第三节 二元函数的连续性.
- 格式:ppt
- 大小:780.00 KB
- 文档页数:27
二元函数连续二元函数连续是数学分析中的一个重要概念,特别是在多变量计算中。
连续性的概念可以用于判断函数在特定点的性质,比如该点的极限值与导数。
本文将讨论二元函数连续的概念、判定方法,以及实际应用。
二元函数连续的概念一个二元函数f(x,y)在点(x0,y0)处连续,如果在该点的极限值等于f(x0,y0)。
也就是说,如果(x,y)趋近于(x0,y0),那么f(x,y)趋近于f(x0,y0)。
符号化地说,对于任何ε>0,存在δ>0,使得当(x,y)与(x0,y0)距离小于δ时,有|f(x,y)-f(x0,y0)|<ε。
这个定义也可以通过用数学极限符号来表达:lim(x,y)->(x0,y0) f(x,y) = f(x0,y0)判定方法一般来说,我们判断一个二元函数f(x,y)在某点(x0,y0)是否连续,需要判断以下三个条件:1. f(x0,y0)存在:这意味着f(x0,y0)已经定义。
如果f(x0,y0)不存在,那么f(x,y)在该点处不连续。
2. 极限存在:如果极限值不存在,那么f(x,y)在该点处不连续。
3. 极限等于f(x0,y0):如果极限值不等于f(x0,y0),那么f(x,y)在该点处不连续。
应用二元函数连续的概念在数学的许多方面都有应用,特别是在微积分、概率论和统计学中。
下面我们来看两个实例。
1. 多元函数极限值在多元函数的求极限值时,我们需要先判断函数是否在该点连续。
如果连续,那么可以使用拉格朗日乘数法等方法求出极限值。
2. 梯度下降法梯度下降法是一种优化算法,用于找到一个函数的极小值点。
在该算法中,连续性的概念在选择初始点时就扮演着重要的角色。
如果一个函数在初始点不连续,那么算法将会失败。
结论二元函数连续是多变量函数分析的基础概念之一。
对于研究多元函数的极限值、连续性、微积分、优化算法等有着重要的应用。
本文介绍了二元函数连续的概念和判定条件,以及实际应用。
§ 3 二元函数的连续性一 二元函数的连续性定义 设f 为定义在点集2R D ⊂上的二元函数.()。
的孤立点的聚点,或者是它或者是D D D P ∈0对于任给的正数ε,总存在相应的正数δ,只要(),;D P U P δ0∈,就有 ()()ε<-0P f P f ,()1则称f 关于集合D 在点0P 连续。
在不至于误解的情况下,也称f 在点0P 连续。
若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数。
由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在连续等价于()().lim 00P f P f DP P P =∈→()2如果0P 是D 的聚点,而()2式不成立()应情形相同其含义与一元函数的对,则称0P 是f 的不连续点或称间断点。
特别当()2式左边极限存在但不等于)(0P f 时,0P 是f 的可去间断点.如上节例1、2给出的函数在原点连续;例4给出的函数在原点不连续,又若把例3的函数改为{}⎪⎪⎩⎪⎪⎨⎧=+≠=∈+=),0,0(),(,1,0,|),(),(,),(222y x m m x m x y y x y x y x xyy x f其中m 为固定实数,亦即函数f 只定义在直线mx y =上,这时由于(),0,01),(lim 2),(),(00f m my x f mx y y x y x =+==→ 因此f 在原点沿着直线mx y =是连续的。
设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆ ()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量。
和一元函数一样,可用增量形式来描述连续性,即当0l i m ),()0,0(),(=∆∈→∆∆z Dy x y x时,f 在点0P 连续。
