-淀粉酶的提取要点
- 格式:doc
- 大小:110.00 KB
- 文档页数:8
实验一淀粉酶的提取及作用
一.原理:
1.淀粉淀粉酶水解蓝色糊精红色糊精无色糊精麦芽糖葡萄糖
2.葡萄糖+斐林试剂Cu2O↓(砖红色)
二.植物材料与实验器具:
植物材料:萌动的小麦
实验器具:试管;玻棒;量筒;研钵;漏斗;电炉;水浴锅
试剂:2%淀粉溶液;稀I-KI 溶液(原液稀释5倍);斐林试
三.操作步骤
1. 取10粒萌动的小麦种子放入研钵中,用量筒取10ml蒸馏水作为淀粉酶提取液总量
(包括研钵清洗、种子研磨),分三次加入,将小麦研成浆状,用脱脂棉过滤于试管中,摇匀。
滤液静置5-10min ,上清液为淀粉酶的提取液。
2. 取2只刻度试管做标记A管、B管
A管:2ml 2%淀粉液+2ml蒸馏水38℃
B管:2ml 2%淀粉液+2ml淀粉酶提取液20min
加I-KI 2~3滴观察并比较两管颜色变化。
3.B管+3ml 斐林试剂沸水浴2~5min观察颜色变化
四。
实验结果
淀粉酶能将淀粉水解成葡萄糖。
α-淀粉酶抑制剂的提取、分离及性质研究的开题报
告
一、研究背景
α-淀粉酶是参与淀粉酶解的重要酶类之一,对其抑制剂的研究具有
十分重要的意义。
α-淀粉酶抑制剂可以调节血糖水平,减少糖尿病和肥
胖等疾病的发生。
因此,开展α-淀粉酶抑制剂的研究具有重要的应用前景。
二、研究目的
本研究的目的在于提取、分离α-淀粉酶抑制剂,并对其进行性质研究。
通过分析其分子量、化学结构和酶抑制活性,为进一步开发α-淀粉
酶抑制剂提供参考。
三、研究内容
1.提取、分离α-淀粉酶抑制剂:采用溶剂提取法和柱层析法分离纯
化α-淀粉酶抑制剂。
2.分子量分析:采用SDS-PAGE电泳法检测α-淀粉酶抑制剂的分子量。
3.化学结构鉴定:采用核磁共振(NMR)和质谱(MS)等技术对α-
淀粉酶抑制剂的化学结构进行鉴定。
4.酶抑制活性测定:采用体外酶活性测定技术,对α-淀粉酶抑制剂
的酶抑制活力进行测定。
四、预期结果
本研究预计可提取到α-淀粉酶抑制剂,并通过分子量分析、化学结
构鉴定和酶抑制活性测定分别对其进行定性、定量和定性分析。
预计能
够得到α-淀粉酶抑制剂的分子量、化学结构及其酶抑制活性等重要信息。
五、研究意义
通过本研究的开展,不仅有助于改善糖尿病和肥胖等疾病的治疗,还能够为进一步研发α-淀粉酶抑制剂提供参考,具有重要的理论和应用价值。
从枯草杆菌发酵液中提取a淀粉酶的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!从枯草杆菌发酵液中提取α-淀粉酶的精细流程α-淀粉酶是一种重要的工业酶,广泛应用于食品、纺织、造纸和医药等多个领域。
淀粉酶生产工艺淀粉酶作为一种重要的工业酶,广泛应用于食品、医药、饲料、糖化、纺织、皮革等领域。
下面将主要介绍淀粉酶的生产工艺。
淀粉酶的生产工艺通常分为两个步骤:种子培养和发酵生产。
1. 种子培养淀粉酶的种子一般由菌丝体制备而得,种子菌株的选取非常重要。
首先,从土壤、植物、食品中分离得到淀粉酶产生菌株,并经过传代培养筛选出优良菌株。
然后,选择合适的培养基进行菌株的预培养,以获得高活性和高产量的种子菌株。
培养基的选择要考虑到菌株的特性和经济性。
在种子培养过程中,通常采用摇瓶培养或容器培养的方式,控制好温度、pH值和氧气供应等条件,优化菌株的生长。
2. 发酵生产种子培养完成后,将种子菌株接种到大型发酵罐中进行发酵生产。
发酵过程需要控制好发酵温度、pH值、氧气供应和添加剂的投放等条件。
温度:淀粉酶的产生通常在30-50°C之间,具体温度要根据菌株的特性来确定。
温度过高或过低都会影响酶活性和产量。
pH值:淀粉酶一般在中性或微酸性环境下活性最高,一般在pH 5.0-7.0 的范围内进行发酵。
氧气供应:氧气供应对淀粉酶的产生有重要影响,因为淀粉酶属于需要氧气的好氧菌株。
因此,在发酵过程中需要控制好氧气的供应,提供充足的氧气以促进酶的产生。
添加剂:为了提高淀粉酶的产量和稳定性,常常会在发酵过程中添加一些助产剂或诱导剂,如优质动物蛋白、磷酸盐和氨基酸等。
这些添加剂能够提供菌株合成淀粉酶所需的营养物质,增加产酶能力。
发酵时间一般为24-72小时,根据菌株的生长速率和淀粉酶产量进行调整。
发酵过程中,可以通过监测酶活性和生物量的变化来掌握发酵的进程和产酶情况。
