by +=.如果对任意的m R ∈点A 到直线l 的距离均为定值,则点B 关于直线l 的对称点1B 的坐标为( ) A .()0,2B .211,55⎛⎫⎪⎝⎭ C .()2,3D .2,35⎛⎫ ⎪⎝⎭5.设函数()sin cos 422f x a x b x ππαβ⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭,其中,,,a b αβ均为非零常数,若(1977)2f =,则(2019)f 的值是( ) A .2B .4C .6D .不确定6.在各项均为正数的等比数列{}n a 中,若389a a =,则31310log log a a +=( ) A .1 B .4 C .2D .3log 57.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是( )A .B .C .D .8.已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是( ) A .2-B .4-C .6-D .8-9.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的( )倍. A .B .C .D .10.如果0b a <<,那么下列不等式错误的是( ) A .22a b > B .0a b -> C .0a b +<D .b a >二、填空题:本大题共6小题,每小题5分,共30分。
一、选择题1.若实数x,y满足约束条件21010 x yx y-+≥⎧⎨--≤⎩,则2z x y=-的最大值是()A.1-B.2 C.3 D.42.已知x,y满足约束条件1,2,30,xx yx y≥⎧⎪+≤⎨⎪-≤⎩若2x y m+≥恒成立,则m的取值范围是()A.3m≥B.3m≤C.72m≤D.73m≤3.设,x y满足约束条件{4312xy xx y≥≥+≤,且231x yzx++=+,则z的取值范围是()A.[]1,5B.2,6C.[]2,10D.[]3,114.ABC∆中,角,,A B C所对的边分别为,,a b c.若13,3,60a b A===︒,则边c=()A.1 B.2 C.4 D.65.在ABC中,a,b,c分别为内角A,B,C所对的边,若3b=,60B=︒,若ABC仅有一个解,则a的取值范围是()A.({}0,32⎤⋃⎦B.30,2C.{}30,22⎛⎤⋃⎥⎝⎦D.26.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD=,则DEF与ABC的面积之比为()A.12B.13C.15D.177.已知a、b、c分别是ABC内角A、B、C的对边,sin sin3sinA B C+=,cos cos2a Bb A+=,则ABC面积的最大值是()A.2 B.2C.3 D.238.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( )A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤9.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >10.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .611.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 12.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+二、填空题13.若,x y 满足约束条件5,5,25,x y x y x y +⎧⎪-≥-⎨⎪-≤⎩则25x y +=的整数解的个数为___________.14.已知x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,则3z x y =+的最大值为___________.15.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____. 16.在ABC 中,3B π=,32AC =,则4AB BC +的最大值为_______. 17.在锐角ABC ∆中,2AC =,22AB =,D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.18.在ABC ∆中,60A ∠=︒,且最大边与最小边是方程2327320x x -+=的两个实根,则ABC ∆的外接圆半径R =外______________. 19.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 20.在数列{}n a 中,11a =,()*11n n a a n +-=∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.三、解答题21.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x =2223(1)43b x ax a a b+-+--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值.22.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 23.在①()22sin sin sin sin sin A B C B C --=,②sinsin 2B Cb a B +=,③2sin sin 3a B b A π⎛⎫=-⎪⎝⎭这三个条件中任选一个,补充在下面问题中并作答. ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若22a b c +=,______求A 和C .24.