数值分析资料报告笔记期末复习
- 格式:doc
- 大小:917.45 KB
- 文档页数:25
数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。
数值逼近的主要内容包括多项式逼近、插值和最小二乘等。
1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。
通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。
其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。
多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。
2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。
牛顿插值则利用差商的概念来构造插值多项式。
插值方法在数值微分和数值积分中有广泛的应用。
3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。
通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。
最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。
第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。
数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。
1. 迭代法迭代法是求解非线性方程组的常用方法之一。
通过不断迭代逼近方程的根,可以得到方程组的数值解。
常用的迭代法有牛顿迭代法和弦截法。
迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。
2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。
常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。
常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。
3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。
Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。
数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。
它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。
在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。
本文将对数值分析期末知识点进行总结,以便帮助大家复习。
二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。
插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。
常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。
2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。
微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。
数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。
3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。
原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。
数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。
4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。
在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。
数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。
三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。
这些误差可能来自于测量、舍入、截断等各种原因。
因此,误差分析是数值分析中一个非常重要的内容。
《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。
特点:可正可负,带量纲。
(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。
注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。
2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。
数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。
P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。
(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。
迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。
主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。
(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。
第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于 31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))∑==ni i i n x l y x p 0)()(插值基函数(因子)可简洁表示为)()()()()()(0i n i n nij j j i j i x x x x x x x x x l ωω'-=--=∏≠= 其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 00)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----⨯+----⨯+----⨯= 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为)()()(0101x x c x f x p -+=其中],[)()(1001011x x f x x x f x f c =--=⇒ )](,[)()(01001x x x x f x f x p -+=(2) 过点210,,x x x 的二次插值多项式为))(()()(10212x x x x c x p x p --+=其中],,[)()()()(21002010112122x x x f x x x x x f x f x x x f x f c =------=⇒ ))(](,,[)()(1021012x x x x x x x f x p x p --+=))(](,,[)](,[)(102100100x x x x x x x f x x x x f x f --+-+=重点是分段插值: 例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1)(2)解(2):方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅= 可得: )21()(23-=x x x L 方法二. 