在发酵结束后,可通过离心、超滤等技术手段将淀粉酶提取和分离出来,经过加工和精制,最终得到纯净的淀粉酶产品。
综上所述,淀粉酶的生产工艺主要包括菌株的培养和发酵生产两个步骤。
通过控制好培养条件和发酵参数,能够提高淀粉酶的产量和质量,达到产业化生产的要求。
α-淀粉酶的提取、分离及测定(生化试验小组-2005.4)试验全程安排:试验一、色谱分离淀粉酶1.1 试剂及设备离子交换树脂-20℃冰箱样品管(5-10ml试管)1.5ml离心管紫外分光光度计α-淀粉酶样品秒表胶头吸管(进样用)平衡缓冲液(pH8.0,0.01M磷酸盐缓冲液)洗脱缓冲液(平衡缓冲液+0.1M,0.3M,0.5M,1.0M的氯化钠)试剂瓶1.2 离子交换色谱原理与方法色谱(chroma togra phy)是一种分离的技术,随着现代化学技术的发展应运而生。
20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。
到1907年茨维特的论文用俄文公开发表,他把这种方法命名为chromat ograp hy, 即中文的色谱,这就是现代色谱这一名词的来源。
但由于茨维特当时没有知名度,而且能看懂俄文的人也不多,加之很快爆发了第一次世界大战,茨维特的分离方法一直被束之高阁。
20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。
自20世纪40年代以来以Mart in 为首的化学家建立了一整套色谱的基础理论使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器使色谱技术从分离方法转化为分析方法。
20世纪50年代以后由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析。
而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显、有效。
α-淀粉酶的提取、分离及测定(生化试验小组-2005.4)试验全程安排:试验一、色谱分离淀粉酶1.1 试剂及设备离子交换树脂-20℃冰箱样品管(5-10ml试管)1.5ml离心管紫外分光光度计α-淀粉酶样品秒表胶头吸管(进样用)平衡缓冲液(pH8.0,0.01M磷酸盐缓冲液)洗脱缓冲液(平衡缓冲液+0.1M,0.3M,0.5M,1.0M的氯化钠)试剂瓶1.2 离子交换色谱原理与方法色谱(chromatography)是一种分离的技术,随着现代化学技术的发展应运而生。
20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。
到1907年茨维特的论文用俄文公开发表,他把这种方法命名为chromatography, 即中文的色谱,这就是现代色谱这一名词的来源。
但由于茨维特当时没有知名度,而且能看懂俄文的人也不多,加之很快爆发了第一次世界大战,茨维特的分离方法一直被束之高阁。
20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。
自20世纪40年代以来以Martin为首的化学家建立了一整套色谱的基础理论使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器使色谱技术从分离方法转化为分析方法。
20世纪50年代以后由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析。
而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显、有效。
同样,石化工业的发展也使色谱技术特别是气相色谱得到广泛的应用。
气相色谱的仪器也不断得到改进和完善,气相色谱逐渐成为一种工业分析必不可少的手段和工具。
20世纪80年代以后我国也大规模采用气相色谱和高效液相色谱。
随着环境科学的发展,不仅需要对大量有机物质进行分离和检测,而且也要求对大量无机离子进行分离和分析。
1975年美国Dow化学公司的H.Small等人首先提出了离子交换分离抑制电导检测分析思维即提出了离子色谱这一概念离子。
色谱概念一经提出便立即被商品化产业化由Dow公司组建的Dionex公司最早生产离子色谱并申请了专利。