如图,一辆汽车在一条水平的公路上向正西行驶到A 处时测得公路北侧一山顶D 在北偏西45°的方向上,仰角为α,行驶300米后到达B 处,测得此山顶在北偏西15°的方向上,仰角为β,若β=45°,则此山的高度CD 和仰角α的正切值.25.已知数列{}n a 为等差数列,23a =,前n 项和为n S ,数列{}n b 为等比数列,公比为2,且2354b S =,3216b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =+,求数列{}n c 的前n 项和n T . 26.在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足13b =,且1b ,32b -,7b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)设nn nb c a =,求数列{}n c 的前项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2.D解析:D 【详解】作出满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩的可行域如图所示:平移直线20x y +=到点1(1,)3A 时,2x y +有最小值为73∵2x y m +≥恒成立 ∴min (2)m x y ≤+,即73m ≤ 故选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.3.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.4.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.5.A解析:A 【分析】 根据3b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】 因为3b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.D解析:D 【分析】由题意得出点D 为AF 的中点,由余弦定理得出7AB AD =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+ 解得:7AB AD =)22ABC1()sin 601217sin 6072DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.7.B解析:B 【分析】由cos cos 2a B b A +=,利用余弦定理代入化简解得2c =,再根据sin sin 3sin A B C +=,利用正弦定理得到36a b c +==,即62CA CB AB +=>=,得到点C 的轨迹是以A ,B 为焦点的椭圆,再利用椭圆的焦点三角形求解. 【详解】∵cos cos 2a B b A +=,∴222222222a c b b c a a b ac bc+-+-⋅+⋅=,∴2c =,∵sin sin 3sin A B C += ∴36a b c +==,即62CA CB AB +=>=,∴点C 的轨迹是以A ,B 为焦点的椭圆,其中长半轴长3,短半轴长22, 以AB 为x 轴,以线段AB 的中点为原点,建立平面直角坐标系,其方程为22198x y ,如图所示:则问题转化为点C 在椭圆22198x y 上运动求焦点三角形的面积问题.当点C 在短轴端点时,ABC 的面积取得最大值,最大值为22故选:B . 【点睛】本题主要考查正弦定理,余弦定理以及椭圆焦点三角形的应用,还考查了转化求解问题的能力,属于中档题.8.B解析:B 【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内 即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.9.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-,若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.10.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.11.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d .∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.12.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.二、填空题13.4【分析】先画出约束条件所表示的平面可行域然后根据画出所表示的直线确定边界再求解满足上整数点的个数【详解】作出不等式组表示的平面区域如图中阴影部分所示作出直线直线与可行域的边界交于两点由解得又且当时解析:4 【分析】先画出约束条件所表示的平面可行域,然后根据画出25x y +=所表示的直线确定边界,再求解满足25x y +=上整数点的个数. 【详解】作出不等式组表示的平面区域如图中阴影部分所示,作出直线25x y +=,直线52y x =-与可行域的边界交于,B D 两点,由25,25,x y x y +=⎧⎨-=⎩解得3,(3,1)1,x D y =⎧∴-⎨=-⎩, 又(0,5),[0,3],[1,5]B x y ∴∈∈-,且,x y Z ∈,当0x =时,5y =;当1x =时3y =; 当2x =时,1y =;当3x =时,1y =-, ∴整数解的个数为4. 故答案:4.关键点点睛:该题考查线性规划问题,考查最优解的整数点的个数问题,正确解题的关键是画出可行域.14.