第十六章 多元函数的极限与连续3二元函数的连续性一、二元函数的连续性概念定义1:设f 为定义在点集D ⊂R 2上的二元函数,P 0∈D(聚点或孤立点).对于任给正数ε,总存在相应的正数δ,只要P ∈U ⁰(P 0;δ)∩D ,就有 |f(P)-f(P 0)|<ε,则称f 关于集合D 在点P 0连续. 在不致误解的情况下,也称f 在点P 0连续.若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数.注:若P 0是D 的孤立点,则必为f 关于D 的连续点;若P 0是D 的聚点,则f 关于D 在P 0连续等价于DP P P 0lim ∈→f(P)=f(P 0), 若DP P P 0lim ∈→f(P)≠f(P 0),则聚点P 0是f 的不连续点(或称间断点). 若DP P P 0lim ∈→f(P)=A ≠f(P 0),则P 0是f 的可去间断点.如:函数f(x,y)= x 2+xy+y 2和f(x,y)=⎪⎩⎪⎨⎧=≠+-)0,0()y ,x (0)0,0()y ,x (y x y x xy 2222,, 在原点连续;函数f(x,y)=⎩⎨⎧+∞<<-∞<<其余部分,,0x ,x y 012在原点不连续;函数f(x,y)=⎪⎪⎩⎪⎪⎨⎧=+≠=∈+)0,0()y x,(m 1m }0 x mx,y |)y x,{()y x,(y x xy 222,,,m 为固定实数,即f 只定义在直线y=mx 上,∵mx y )0,0()y ,x (lim =→f(x,y)=2m1m +=f(0,0), ∴f 在原点沿着直线y=mx 连续.例1:讨论函数f(x,y)=⎪⎩⎪⎨⎧=≠+)0,0()y ,x (0)0,0()y ,x (y x x 22α,,, (α>0)在点(0,0)的连续性. 解:对函数自变量作极坐标变换得x=rcos φ, y=rsin φ,则(x,y)→(0,0)等价于对任何φ都有r →0.当(x,y)≠(0,0)时,22αy x x +=2ααr φcos r →⎪⎩⎪⎨⎧<<∞=>2α02α,2α0,,不存在,(r →0); ∴当α>2时,f 在点(0,0)连续;当0<α≤2时,f 在点(0,0)间断.定义2:设P 0(x 0,y 0), P(x,y)∈D, △x=x-x 0, △y=y-y 0, 则称△z=△f(x 0,y 0)=f(x,y)-f(x 0,y 0)=f(x 0+△x,y 0+△y)-f(x 0,y 0)为函数f 在点P 0的全增量. 当D )y ,x ()y ,x ()y ,x (00lim ∈→∆∆△z=0时,f 在点P 0连续.若在全增量中取△x=0或△y=0,则相应的函数增量称为偏增量,记作: △f(x 0,y 0)=(x 0+△x,y 0)-f(x 0,y 0),△f(x 0,y 0)=(x 0,y 0+△y)-f(x 0,y 0).注:一般函数的全增量并不等于相应的两个偏增量之和.0x lim →∆△f(x 0,y 0)=0表示固定y=y 0时,f(x,y 0)作为x 的一元函数在x 0连续.同理,0y lim →∆△f(x 0,y 0)=0表示f(x 0,y)在y 0连续. 但二元函数对单个自变量都连续并不能保证该函数的连续性.例:f(x,y)=⎩⎨⎧=≠0xy 00xy 1,, 在原点处不连续,但f(0,y)=f(x,0)=0,即 在原点处f 对x 和对y 都连续.定理16.7:(复合函数的连续性)设函数u=φ(x,y)和v=ψ(x,y)在xy 平面上点P 0(x 0,y 0)的某邻域内有定义,并在点P 0连续;函数f(u,v)在uv 平面上点Q 0(u 0,v 0)的某邻域内有定义,并在点Q 0连续,其中u 0=φ(x 0,y 0), v 0=ψ(x 0,y 0),则复合函数g(x,y)=f[φ(x,y),ψ(x,y)]在点P 0也连续. 证:由f 在点Q 0连续知,∀ε>0,∃η>0,使得当|u-u 0|<η, |v-v 0|<η时, 有|f(u,v)-f(u 0,v 0)|<ε. 