我国从20世纪80年代开始引进离子色谱仪器,在我国八五、九五科技攻关项目中均列有离子色谱国产化的项目,对其进行了重点技术攻关。
色谱的分类色谱的分类有多种,主要按两相的状态及应用领域的不同可分为两大类1. 按应用领域不同分类制备色谱半制备色谱2. 以流动相和固定相的状态分类气相色谱、气固色谱、气液色谱、液相色谱、液固色谱、液液色谱、超临界色谱、毛细管电泳离子交换色谱离子色谱分离主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子。
它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架在苯环上引入磺酸基形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构以便于快速达到交换平衡。
离子交换树脂耐酸碱,可在任何pH范围内使用,易再生处理,使用寿命长。
缺点是机械强度差,易溶胀,易受有机物污染。
离子色谱基本流程图如下图所示:离子交换的分类及常见种类(一)分类离子交换剂分为两大类,即阳离子交换剂和阴离子交换剂。
各类交换剂根据其解离性大小,还可分为强、弱两种,即强酸剂阳离子交换剂弱酸剂强硷型阴离子交换剂弱硷型。
1.阳离子交换剂阳离子交换剂中的可解离基因是磺酸(-SO3H)、磷酸(-PO3H2)、羧酸(COOH)和酚羟基(-OH)等酸性基。
某些交换剂在交换时反应如下:强酸性:R-SO3 -H+ +Na+ R-SO3- Na+H+弱酸性:R-COOH+Na+ R-COONa +H+国产树脂中强酸1×7(上海树脂#732)和国外产品Dowex 50、Zerolit 225等都于强酸型离子交换剂。
2.阴离子交换剂阴离子交换剂中的可解离基因是伯胺、(-NH2)、仲胺(-NHCH3)、叔胺[N-(CH3)2]和季胺[-N(CH3)2]等硷性基团。
某些交换反应如下:强硷性:R-N+(CH3)2 H·OH- +Cl R-N+(CH3)2 Cl+OH-弱硷性:R-N+(CH3)2 H·OH- +Cl R-N+(CH3)2 HCl+OH-强硷性#201号国产树脂和国外Dowex1、Dowex2、ZerolitFF等都属于强硷型阴离子交换剂。
(二)种类1.纤维素离子交换剂:阳离子交换剂有羟甲基纤维素(CM-纤维素),阴离子交换剂有氯代三乙胺纤维纱(DESE-纤维素)。
2.交联葡聚糖离子交换剂:是将交换基因连接到交联葡聚糖上制成的一类交换剂,因而既具有离子交换作用,又具有分子筛效应,是一类广泛应用的色谱分离物质。
常用的Sephadex 离子交换剂也有阴离子和阳离子交换剂两类。
阴离子交换剂有DEAE-Sephadex A-25,A-50和QAE- Sephadex A25 ,A50 ;阳离子交换剂有CM-Sephaetx C-50,C-50和Sephadex C-25,C-50。
阴离子交换剂用英文字头A,阳离子交换剂的英文字头是C。
英文字后面的数字表示Sephadex型号。
3.琼脂糖离子离交换剂:是将DESE-或CM-基团附着在Sepharose CL-6B 上形成,DEAE-Sephades(阴离子)和CM-Sepharose(阳离子),具有硬度大,性质稳定,凝胶后的流速好,分离能力强等优点。
交换剂的处理,再生与转型新出厂的树脂是干树脂,要用水浸透使之充分吸水膨胀。
因其含有政绩一些杂质,所要要用水、酸、硷洗涤。
一般手续如下:1.新出厂干树脂用水浸泡2 小时后减抽压去气泡,倾去水,再用大量无离子水洗至澄清,去水2.加4倍量0.1-2N HCl搅抖4小时,除去酸液,水洗到中性3.再加4倍量0.1-2N NaOH搅抖4小时,除硷液,水洗到中性备用。
4.将树脂带上所希望的某种离子的操作称为转型。
如希望阳树脂带Na+,则用4倍量NaOH搅拌浸泡2小时以上;如希望树脂带H+,可用HCl处理。
阴树脂转型也同样,若希望带Cl-则用HCl,希望带OH-则用NaOH。
再生:用过的树脂使其恢复原状的方法称为再生。
并非每次再一都用酸、硷液洗涤,往往只要转型处理就行了。
树脂保存方法使用过的树脂用大量的去离子水洗至中性后,放置于20%酒精中,4℃冰箱保存。
再次使用时,需先用大量的去离子水洗至中性,再用0.5N 氢氧化钠和0.5N 氯化钠处理0.5小时,洗至中性即可使用。