-2【分析】根据条件作出可行域由目标函数表示的几何意义可得答案【详解】由xy 满足约束条件作出可行域如图将化为表示直线在轴上的截距由图可知当直线过点时直线在轴上的截距最大此时最大由解得所以的最大值为故解析:-2 【分析】根据条件作出可行域,由目标函数表示的几何意义可得答案. 【详解】由x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,作出可行域,如图.将3z x y =+化为3y x z =-+,z 表示直线3y x z =-+在y 轴上的截距.由图可知,当直线3y x z =-+过点时,直线3y x z =-+在y 轴上的截距最大,此时z 最大.由210340x y x y ++=⎧⎨-+=⎩,解得()1,1C -所以z 的最大值为()3112⨯-+=- 故答案为:-2【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.15.23【分析】画出不等式组表示的平面区域数形结合判断出取最大值的点即可建立关系求出【详解】画出不等式组表示的平面区域如图阴影部分直线在轴上的截距为则由图可知即将化为观察图形可知当直线经过点时取得最大值解析:23 【分析】画出不等式组表示的平面区域,数形结合判断出2z y x =-取最大值的点,即可建立关系求出. 【详解】画出不等式组表示的平面区域,如图阴影部分,直线320x y c +-=在y 轴上的截距为2c,则由图可知12c≥,即2c ≥, 将2z y x =-化为122z y x =+, 观察图形可知,当直线122zy x =+经过点A 时,z 取得最大值, 由210320x y x y c -+=⎧⎨+-=⎩解得27237c x c y -⎧=⎪⎪⎨+⎪=⎪⎩,故23221177c c +-⨯-=,解得23c =. 故答案为:23. 【点睛】方法点睛:线性规划常见类型, (1)y bz x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a zy x b b=-+的截距问题;(3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方.16.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 22AB BC C A A B A A A A+=+=++=++()9sin cos 22A A A ϕ=+=+, 其中ϕ为锐角,且tan ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.17.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin 2sin 222DCDB ADBDC BAD AB∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC AC CAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC =,所以122sin 222DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则26sin sin 46BAC ππ+⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为1262223124+⨯⨯⨯=+.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.18.【分析】综合韦达定理与余弦定理可算得a 接着由正弦定理可得本题答案【详解】由题意得所以得因为即得故答案为:【点睛】本题主要考查正余弦定理及韦达定理的综合应用73【分析】 综合韦达定理与余弦定理可算得a ,接着由正弦定理可得本题答案. 【详解】由题意得,329,3b c bc +==, 所以222264322cos ()22cos 814933a b c bc A b c bc bc A =+-=+--=--=,得7a =,因为2sin a R A =2R =,得3R =.故答案为:3【点睛】本题主要考查正余弦定理及韦达定理的综合应用.19.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称, 113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.20.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:9 4【分析】分别求出{}n a、{}n b的通项,再构建新数列212n nnc-=,求出{}n c最大项后可得实数λ的最小值.【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=+-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,10n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.三、解答题21.(1)减区间为(],1-∞,增区间为[3,)+∞;(2)18.【分析】(1)根据函数的解析式有意义,求得函数的定义域,再结合二次函数的性质和复合函数的单调性的判定方法,即可求解;(2)先求得函数()f x的值域为233,bab⎡⎫+--+∞⎪⎢⎣⎭,利用基本不等式,求得函数()g x 的值域为116,)[a-+∞,根据题意,得到2331,[),[16)bab a+--+∞⊆-+∞,结合基本不等式,即可求解.