又由φ,ψ在点P 0连续知,对上述正数η,∃δ>0, 使得当|x-x 0|<δ, |y-y 0|<δ时,都有|u-u 0|=|φ(x,y)-φ(x 0,y 0)|<η, |v-v 0|=|ψ(x,y)-ψ(x 0,y 0)|<η,即当|x-x 0|<δ, |y-y 0|<δ时,就有 |g(x,y)-g(x 0,y 0)|=|f(u,v)-f(u 0,v 0)|<ε,∴复合函数f[φ(x,y),ψ(x,y)]在点P 0也连续.二 、有界闭域上连续函数的性质定理16.8:(有界性与最大、最小值定理)若函数f 在有界闭域D ⊂R 2上连续,则f 在D 上有界,且能取得最大值与最小值.证:若f 在D 上无界,则对每个正整数n ,必存在点P n ∈D ,使得 |f(P n )|>n, n=1,2,…. 于是得到一个有界点列{P n }⊂D ,且总能使 {P n }中有无穷多个不同的点,由定理16.3知,{P n }存在收敛子列{P k n },记∞→k lim P k n =P 0,∵D 是闭域,∴P 0∈D ,又f 在D 上连续, ∴∞→k lim f(P k n )=f(P 0),与|f(P n )|>n, n=1,2,…矛盾,∴f 在D 上有界. 设m=inff(D),M=supf(D). 若对任意P ∈D, 有M-f(P)>0,记F(P)=f(P)-M 1 , 则函数F(P)连续,恒有F(P)>0,F 在D 上有界, 由设f 不能在D 上达到上确界M ,∴存在收敛点列{P n }⊂D ,使得∞→n lim f(P n )=M ,于是有∞→n lim F(P n )=+∞,与F 在D 上有界矛盾, ∴f 在D 上有最大值M ;同理可证,f 在D 上有最小值m.定理16.9:(一致连续性定理)若函数f 在有界闭域D ⊂R 2上连续,则f 在D 上一致连续,即对任给的ε>0,总存在只依赖于ε的正数δ, 使得对一切点P ,Q ∈D ,只要ρ(P ,Q)<δ,就有|f(P)-f(Q)|<ε.证:若f 在D 上连续而不一致连续,则存在某ε0>0,对任意小的δ>0, 如取δ=n 1, n=1,2,…,总有相应的P n ,Q n ∈D ,虽然ρ(P n ,Q n )<n1,但是 |f(P n )-f(Q n )|≥ε0. ∵D 为有界闭域,∴存在收敛子列{P k n }⊂{P n }, 记∞→k lim P k n =P 0∈D ,并在{Q n }中取出与P k n 下标相同的子列{Q k n },则 ∵0≤ρ(P k n ,Q k n )<kn 1→0, k →∞,∴∞→k lim Q k n =∞→k lim P k n =P 0,又 由f 在P 0连续,∴∞→k lim |f(P k n )-f(Q k n )|=|f(P 0)-f(P 0)|=0,与|f(P k n )-f(Q kn )|≥ε0>0矛盾!∴f 在D 上一致连续.定理16.10:(介值性定理)设函数f 在区域D ⊂R 2上连续,若P 1,P 2为D 中任意两点,f(P 1)<f(P 2),则对任何满足不等式f(P 1)<μ<f(P 2)的实数μ,必存在点P 0∈D ,使得f(P 0)=μ.证:记F(P)=f(P)-μ, P ∈D ,则F(P)在D 上连续,且F(P 1)<0<F(P 2). 不妨设P 1,P 2为D 的内点,∵D 为区域,∴D 中有限折线可联结P 1,P 2, 若某一联结点P 0’, 有F(P 0’)=0,则f(P 0’)=μ,得证;否则, 必存在某联结线段Q 1Q 2两端的函数值异号,设Q 1Q 2所在直线方程为: ⎩⎨⎧+=+=)y -t(y y y )x -t(x x x 121121, 0≤t ≤1,其中Q 1(x 1,y 1)和Q 2(x 2,y 2)为线段两端点; 则在此线段上,F 表示为关于t 的复合函数:G(t)=F(x 1+t(x 2-x 1),y 1+t(y 2-y 1)), 0≤t ≤1,在[0,1]一元连续,且 F(Q 1)=G(0)<0<G(1)=F(Q 2). 