令)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: ii ii i i i i h x x x x x f x x x x x f x f --+--⋅=++++1111)()()(h ihx h i h h i x h i -++-+-⋅=22))1(()1()( 100)1(10)12(+-+=i i x i 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*⇒ ∑===-ni j i i n j x x a f 0*)1(0,0),(即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中⎰⎰⎰⋅==⋅=+b ab abai iji jijidx x x f x f dx x dx x x x x)(),( ,),(称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。
(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。
数值分析期末总结论文一、课程概述数值分析是计算数学的重要分支,主要研究数值计算方法和算法,并通过计算机实现,解决实际问题中数字计算的相关难题。
本学期的数值分析课程主要介绍了数值计算中的数值误差、插值与逼近、数值积分与数值微分以及常微分方程的数值解法等内容。
二、知识点总结1. 数值误差在计算过程中,由于计算机系统的有限位数表示和处理能力的限制,导致数值计算结果与精确解之间存在误差。
数值误差主要包括截断误差和舍入误差。
我们学习了数值计算中的绝对误差和相对误差,并介绍了浮点数表示法和浮点数运算的原理。
另外,对于一些特殊函数,如指数函数和三角函数,我们还学习了它们的数值计算方法。
2. 插值与逼近在实际问题中,往往需要根据已知数据点,通过插值或逼近方法得到未知点的近似值。
我们学习了插值多项式的构造方法,包括拉格朗日插值和牛顿插值。
在逼近方法中,我们学习了最小二乘逼近原理,介绍了线性最小二乘逼近和非线性最小二乘逼近的相关概念和方法。
3. 数值积分与数值微分数值积分是计算定积分的近似值的方法。
我们学习了数值积分的基本概念和方法,包括梯形法则、辛普森法则和高斯积分法。
与数值积分相对应的是数值微分,它是计算导数的近似值的方法。
我们学习了差商公式和微分方程初值问题的数值解法。
4. 常微分方程的数值解法常微分方程是自然科学和工程技术领域中常见的数学模型。
我们学习了常微分方程数值解法的基本思想和方法,包括欧拉法、改进欧拉法、四阶龙格-库塔法等。
三、学习收获1. 理论知识:通过本学期的学习,我对数值分析领域的基本概念和方法有了更深入的理解。
掌握了数值计算中的数值误差分析方法,为后续计算准确性估计提供了基础。
了解并熟悉了插值与逼近方法,为解决实际问题提供了有效途径。
学习了数值积分与数值微分的基本原理和计算方法,提高了数值计算的准确性和效率。
初步了解了常微分方程的数值解法,为解决实际科学问题提供帮助。
2. 实践能力:通过编程实践,我得到了锻炼和提高。
第一章引论1、数值分析研究对象:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
2、数值分析特点:①面向计算机,要根据计算机特点设计切实可行的有效算法②有可靠的理论分析,能任意逼近并达到精度要求,对近似计算要保证收敛性和数值稳定性③要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存贮量,这也是建立算法要研究的问题。
④要有数值试验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。
3、数值分析实质:是以数学问题为研究对象,不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及理论。
4、用计算机解决科学计算问题通常经历以下过程实际问题--数学模型(应用数学)--数值计算方法--程序设计--上机计算结果(计算数学)5、误差来源及分类1.模型误差——从实际问题中抽象出数学模型2.观测误差——通过测量得到模型中参数的值(通常根据测量工具的精度,可以知道这类误差的上限值。
)要用数值计算方法求它的近似解,由此产生的误差称为(截断误差)或(方法误差)原始数据的输入及浮点数运算过程中都有可能产生误差,这样产生的误差称为舍入误差6、五个关于误差的概念5.有效数字(1)定义:若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。
注意:近似值后面的零不能随便省去!2≤⨯2≤⨯12≤⨯(3)性质:(1)有效数字越多,则绝对误差越小 (2)有效数字越多,则相对误差越小有效数字的位数可刻画近似数的精确度! 6、一元函数的误差估计问题:设y =f (x ),x 的近似值为x *,则y 的近似值 y *的误差如何计算?(*)(*)(*)(*)e y dy f x dx f x e x ''≈=≈ (*)(*)(*)e y f x e x '≈ *(*)(*)(*)(*)r r x e y f x e x f x '≈故相应的误差限计算如下(*)(*)(*)y f x x εε'≈ *(*)(*)(*)(*)r r x y f x x f x εε'≈ 7、二元函数的误差估计问题:设y=f(x1, x2), x1, x2的近似值为x1*, x2* ,则y 的误差如何计算?**121212(*)*(,)(,)(*,*)e y y y f x x f x x df x x =-=-≈12121212(*,*)(*,*)(*)(*)f x x f x x e x e x x x ∂∂=+∂∂(*)(*)*(*)(*)(*)(*)(*)r r dy f x e x x e y f x e x y f x f x ''≈≈=1212121212121212(,)(,)(*,*)(*,*)(*)()()(*)(*)f x x f x x f x x f x x e y e x e x e x e x x x x x ∂∂∂∂=+≤⋅+⋅∂∂∂∂故绝对误差限为12121212(*,*)(*,*)(*)(*)(*)f x x f x x y x x x x εεε∂∂=+∂∂8、多元函数的误差估计121211121(*,*,,*)(*,*,,*)(*)*(*)(*)(*,*,,*)(*)n n n nnn i i if x x x f x x x e y y y e x e x x x f x x x e x x =∂∂=-=++∂∂∂=∂∑9、加减乘除运算的误差估计10、算法的数值稳定性概念及运算(1)定义:初始数据的误差或计算中的舍入误差在计算过程中的传播,因算法不同而异。