【详解】(1)由题意,函数233()1b f x b+=-有意义,则满足2430x x -+≥,解得1x ≤或3x ≥, 即定义域为{|1x x ≤或3}x ≥, 又由函数243y x x =-+在减区间为(],1-∞,增区间为[3,)+∞,根据复合函数的单调性的判定方法,可得()f x 的减区间为(],1-∞,增区间为[3,)+∞.(2)由函数233()1b f x b+=--,可得()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭, 211111()||||20422016||2||2g x x x x a x a a ⎛⎫⎛⎫=+++-≥+⨯-=- ⎪ ⎪⎝⎭⎝⎭, 当且仅当1||||x x =时,即1x =±,等号成立, 所以()g x 的值域为116,)[a-+∞, 因为()f x 是()g x 的“子函数,所以2331,[),[16)b a b a+--+∞⊆-+∞,所以233116b a b a+--≥-,即13316a b a b +++≤,又13(3)()103()b aa b a b a b++=++,221331316(3)6422a b a b a b a b ⎛⎫+++ ⎪⎛⎫⎛⎫++≤≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,当且仅当1338a b a b+=+=时取“=”,即a =32b +=或a =,b = 所以103()64b a a b ++≤,即2218a b b aab a b+=+≤所以22a b ab +的最大值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)()80042S x x ⎛⎫=-⋅- ⎪⎝⎭,4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅- ⎪⎝⎭,由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题. 23.选择见解析,3A π=,512C π=. 【分析】选择条件①,利用正弦定理结合余弦定理求出cos A 的值,结合角A 的取值范围可求得A2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件②,利用诱导公式、正弦定理以及三角恒等变换思想求出sin2A的值,结合角A的取值范围可求得角A 2b c +=可得出sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件③,由正弦定理以及两角差的正弦公式可求得tan A 的值,结合角A 的取值范围可求得角A 2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果. 【详解】(1)选择条件①,由()22sin sin sin sin sin A B C B C --=及正弦定理知()22a b c bc --=,整理得,222b c a bc +-=,由余弦定理可得2221cos 222b c a bc A bc bc +-===,又因为()0,A π∈,所以3A π=,2b c +=sin 2sin A B C +=,由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭,即1sin 2sin 222C C C ++=,即3sin C C =6C π⎛⎫-= ⎪⎝⎭sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=; 选择条件②,因为A B C π++=,所以222B C Aπ+=-, 由sinsin 2B C b a B +=得cos sin 2Ab a B =,由正弦定理知,sin cossin sin 2sin cos sin 222A A AB A B B ==, ()0,B π∈,()0,A π∈,可得0,22A π⎛⎫∈ ⎪⎝⎭,所以,sin 0B >,cos 02A >,可得1sin 22A =,所以,26A π=,故3A π=.以下过程同(1)解答;选择条件③,由2sin sin 3a B b A π⎛⎫=-⎪⎝⎭, 及正弦定理知,2sin sin sin sin 3A B B A π⎛⎫=- ⎪⎝⎭,()0,B π∈,则sin 0B >,从而21sin sin cos sin 322A A A A π⎛⎫=-=+⎪⎝⎭,则sin A A =,解得tan A =又因为()0,A π∈,所以3A π=,以下过程同(1)解答.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.24.1. 【分析】设山的高度CD =x ,在ABC 中,利用正弦定理求得CB ,AC ,在Rt BCD 中,由∠CBD =45°得CD =CB ,然后在Rt ACD 中,由tan CDACα=求解. 【详解】设山的高度CD =x 米,由题可得∠CAB =45°,∠ABC =105°,AB =300米,∠CBD =45°. 在ABC 中,得:∠ACB =180°-45°-105°=30°, 利用正弦定理可得sin 30sin 45sin105AB CB AC==, 所以()300sin 45300sin1053002,15062sin30sin30CB AC ⨯⨯====+,在Rt BCD 中,由∠CBD =45°得CD =CB ,在Rt ACD 中可得tan 1CD AC α===25.(1)21n a n =-,132n n b -=⋅;(2)2323n n T n =⨯+-.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件求出d 、2b 的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)求出数列{}n c 的通项公式,利用分组求和法可求得n T . 