由一元函数根的存在定理知,在(0,1)内存在一点t 0, 使得G(t 0)=0. 记x 0=x 1+t 0(x 2-x 1), y 0=y 1+t 0(y 2-y 1), 则有P 0(x 0,y 0)∈D ,使得F(P 0)=G(t 0)=0,即f(P 0)=μ.注:定理16.8与定理16.9的有界闭域D 可改变有界闭集;为了保证连通性,定理16.10只适合区域,且由介值性定理可知,区f 在区域D 上连续,则f(D)必定是一个区间(有限或无限).习题1、讨论下列函数的连续性:(1)f(x,y)=tan(x 2+y 2);(2)f(x,y)=[x+y];(3)f(x,y)=⎪⎩⎪⎨⎧=≠0y 00y y x y sin ,,; (4)f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy sin 222222,,;(5)f(x,y)=⎩⎨⎧为有理数为无理数x y x 0,,;(6)f(x,y)=⎩⎨⎧=+≠++0y x 00y x )y x ln(y 2222222,,;(7)f(x,y)=x siny sin 1;(8)f(x,y)=y x-e . 解:(1)记D={(x,y)|0≤x 2+y 2<2π∪{(x,y)|21-2k π<x 2+y 2<212k +π, k ∈N}}, 当(x 0,y 0)∈D 时,由tanu 在u 0=x 02+y 02连续知,)y ,x ()y ,x (00lim →tan(x 2+y 2)=0u u lim →tanu= tanu 0=tan(x 02+y 02), ∴f(x,y)在(x 0,y 0)连续,即f(x,y)在D 上连续,又f 在R 2-D 上无定义,∴f 在R 2-D 上处处间断.(2)记D={(x,y)|k<x+y<k+1,k ∈Z},且P 0(x 0,y 0)∈D ,则存在k ∈Z,使 k<x 0+y 0<k+1,于是当δ>0充分小时,对任意的(x,y)∈U(P 0;δ),就有 k<x+y<k+1,从而f(x,y)≡k ≡f(x 0,y 0),∴)y ,x ()y ,x (00lim →f(x,y)=f(x 0,y 0),∴f 在D 上连续,在R 2-D(即x+y=k)处处不连续.(3)∵yxy sin ≤|x|,∴)0,0()y ,x (lim →f(x,y)=0=f(0,0),∴f(x,y)在点(0,0)连续. 又当y ≠0时,f(x,y)是初等函数且在{(x,y)|y ≠0}有定义,∴f(x,y)在D={(x,y)|y ≠0}∪{(0,0)}上连续. 又在任一点(x 0,0)≠(0,0)处, ∵f(x 0,0)=0而)0,x ()y ,x (0lim →f(x,y)≠0,∴f 在(x 0,0)间断,即f 仅在D 上连续.(4)当x 2+y 2≠0时,22y x xysin +≤|x|,∴)0,0()y ,x (lim →f(x,y)=0=f(0,0), ∴f(x,y)在点(0,0)连续. 又f(x,y)在R 2-(0,0)上有定义且为初等函数, ∴f(x,y)在R 2上连续.(5)设(x 0,y 0)∈R 2,则当x 0为有理数时,|f(x,y)-f(x 0,y 0)|=|f(x,y)-y 0|=⎩⎨⎧为有理数为无理数x |y -y |x |y |00,,;当x 0为无理数时,|f(x,y)-f(x 0,y 0)|=|f(x,y)|=⎩⎨⎧为有理数为无理数x |y |x 0,,; ∴当且仅当y 0=0时,)y ,x ()y ,x (00lim →f(x,y)=f(x 0,y 0),即f 仅在D={(x,y)|y=0}上连续.(6)在x 2+y 2≠0的点处,f 是初等函数且有定义,又|y 2ln(x 2+y 2)|≤|(x 2+y 2)ln(x 2+y 2)|→0, (x,y)→(0,0),即)0,0()y ,x (lim →f(x,y)=0=f(0,0),∴f(x,y)在R 2上连续. (7)直线x=m π及y=n π, (m,n=0,±1,±2,…)上的点均为f 的不连续点. 