一个算法,如果计算结果受误差的影响小,就称该算法具有较好的数值稳定性 11、设计算法的五个原则 (一) 要避免相近两数相减;=()ln ln ln1;εxεxx⎛⎫+-=+⎪⎝⎭sin()sin2cos()sin22x x xεεε+-=+2311126xe x x x-=+++(二) 要防止大数“吃掉”小数,注意保护重要数据91()102b sign bxa--==91229110110c cx x xa a x⋅=⇒===⋅求和时从小到大相加,可使和的误差减小。
若干数相加,采用绝对值较小者先加的算法,结果的相对误差限较小000054321100.4100.3100.41054322y=⨯+⨯+⨯+⨯=(三) 注意简化计算步骤,减少运算次数,避免误差积累(九韶)4324()0.06250.425 1.215 1.912 2.1296(((0.06250.425) 1.125) 1.912) 2.1296P x x x x xx x x x=++++=++++(四) 要避免绝对值小的数作除数21121222()()()x x x xxx xεεε+=1cos sinsin1cosx xx x-=+x=(五) 设法控制误差的传播许多算法具有递推性。
递推法运算过程较规律,但多次递推必然导致误差的积累。
1112,3,,91/n n E nE n E e -=-⎧=⎨=⎩ 111()()(1)!()n n n e E ne E n e E --=-=-11n n E E n --=11|()||()|n n e E e E n -= 11|()||()|!n e E e E n =第二章 逼近问题1,函数逼近1、插值问题: 求一条曲线严格通过数据点2、曲线拟合问题: 求一条曲线在一定意义下靠近数据点 2,插值问题1、定义:求一个简单函数φ(x )作为f (x )我们称这样的问题为插值问题; 并称φ(x )为 f (x )的插值函数; f (x )为被插函数,x 0 , x 1, x 2, …, x n 是插值节(基)点;(),0,1,,i i x y i n ϕ==是插值原则.3,插值多项式1、定义:求一个次数不超过n(条件)(),0,1,,n i i P x y i n ==称Pn (x )为 f (x )的n 次插值多项式2、定理:在n+1个互异节点处满足插值原则且次数不超过n 的多项式Pn(x)存在并且唯一。
4,插值问题011)()()()i i n x x x x x x -+---对称性2.高阶差商可由低阶差商反复作一阶差商得=以及所用基点的最小(1)!n ω+埃尔米特差值插值条件中除函数值插值条件外,还有导数值插值条件,即已知:2n+2个条件求:一个次数不超过2n+1的多项式H2n+1(x)解法1:基函数法解法2:承袭法分段低次插值原因:当插值基点无限加密时,Pn(x)也只能在很小围收敛,这一现象称为龙格(Runge)现象,它表明通过增加基点来提高逼近程度是不宜的。
定义:设在[a,b]上给出插值条件:求一个折线插值函数Ih(x)满足xi x0x1…xnf(xi) f0f1…fn1°Ih(x)是[a,b]上的连续函数2°Ih(xk)=fk,k = 0,1,…,n3°Ih(x)在每个小区间[xk,xk+1]上是线性函数则称Ih(x)为分段线性插值函数数学表达:1111k kh k kk k k kx x x xI f fx x x x++++--=+--1()k kx x x+≤≤性质:1°分段线性插值多项式是分段函数;2°可以预见,但n充分大时,Ih(x)能很好逼近f(x)。
3°Ih(x)有一个缺点:在插值点处有尖点,即一阶导数不连续,不够光滑。
解决办法:三次埃尔米特插值三次样条插值两种构造方法5,最小二乘法1、定义:已知:一组实验数据(x i,y i)(i=0,1,…,m),且观测数据有误差求:自变量x与因变量y之间的函数关系y=F(x) ,不要求y=F(x)经过所有点,而只要求在给定点上误差()(0,1,...,)i i iF x y i mδ=-=按某种标准最小。
2、度量标准:(1)使残差的最大绝对值为最小 max max ()mini i i iie y F x =-=(2)使残差的绝对值之和为最小 min i ie =∑(3)2min i ie =∑3已知:一组数据(x i ,y i )(i = 0,1,…,m )求:在次数不超过n 的多项式中找一个函数()y F x *=,使误差平方和最小,即22()0[()]min[()]mmi i iiF x n i i Fx y F x y *==-=-∑∑是次多项式这里:01()...()nn F x a a x a xn m =+++<解:32010(())(,)i i i F x y a a ϕ=-=∑ 故:010011(,)0(,)0a a a a a a ϕϕ∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩ 解得:01,a a4、最小二乘法—非多项式拟合—参数线性①已知:一组数据(x i ,y i )(i = 0,1,…,m )求:在函数类01{(),(),...,()}n span x x x φφφφ=中找一个函数()y S x *= ,使误差平方和最小,即22()0[()]min [()]mmi i i i S x i i S x y S x y φ*∈==-=-∑∑这里:0011()()()...()()n n S x a x a x a x n m φφφ=+++<②已知:一组数据(x i ,y i ),且每个点对应权因子w i >0, (i =1,2,…,m ). 求:在函数类01{(),(),...,()}n span x x x φφφφ=中找一个函数()y S x *= ,使误差平方和最小,即22()0[()]min [()]mmi i i i i i S x i i w S x y w S x y φ*∈==-=-∑∑这里:0011()()()...()()n n S x a x a x a x n m φφφ=+++<最小二乘法—非多项式拟合—参数非线性第三章 定积分1,求解定积分问题方法:(求曲边梯形面积) 旧:(1)牛顿—莱布尼兹公式()()()baf x dx F b F a =-⎰【需要寻求原函数的困难】【已知点离散】新:(2)机械求积公式()()nbk k ak f x dx A f x =≈∑⎰【多项式机械求积公式】***【解决原函数的困难】()()()2ba a bf x dx b a f +≈-⎰【中矩形公式】***【解决原函数的困难】 ()[()()]2ba b af x dx f b f a -≈+⎰【梯形公式】***【解决原函数的困难】 0()()()()nbbbn k k aaak f x dx L x dx f x l x dx =≈=∑⎰⎰⎰【插值型求积公式】***【解决离散问题】2,代数精度 (1)目的:数值求积方法是近似方法,为了保证精度,我们自然希望公式能对“尽可能多”的函数准确成立,这就提出了所谓代数精度的概念。