【详解】(1)设等差数列{}n a 的公差为d ,则()13323392a a S a +===,23546b S ∴==,则32212b b ==, 由3216b S +=可得2122264S a a a d d =+=-=-=,2d ∴=,因此,()()2232221n a a n d n n =+-=+-=-,221226232n n n n b b ---=⨯=⨯=⋅;(2)12132n n n n c a b n -=+=-+⋅,()()()()01211323325322132n n T n -⎡⎤∴=+⋅++⨯++⨯++-+⨯⎣⎦()()121135213323232n n -=++++-++⨯+⨯++⨯⎡⎤⎣⎦()()2312121323212nnn n n ⨯-+-=+=⨯+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.条件性选择见解析,(1)12nn a ⎛⎫= ⎪⎝⎭,41n b n =-;(2)()110245n n T n +=+-【分析】(1)选择①②,可以判断{}n a 为112a =,公比为12的等比数列,即可求出通项公式;选择②③,由112n n S a +=-可判断{}n a 为112a =,公比为12的等比数列,即可求出通项公式;选择①③根据条件可得()11n n S a n ->=,根据条件不能求出1a 的值,故不能选①③;根据{}n b 的条件建立关系即可求出公差,得出通项公式; (2)利用错位相减法可求解. 【详解】 (1)选择①②:由121n n S S +=+⇒当2n ≥时,有121n n S S -=+, 两式相减得:12n n a a +=,即112n n a a +=,2n ≥. 又当1n =时,有()2112212S S a a =+=+,又∵214a =,∴112a =,2112a a =也适合, 所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭;选择:②③:由112n n S a +=-⇒当2n ≥时,112n n S a -=-, 两式相减得:122n n n a a a +=-+,即112n n a a +=,2n ≥. 又当1n =时,有12112S a a =-=,又∵214a =,∴112a =,2112a a =也适合,所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭;选择①③:由121n n S S +=+,112n n S a +=-,则112122n n n S S a ++=+=- 即111n n S a ++=-,所以()11n n S a n =->,, 两式相减可得:()1121n n a a n +>=, 当1n =时,由121n n S S +=+,得2121S S =+,即()121221a a S a +=+,即1221a a += 由112n n S a +=-,得1212S a =-,即1212a a =-,与上式相同,不能求出1a 的值. 故不能选择①③所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭; 设正项等差数列{}n b 的公差为d ,∵13b =,且1b ,32b -,7b 成等比数列, ∴()23172b b b -=,即()()2322336d d +-=+,解得:4d =或12d =-(舍), ∴()34141n b n n =+-=-,故12nn a ⎛⎫= ⎪⎝⎭,41n b n =-.(2)()412nn c n -⨯=所以()1233272112412nn T n =⨯+⨯+⨯+⋅⋅⋅+-⨯,则()()23123272452412nn n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得()()22164222412nn n T n +-=+++⋅⋅⋅+--⨯()()114126441212n n n -+-=+⨯--⨯-()110254n n +=-+-.∴()110245n n T n +=+-【点睛】关键点睛:本题考查利用{}n a 与n S 的关系证明等比数列,等差数列基本量的计算,等比数列前n 项和问题,解答本题的关键是错位相减法求和中的计算,即由()1233272112412n n T n =⨯+⨯+⨯+⋅⋅⋅+-⨯,和()()23123272452412n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯相减得到()()22164222412n n n T n +-=+++⋅⋅⋅+--⨯,属于中档题.。
试卷(一)一、1、下列等式中成立的是( B ).(A) e n nn =⎪⎭⎫⎝⎛+∞→21lim (B) e n n n =⎪⎭⎫ ⎝⎛++∞→211lim (C) e n nn =⎪⎭⎫ ⎝⎛+∞→211lim (D) e n nn =⎪⎭⎫⎝⎛+∞→211lim2、函数()x f 在点0x 处连续是在该点处可导的( ).(A) 必要但不充分条件 (B) 充分但不必要条件 (C)充分必要条件 (D) 既非充分也非必要条件 3、设函数()x f 可导,并且下列极限均存在,则下列等式不成立的是( ).(A) ()()()00limf x f x f x '=-→ (B) ()()()0000lim x f x x x f x f x '=∆∆--→∆(C) ()()()a f h a f h a f h '=-+→2lim(D) ()()()00002lim x f xx x f x x f x '=∆∆--∆+→∆ 4、若(),00='x f 则点0x x =是函数()x f 的( ).(A) 极大值点 (B) .最大值点 (C) 极小值点 (D) 驻点5、曲线12+=x x y 的铅直渐近线是( ).