而在D={(x,y)x ≠n π或y ≠n π, n ∈N}上f 有定义且为初等函数, ∴f 仅在D 上连续,即除直线x=m π及y=n π以外的点,f 都连续.(8)∵u=-yx 在其定义域D={y|y ≠0}上连续,又f=e u 关于u 连续, 由复合函数的连续性知f 在其定义域D 上连续.2、叙述并证明二元连续函数的局部保号性.解:局部保号性:若函数f(x,y)在点P 0(x 0,y 0)连续,且f(x 0,y 0)≠0, 则函数f(x,y)在点P 0的某一邻域U(P 0;δ)内与f(x 0,y 0)同号,并存在某正数r(|f(x 0,y 0)|>r),使得对任意(x,y)∈U(P 0;δ),有|f(x,y)|≥r>0.证明如下: 设f(x 0,y 0)>0,则存在r ,使f(x 0,y 0)>r>0,取ε=f(x 0,y 0)-r>0, 由f 在 (x 0,y 0)连续知,∃δ>0,使得当(x,y)∈U(P 0;δ)时,有|f(x,y)-f(x 0,y 0)|<ε=f(x 0,y 0)-r ,即当(x,y)∈U(P 0;δ)时,f(x,y)≥f(x 0,y 0)-ε=r>0. 当f(x 0,y 0)<0时,任取0<r<-f(x 0,y 0),由上可知存在U(P 0;δ),使得 在其上-f(x,y)≥r>0,即f(x,y)≤-r<0.∴f 在U(P 0;δ)上与f(x 0,y 0)同号,且|f(x,y)|≥r>0.3、设f(x,y)=()⎪⎩⎪⎨⎧=+≠++0y x 00y x y x x 2222p 22,,, p>0,讨论它在点(0,0)处的连续性. 解:当x 2+y 2≠0时,()p 22y x |x |+≤|x 1-2p |→⎪⎪⎪⎩⎪⎪⎪⎨⎧>∞=<<21p ,21p ,121p 00,, (x,y)→(0,0); ∴当0<p<21时,)0,0()y ,x (lim →f(x,y)=0=f(0,0),f 在(0,0)连续; 当p ≥21时,f 在(0,0)不连续.4、设f(x,y)定义在闭矩形域S=[a,b]×[c,d]上. 若f 对y 在[c,d]上处处连续,对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续. 证:设(x 0,y 0)∈S ,对固定的x 0, f 为y 的连续函数,即∀ε>0,∃δ1>0, 当|y-y 0|<δ1,且(x 0,y)∈S 时,有|f(x 0,y)-f(x 0,y 0)|<2ε,又由f 对x 关于y 为一致连续,∴对上述的ε>0,∃δ2>0,对满足 |y-y 0|<δ2的任何y ,只要|x-x 0|<δ2,且(x,y)∈S ,便有|f(x,y)-f(x 0,y)|<2ε, 取δ=min{δ1,δ2},则只要|x-x 0|<δ, |y-y 0|<δ,且(x,y)∈S ,总有 |f(x,y)-f(x 0,y 0)|≤|f(x,y)-f(x 0,y)|+|f(x 0,y)-f(x 0,y 0)|<ε. ∴f 在S 上连续.5、证明:若D ⊂R 2是有界闭域,f 为D 上的连续函数,且f 不是常数函数,则f(D)不仅有界,而且是闭区间.证:若f 在D 上恒为常数,则f(D)为单点集,从而有界.若f在D上不恒为常数,由定理16.8知:f在D上有界且能取得最大值、最小值,分别设为M,m,则m<M且m≤f(P)≤M,(P∈D),即f(D)⊂[m,M]. 下证f(D)⊃[m,M].任给μ∈[m,M],由介值定理知,必存在P0∈D使f(P0)=μ,∴μ∈f(D),∴f(D)⊃[m,M],∴f(D)=[m,M]为闭区间.6、设f(x,y)在[a,b]×[c,d]上连续,又有函数列{φk(x)}在[a,b]上一致收敛,且c≤φk(x)≤d, x∈[a,b], k=1,2,…. 试证{F k(x)}={f(x,φk(x))}在[a,b]上也一致收敛.