柱上操作⑴交换剂装柱最简单的交换层析柱可用硷式滴定管代替。
处理过的树脂放入烧杯,加少量水边搅拌边倒入保持垂直的层析管中,使树脂缓慢沉降。
交换剂在柱内必须分布均匀。
装柱前应先在柱内保留1/3的缓冲液,并排除柱底部气泡,然后再倾入树脂。
⑵上样:向层析柱内倾入样品液⑶洗脱与收集不同样品选用的洗脱液不同。
原则是用一种比吸着物质更活泼的离子,把吸着物交换出来。
由于被吸着的物质往往不是我们所要求的单一物质,因此除了正确选择洗脱液外还采控制流速和分布收集的方法来获得所需的单一物质。
1.3 试验流程1.3.1 粗酶液的制备将一定量的发酵酶粉溶于醋酸钠或者磷酸盐缓冲液中,4℃浸泡12h,1×104r/min,4℃离心10分钟,弃去沉淀,收集上清夜进行分离。
(备注:这一步骤已完成)1.3.2 色谱柱的准备(装柱)按标准方法将离子交换树脂装填于色谱柱内,用平衡缓冲液平衡。
1.3.3 α-淀粉酶的分离将一定量的样品溶液缓慢上入色谱柱内,先后用平衡缓冲液和洗脱缓冲液洗涤,每隔2分钟收集一次样品,每个样品检测280nm的吸光值,绘出色谱曲线。
将每个峰的样品集中起来,以备酶活和蛋白质含量的测定。
(备注:具体操作步骤及上样量以ppt课件为准)试验二、α-淀粉酶的活性测定及比活计算1.1 试剂及设备3,5二硝基水杨酸试剂(DNS)葡萄糖标准液(10mg/ml)福林试剂淀粉溶液(10mg/ml)磷酸盐缓冲液(pH6.0,0.02M)722 型(或721 型)分光光度计4 000r/min 的离心机分析天平1.2 原理与方法1.2.1 Folin-酚试剂测定蛋白含量Folin-酚试剂法包括两步反应:第一步是在碱性条件下,蛋白质与铜作用生成蛋白质- 铜络合物;第二步是此络合物将磷钼酸-磷钨酸试剂(Folin 试剂)还原,产生深蓝色(磷钼蓝和磷钨蓝混合物),颜色深浅与蛋白质含量成正比。
此法操作简便,灵敏度比双缩脲法高100 倍,定量范围为5~100μg 蛋白质。
Folin 试剂显色反应由酪氨酸、色氨酸和半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物均有干扰作用。
此外,不同蛋白质因酪氨酸、色氨酸含量不同而使显色强度稍有不同。
1.2.2 淀粉酶活性测定淀粉是植物最主要的贮藏多糖,也是人和动物的重要食物和发酵工业的基本原料。
淀粉经淀粉酶作用后生成葡萄糖、麦芽糖等小分子物质而被机体利用。
淀粉酶主要包括α-55淀粉酶和β-淀粉酶两种。
α-淀粉酶可随机地作用于淀粉中的α-1,4-糖苷键,生成葡萄糖、麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉的粘度降低,因此又称为液化酶。
β-淀粉酶可从淀粉的非还原性末端进行水解,每次水解下一分子麦芽糖,又被称为糖化酶。
淀粉酶催化产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸,其反应式如下:淀粉酶活力的大小与产生的还原糖的量成正比。
用标准浓度的麦芽糖溶液制作标准曲线,用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位重量样品在一定时间内生成的麦芽糖的量表示酶活力。
淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。
两种淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6 以下迅速钝化。
β-淀粉酶不耐热,在70℃15min 钝化。
根据它们的这种特性,在测定活力时钝化其中之一,就可测出另一种淀粉酶的活力。
本实验采用加热的方法钝化β-淀粉酶,测出α-淀粉酶的活力。
在非钝化条件下测定淀粉酶总活力(α-淀粉酶活力+β-淀粉酶活力),再减去α-淀粉酶的活力,就可求出β-淀粉酶的活力。
1.3 试验部分1.3.1 Folin-酚试剂测定蛋白含量(按ppt课件为准,以下仅供参考)1.3.1.1 标准曲线的制作(1)配制标准牛血清白蛋白溶液:在分析天平上精确称取0.0250g 结晶牛血清白蛋白,倒入小烧杯内,用少量蒸馏水溶解后转入100mL 容量瓶中,烧杯内的残液用少量蒸馏水冲洗数次,冲洗液一并倒入容量瓶中,用蒸馏水定容至100mL,则配成250μg/mL 的牛血清白蛋白溶液。