(A )y =1 (B )y =0 (C )1-=x (D )x =0 6、设xe-是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x+--)1( (B )c x e x++-)1( (C )c x e x+--)1( (D ) c x e x++--)1( 二、1、当0x →时,(1cos )x -与2sin2xa 是等价无穷小,则常数a 应等于______ _. 2、若82lim =⎪⎭⎫⎝⎛-+∞→xx b x b x ,则=b .3、函数123++=x x y 的拐点是 .4、函数()x y y =是由方程y x y +=tan 给出,则='y ______________________.5、双曲线1xy =在点()1,1处的曲率为 .6、已知)(x f 在),(∞+-∞上连续,且2)0(=f ,且设2sin ()()x xF x f t dt =⎰,则(0)F '= .三、 1、求极限()xx x x x sin tan cos 1lim20-→ .2、设曲线的方程为33190x y (x )cos(y ),π++++=求此曲线在1x =-处的切线方程.3、求不定积分⎰++322x x xdx.4、求不定积分dx x x ⎰+31. 5、求定积分dx x x ⎰22cos π.6、求定积分⎰--+11242dx xx .四、1、求抛物线12+=x y 与直线1-=x y 所围成的图形. 2、设()f x ''连续,()1f π=,()()0sin 3f x f x xdx π''+=⎡⎤⎣⎦⎰,求()0f .试卷(二)一、1、=+→xx x 2)31(lim .2、当=k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x kx x x f x 在0=x 处连续.3、设x x y ln +=,则=dydx. 4、曲线x e y x -=在点)1,0(处的切线方程是 .5、设两辆汽车从静止开始沿直线路径前进,下图中给出的两条曲线)(1t a a =和)(2t a a =分别是两车的速度曲线.那么位于这两条曲线和直线T t = )0(>T 之间的图形的面积A 所表示的物理意义是 .二、1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ).A 、 x 1ln(当+→0x ) B 、x ln (当1→x ) C 、x cos (当0→x ) D 、 422--x x (当2→x ) 3、满足关系式0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、下列函数)(x f 在]1,1[-上适合罗尔中值定理条件的是( ).A 、32)(x x f =B 、x x x f 2)(=C 、32)(+=x x fD 、x x f sin )(= 5、下列无穷积分收敛的是( ).A 、⎰∞+ 0sin xdx B 、dx x ⎰∞+ 01C 、dx e x ⎰∞+- 0 2D 、dx x⎰∞+ 0 1三、1、求极限 xx x 2sin 24lim-+→ . 2、求极限 2cos 2cos 0lim x dte xx t x ⎰-→.3、设)1ln(25x x e y +++=,求y '.4、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx y d . 5、求不定积分dx xx x ⎰+)sin (ln 2.6、设⎪⎩⎪⎨⎧≥<+=-0011)(2x xe x x x f x , 求⎰-20d )1(x x f .四、1、设函数21)(xxx f +=,分别求其单调区间、极值、凹凸性与拐点. 2、设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导)0(>a .试证在),(b a 内至少存在一点ξ满足:)(][)]()([2012201220122011ξξf a b a f b f '-=-.试卷(三)一、1.设)sin (cos )(x x x x f +=,则在0=x 处有( ).(A)2)0(='f (B) 1)0(='f (C) 0)0(='f (D) )(x f 不可导 2.设333)(,11)(x x xxx ⋅-=+-=βα,则当1→x 时( ). (A) )(x α与)(x β是同阶无穷小,但不是等价无穷小; (B) )(x α与)(x β是等价无穷小; (C) )(x α是比)(x β高阶的无穷小; (D) )(x β是比)(x α高阶的无穷小.3.函数2)4(121++=x xy 的图形( ). (A) 只有水平渐近线; (B) 有一条水平渐近线和一条铅直渐近线; (C) 只有铅直渐近线; (D) 无渐近线.4.设函数nn x xx f 211lim)(++=∞→,则下列结论正确的为( ).(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x .5.设函数)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则)(x f = ( ).(A) 22x (B)222+x (C) 1-x (D) 2+x 6.广义积分)0( >⎰∞+a xdxap 当( )时收敛. (A) 1>p (B) 1<p (C) 1≥p (D) 1≤p二、1.=+→xx x sin 20)31(lim .2.曲线⎩⎨⎧=+=321ty t x 在t=2处的切线方程为 . 3.方程0162=-++x xy e y 确定隐函数)(x y y =,则)0(y '= .4.⎰--+2121 2211arcsin dx xx x = .5.已知x x cos 是)(x f 的一个原函数,则dx xxx f ⎰cos )(= . 