证:∵f(x,y)在D=[a,b]×[c,d]上连续,∴对任意(x0,y0)∈D, ∀ε>0,∃δ>0,使得当|x-x0|<δ,|y-y0|<δ,且(x,y)∈D时,有|f(x,y)-f(x0,y0)|<ε.∵{φk(x)}在[a,b]上一致收敛,∴对上述δ,∃N, 使得当n,m>N时,对一切x∈[a,b],有|φn(x)-φm(x)|<δ.由c≤φk(x)≤d, x∈[a,b], k=1,2,…知,φn(x),φm(x)∈[c,d].又f(x,y)在(x,φm(x))∈D连续,对(x,φn(x))∈D及上述ε, δ, N,有x∈[a,b],|x-x|=0<δ, |φn(x)-φm(x)|<δ,∴|f(x,φn(x))-f(x,φm(x))|=|F n(x)-F m(x)|<ε.∴{F k(x)}={f(x,φk(x))}在[a,b]上也一致收敛.7、设f(x,y)在区域G⊂R2上对x连续,对y满足利普希茨条件:|f(x,y’)-f(x,y”)|≤L|y’-y”|, 其中(x,y’),(x,y”)∈G,L为常数. 试证明:f在G上处处连续.证:∵f(x,y)在区域G⊂R2上对x连续,∴任取P0(x0,y0)∈G,固定y0,∀ε>0,∃δ1>0,使得对(x,y 0)∈G ,当|x-x 0|<δ1时,有|f(x,y 0)-f(x 0,y 0)|<2ε; 又f 对y 满足利普希茨条件,对上述ε,取δ2=L 2ε,则当|y-y 0|<δ2时, 有|f(x,y)-f(x,y 0)|≤L|y-y 0|<L δ2=2ε;取δ=min{δ1,δ2},当|x-x 0|<δ,|y-y 0|<δ,|f(x,y)-f(x 0,y 0)|≤|f(x,y)-f(x,y 0)|+|f(x,y 0)-f(x 0,y 0)|<2ε+2ε= ε.∴f 在P 0(x 0,y 0)连续,由P 0的任意性知,f 在G 上处处连续.8、若一元函数φ(x)在[a,b]上连续,令f(x,y)=φ(x), (x,y)∈D=[a,b]×(-∞,+∞).试讨论f 在D 上是否连续,是否一致连续?解:(1)任取(x 0,y 0)∈D ,∵φ(x)在[a,b]上连续,从而φ(x)对x 0连续, ∀ε>0,∃δ>0,使当x ∈[a,b]且|x-x 0|<δ时,有|φ(x)-φ(x 0)|<ε, ∴当|x-x 0|<δ, |y-y 0|<δ且(x,y)∈D 时,|f(x,y)-f(x 0,y 0)|=|φ(x)-φ(x 0)|<ε, 即f(x,y)在(x 0,y 0)连续,从而在D 上连续.(2)∵φ(x)在[a,b]上连续,从而一致连续. ∀ε>0,∃δ>0,使当x ’,x ”∈[a,b]且|x ’-x ”|<δ时,|φ(x ’)-φ(x ”)|<ε,从而当(x ’,y ’),(x ”,y ”)∈D 且|x ’-x ”|<δ, |y ’-y ”|<δ时,有x ’,x ”∈[a,b]且|x ’-x ”|<δ,从而 |f(x ’,y ’)-f(x ”,y ”)|=|φ(x ’)-φ(x ”)|<ε,∴f 在D 上一致连续.9、设f(x,y)=x y 11-, (x,y)∈D=[0,1)×[0,1), 证明:f 在D 上连续,但不一致连续.证:∵f 是在D 上有定义的初等函数,∵f 是在D 上连续.取ε0=21,无论正数δ取得多么小,当P 1=(1n n +,1n n +),P 2=(n 1-n ,n1-n )取到某个n 时, 总能使|P 1-P 2|<δ, 且P 1,P 2∈D , 但|f(P 1)-f(P 2)|=221)(n n 11+-- 22n 1)-(n 11-=1n 2)1n (2++-1n 2n 2-=22n 1-4n 1-2>21=ε0, ∴f 在D 上不一致连续.10、设f 在R 2上分别对每一个自变量x 和y 连续,并且每当固定x 时,f 对y 是单调的,证明:f 在R 2上二元连续.