6.=⎰→22 0sin lim2xtdt e xt x .三、1.(6分)已知tt t x x f ⎪⎪⎭⎫⎝⎛+=+∞→2sin 1lim )(,求)(x f '. 2.(6分)求不定积分dx xx⎰++cos 1sin 1. 3.(8分)设函数⎩⎨⎧≤<-≤=-1010)(2x x x xe x f x ,,,求dx x f ⎰-1 3 )(. 4.(8分)已知2)3(lim 2=++-∞→c bx ax x x ,求常数b a ,.5.(8分)求由曲线)1(2,4,22≥===x x y x y xy 所围图形的面积.6.(8分)由方程)ln(arctan22y x x y +=确定隐函数)(x f y =,求0=y dx dy . 7.(8分)设函数)(x f 在[0,1]上连续且单调递减,证明:对任意的],1,0[∈q ⎰⎰≥qdx x f q dx x f 01)()(.试卷(四)一、1.方程23cos2x y y y e x '''--=的特解形式为( )(A )cos 2xaxe x ; (B )cos 2sin 2xxaxe x bxe x +; (C )cos 2sin 2xxae x be x +; (D )22cos 2sin 2xxax e x bx e x +.2. 设a 不是π的整数倍,极限ax a x a x -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1 (B )e (C )a e cot (D )ae tan3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x xe x xf ax 在0=x 处连续,则=a ( ). (A )1 (B ) 0 (C )e (D )1-4. 设2()()lim1()x af x f a x a →-=--,则在x a =处有( ) (A )()f x 的导数存在,且()0f a '≠; (B )()f x 取得极大值; (C )()f x 取得极小值; (D )()f x 取得最大值.5. 设函数)(x f 在点0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim0=-→xx f x ,则点0=x ( ).(A )是)(x f 的极大值点(B )是)(x f 的极小值点(C)不是)(x f 的驻点(D )是)(x f 的驻点但不是极值点二、1. 设tan 21, 0sin 2(), 0xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =连续,则a =____________.2. 极限xaa x x ln )ln(lim0-+→(0>a )的值是 .3. 设()(1)(2)(99)f x x x x x =---L ,则(0)f '=____________.4. 曲线21x xe y =的铅直渐近线是 . 5. 函数)4ln(x x y -=的单调递增区间为 .三、1. 计算极限412921612lim 2332-+-+-→x x x x x x . 2. 求不定积分10arctan d x x x ⎰. 3. 求定积分⎰+41)1(x x dx . 4. 求函数122+=x xy 的极值与拐点.5. 求微分方程52d 2(1)d 1y y x x x -=++的通解. 6. 设1>a ,函数a a x x a x a x y +++=,求dxdy . 四、证明题(本题8分)证明:当02x <<时,有24ln 240x x x x --+>.试卷(五)一、 1. 下列各式正确的是( ).(A)1)11(lim 0=++→x x x (B) e x x x =++→)11(lim 0(C) e x x x -=-∞→)11(lim (D)e xxx =+-∞→)11(lim 2. 设()f x 可导,()()(1sin )F x f x x =+,若欲使()0F x x =在可导,则必有 ( ).(A )(0)0f '=(B )(0)0f = (C )(0)(0)0f f '+=(D )(0)(0)0f f '-=3.为,则 又设已知 )()20( d )()(21 110 )(12x F x t t f x F x x x x f x ⎰≤≤=⎩⎨⎧≤≤<≤=( ).⎪⎩⎪⎨⎧≤≤<≤21 10 31)(3x x x x A ⎪⎩⎪⎨⎧≤≤<≤-21 10 3131)(3x x x x B ⎪⎩⎪⎨⎧≤≤-<≤21 110 31)(3x x x x C ⎪⎩⎪⎨⎧≤≤-<≤-21 1103131)(3x x x x D 4.当0→x 时,与x ex cos 22-等价的无穷小是( ).(A )2x . (B )223x . (C )22x . (D )225x . 5.x e y y y x2cos 52=+'-''的一个特解应具有形式( ).(A )x Ae x2cos (B ))2sin 2cos (x B x A e x+(C ))2sin 2cos (x B x A xe x+ (D ))2sin 2cos (2x B x A e x x+ 二、1. 已知2sin ()d x f x x e C =+⎰,则()f x =____________.2.设函数22, 1()ln(1), 1a x x f x x x x ⎧+>-=⎨++≤-⎩在1x =-处连续,则a = . 3. 设),tan ln(sec x x y +=则='y .4. 设()f x 是连续函数,则dt t f a x x xaa x ⎰-→ )(lim= .5. 已知⎰+=C x dx x f arcsin )(,则=-⎰dx x f x )(12. 6. 由0 , 0)( , , =≥===y x f y b x a x 所围曲边梯形绕x 轴旋转而成的旋转体的体积公式为:V = . 