证:∵f 在R 2上分别对每一个自变量x 和y 连续,∴任取(x 0,y 0)∈R 2,由f(x,y)关于y 连续知,f(x 0,y)在y 0连续,即 ∀ε>0,∃δ1>0,使当|△y |<δ1时,有|f(x 0,y 0+△y)-f(x 0,y 0)|<2ε; 对于点(x 0, y 0±δ1),由f(x,y)关于x 连续知,f(x,y 0±δ1)在x 0连续,即 对上述ε,∃δ2>0,当|△x|<δ2时,有|f(x, y 0±δ1)-f(x 0, y 0±δ1)|<2ε, 取δ=min{δ1,δ2},则当|△x|<δ, |△y|<δ时,由f(x,y)关于y 单调知, |f(x 0+△x,y 0+△y)-f(x 0,y 0)|≤max{|f(x 0+△x, y 0±δ1)-f(x 0, y 0)|}.又 |f(x 0+△x, y 0±δ1)-f(x 0, y 0)|≤|f(x 0+△x, y 0±δ1)-f(x 0, y 0±δ1)|+|f(x 0, y 0±δ1)-f(x 0, y 0)|<2ε+2ε=ε. ∴当|△x|<δ, |△y|<δ时,就有|f(x 0+△x,y 0+△y)-f(x 0,y 0)|<ε. ∴f 在点(x 0,y 0)处连续,由点(x 0,y 0)的任意性可知,f 在R 2上二元连续.。
第九章 多元函数微分法及其应用9.3二元函数的连续性1 2二元函数连续性的定义二元函数间断点的定义13二元连续函数运算性质主要内容4多元初等函数的定义及其连续性的结论5有界闭区域上连续函数的性质1 2二元函数连续性的定义二元函数间断点的定义13二元连续函数运算性质主要内容4多元初等函数的定义及其连续性的结论5有界闭区域上连续函数的性质1、二元函数连续性的定义定义1是一个二元函数,若有设R y x U f →),(:00),(),(lim 00)(),(0,0y x f y x f y x y x =→处在点则称),(00y x f .A 上每一点处都连续在f 描述:、函数连续性的δε-2,0,0>∃>∀δε),),,((),(00δy x U y x ∈∀使得ε<-),(),(00y x f y x f 恒有.连续:A 3上连续、函数在区域)()(lim 00x f x f x x =→回顾:例1⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x yx xy y x f 设二元函数处是否连续?在讨论)0,0(),(y x f 解22)0,0(),()0,0(),(lim ),(lim yx xy y x f y x y x +=→→因为不存在,.)0,0(),(处不连续在所以y x f1 2二元函数连续性的定义二元函数间断点的定义13二元连续函数运算性质主要内容4多元初等函数的定义及其连续性的结论5有界闭区域上连续函数的性质二元函数间断点的定义定义1无定义,在的定义域的聚点,若是函数设),(),(0000y x f f y x ),(),(lim 00)(),(0,0y x f y x f y x y x =→处在点则称),(00y x f 间断,的为称f y x ),(00.间断点或有定义但下式不成立例如处在点)0,0(000),(222222⎪⎩⎪⎨⎧=+≠++=y x y x yx xy y x f .间断1),(22-+=y x xy y x f .122间断在圆周=+y x (间断线)1 2二元函数连续性的定义二元函数间断点的定义13二元连续函数运算性质主要内容4多元初等函数的定义及其连续性的结论5有界闭区域上连续函数的性质二元连续函数的性质证明:利用二重极限的运算法则可以证明上述性质二元连续函数的和、差、积、商(除分母为零的点外) 与复合仍为连续函数。