则(应用你给的公式计算)由],[,)(22R R x x R x f y -∈-==与x 轴所围成的图形绕x 轴旋转而成的立体的体积=V . 三、1. (6分) 1.求函数22(,)(2)ln f x y x y y y =++的极值.2. (6分)设arctany x= 求dx dy .3.(6分)求微分方程满足初始条件的特解1,sin ==+=πx y xx x y dx dy . 4. (6分) 设由方程2cos()1x y e xy e +-=-确定y 是x 的函数,求d .0d yx x =5. (7分) 求函数22(,)(2)ln f x y x y y y =++的极值. 6 若函数)(x f 在]1,0[上连续,证明:=⎰π)(sin dx x xf ⎰)(sin 2ππdx x f ,并计算dx xxx ⎰+π2cos 1sin . 8. 过原点(0,0)O 作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成一平面图形,求此平面图形的面积.《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为( ) (A )6π; (B )4π; (C )3π; (D )2π. 4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7. 级数1(1)(1cos ) (0)nn n αα∞=-->∑是( )(A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关.8.幂级数∑∞=1n n n x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________.4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x xx y -+-=⎰Ñ____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算1d d yxy x x⎰.试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121. 5.()x e x C Cy 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷7(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 4.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续 (3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( )(A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题(10分⨯2) 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4. ⎪⎭⎫ ⎝⎛-3223323πa . 5.xx e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A 、一阶B 、二阶C 、三阶D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学
一、试解下列各题:
1.[6分]求函数2
2y x u -=在点(1,1)沿与x 轴正向成角 60=a 方向的方向导数。
2.[6分]计算ds y x L ⎰-)(2,其中L 是圆周12
2=+y x 。
3.[6分]将函数)10ln(
)(x x f +=展开成x 的幂级数并指出收敛域。
4.[6分]求微分方程1)1(=''-y x 的通解。
5.[6分]求微分方程x
e x y y y 22=+'-''的一个特解。
二、[12分]求椭球面12322
2=++z y x 被平面0=++z y x 截得的椭圆的长半轴与短半轴之
长。
三、[10分]函数),(y x z z =由方程0,,=)(x z z y y x F 所确定,F 具有连续的一阶偏导数,
求dz 。
四、[10分]由曲面z y x -=+222与22y x z +=所围成立体为Ω,其密度为1,求Ω关
于z 轴的转动惯量。
五、[10分]计算∑+⎰⎰∑,22dxdy y x e z 是由锥面22y x z +=,平面1=z 和2=z 所围成的
圆台的侧面的下侧。
六、[12分]计算曲线积分dy e x dx y e y L x )()(22-+-⎰,式中L 是由点)0,0(0沿曲线
23x y =至点)1,1(A 的一段。
七、[8分]设 ,,,,21n a a a ,是正项单调递增数列,问级数
++++n a a a a a a 21211111何时收敛,何时发散?证明你的结论。
八、[8分]设平面π在平面022:1=-+-z y x π和平面062:2=-+-z y x π之间,它把平面1π与2π之间的距离分为3:1,求平面π的方程。
参考答案:
一、1.31-=∂∂l u 2.π-
3.
n n
n n x n x 10)1(10ln )10ln(11⋅-+=+∑∞=- 1010≤<-x 4.21)1ln()1(c x c x x y ++--= 5.x
e x y 4*121= 二、长半轴:61311+=
a , 短半轴61311-=
b 三、])()([)(12223123222dy xzF F y x dx yzF F x yz F z xyF xy z dz -+--= 四、π154=
z I 五、)(22e e -π 六、51- 七、当1lim ≤∞
→n n a 时原级数发散,否则原级数收敛。
八、032=-+-z y x。