§ 3 二元函数的连续性一、 二元函数的连续性概念由一元函数连续概念引入 .1. )(P f 关于集合D 在0P 连续的定义定义 P100设),()(y x f P f =是定义在2R D ⊂上的二元函数,D P ∈0,0P 为D 的一个聚点,或者是孤立点. 若,);(),(,0,00D P U y x P δδε∈∀>∃>∀有ε<-)()(0P f P f ,则称)(P f 关于集合D 在0P 连续,简称)(P f 在0P 连续.D P ∈0,0P 为D 的一个聚点,)(P f 在0P 连续)()(lim 00P f P f P P =⇔→ 函数),(y x f 有定义的孤立点必为连续点 .“D P U y x P );(),(0δ∈∀”用方邻域叙述用圆邻域叙述函数的增量: 全增量、 偏增量 .用增量的语言叙述)(P f 在0P 连续. (用增量定义连续性) .2. )(P f 在集合D 连续.如果f 在集合D 内每一点连续,则称f 在D 连续,或称f 是D 上的连续函数. 函数在区域上的连续性 .3. )(P f 在0P 不连续.间断点例 (P101)⎪⎪⎩⎪⎪⎨⎧=++≠++=. 0 , 1, 0 , ),(2222222y x m m y x y x xy y x f证明函数),(y x f 在点) 0 , 0 (沿方向mx y =连续 .例 (P95例4 )⎩⎨⎧+∞<<∞-<<=. , 0, ,0 , 1),(2其他x x y y x f 证明函数),(y x f 在点) 0 , 0 (沿任何方向都连续 , 但点) 0 , 0 (并不连续.补例 求函数)(22y x tg z +=的不连续点。
(讨论函数的连续性)4. 二元连续和单元连续定义 ( 单元连续 )二元连续与单元连续的关系 (P101) 例 (P101)⎩⎨⎧=≠=. 0 , 0, 0 , 1),(xy xy y x f 函数),(y x f 在原点处不连续 但在原点处f 对x 和对y 分别都连续.5. 二元连续函数的性质局部保号性 若f 在点a 连续,并且0)(>a f ,则存在a 的领域)(a O δ,当)(a O x δ∈时有0)(>x f . 局部有界性运算性质 两个连续函数的和、差、积、商(若分母不为0)都是连续函数. 定理16.7(复合函数连续性)P102设D 是2R 中的开集,D y x ∈),(00。
教学课题: § 3.二元函数的连续性,有界闭域上连续函数的性质。
教学目的:掌握二元函数连续的定义及其性质,有界闭域上连续函数的性质及其证明方法。
教材重点:本节重点是二元函数连续的定义及有界闭域上连续函数的性质,难点是二元函数连续性的讨论。
教学过程:一.二元函数连续的概念1. 定义:设f 在D 2R ⊂上有定义,0p ∈D (聚点或孤立点)。
若0,0>∃>∀δε, 当D p U p ),(0δ∈时,有 ε<-)()(0p f p f ,称f 关于D 在0p 连续。
在不致误解的情况下,也称f 在0p 连续。
若f 在D 上每一点都f 关于D 连续,称f 为D 上的连续函数。
说明:(1)。
若0p 为D 的孤立点,f 关于D 在0p 连续。
(2)。
若0p 为D 的聚点,f 关于D 在0p 连续)()(lim 0)(0p f p f D p p p =⇔∈→。
(3)。
若0p 为D 的聚点,f 在0p 不连续,称0p 为f 的间断点。
特别,当f 在0p 的极限存在但不等于在0p 的函数值时,称0p 为f 的可去间断点。
例1. 设 ⎪⎩⎪⎨⎧=+≠++=.0,0,0,)(),(2222222y x y x y x y y x f p其中p >0 。
p 取何值时,f 在(0,0)连续?例2.设 ⎩⎨⎧=+≠++=0,0,0,)ln(),(2222222y x y x y x y y x f 讨论f 在(0,0)的连续性。
设 ),(),(.),(,),(0000000y x f y x f z y y y x x x D y x p y x p -=∆-=∆-=∆∈,,记 =),(),(0000y x f y y x x f -∆+∆+,称z ∆为f 在0p 的全增量。
也可应用全增量描述函数的连续性,即:f 在0p 连续 0lim )0,0(),(=∆⇔→∆∆z y x 。
记 ),(),(,),(),(00000000y x f y y x f z y x f y x x f z y x -∆+=∆-∆+=∆,分别称为f在0p 关于x ,y 的偏增量。