控制工程基础课后习题答案
- 格式:doc
- 大小:6.36 MB
- 文档页数:62
控制工程基础课后答案第一题题目:什么是控制工程?它的主要任务是什么?答案:控制工程是一门工程技术学科,它以数学、物理和工程技术为基础,研究如何通过设计、分析和实现控制系统来实现对动态系统的控制。
控制工程的主要任务是利用反馈原理,通过感知系统输出信号与期望信号之间的差异并使用控制器进行调整,从而使系统达到预期的目标和性能指标。
第二题题目:什么是开环控制系统和闭环控制系统?它们有什么区别?答案:开环控制系统是一种基本控制系统结构,它将输入直接转换为输出,没有考虑实际输出与期望输出之间的差异。
闭环控制系统是在开环控制系统基础上增加了反馈回路,实时监测系统输出,并将实际输出与期望输出进行比较,以校正错误并调整控制器的输出信号。
区别在于开环控制系统没有反馈回路,因此无法纠正系统误差,而闭环控制系统利用反馈回路实现系统的自动校正。
闭环控制系统具有更好的鲁棒性和稳定性,可以使系统在存在不确定性和干扰的情况下仍能达到预期的控制目标。
第三题题目:什么是传递函数?如何将动态系统表示为传递函数?答案:传递函数是用于描述线性时不变系统的数学模型。
它是输出与输入之间关系的比值函数,衡量了系统对输入信号的响应程度。
传递函数可以用于分析和设计控制系统。
将动态系统表示为传递函数需要进行系统的数学建模。
通常,通过对系统的微分方程进行拉普拉斯变换,可以得到系统的传递函数。
拉普拉斯变换将微分方程转换为一个以变量s为复数的函数的代数表达式,其中s表示频域复平面上的复变量。
第四题题目:什么是反馈控制?它在控制系统中起到什么作用?答案:反馈控制是一种控制技术,通过测量系统输出并将其与期望输出进行比较,根据差异调整控制器的输出信号。
反馈控制可以使系统对不确定性和干扰具有鲁棒性,并实现系统的自动校正,使系统能够快速、准确地响应外部变化。
在控制系统中,反馈控制起到了校正系统误差的作用。
通过与期望输出进行比较,反馈控制可以检测到系统偏差,并通过调整控制器的输出信号来纠正这些偏差。
控制工程基础习题解答第一章1-5.图1-10为张力控制系统。
当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。
画出该控制系统的框图。
由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。
当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。
根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。
框图如图所示。
1-8.图1-13为自动防空火力随动控制系统示意图及原理图。
试说明该控制系统的作用情况。
题1-5 框图电动机给定值角位移误差张力-转速位移张紧轮滚轮输送带转速测量轮测量元件角位移角位移(电压等)放大电压测量 元件>电动机角位移给定值电动机图1-10 题1-5图该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。
跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。
瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。
控制工程基础习题解答第二章2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。
(3). ()t et f t10cos 5.0-=解:()[][]()1005.05.010cos 25.0+++==-s s t e L t f L t(5). ()⎪⎭⎫⎝⎛+=35sin πt t f 图1-13 题1-8图敏感 元件定位伺服机构 (方位和仰角)计算机指挥仪目标 方向跟踪环路跟踪 误差瞄准环路火炮方向火炮瞄准命令--视线瞄准 误差伺服机构(控制绕垂直轴转动)伺服机构(控制仰角)视线敏感元件计算机指挥仪解:()[]()252355cos 235sin 2135sin 2++=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=s s t t L t L t f L π2-6.试求下列函数的拉氏反变换。
第一章习题及答案例1-1根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b与c,d用线连接成负反馈状态;(2) 画出系统方框图。
解(1)负反馈连接方式为:db↔;a↔,c(2)系统方框图如图解1-1 所示。
例1-2题1-2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图仓库大门自动开闭控制系统解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
例1-3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
控制工程基础第三版课后答案第一章简介1.1 控制工程概述控制工程是通过对物理过程或系统进行测量和调整,以实现期望的状态或行为。
它涉及到多个学科,包括数学、物理学、计算机科学等。
控制工程的目标是通过设计和实现反馈系统,使物理过程或系统达到期望的状态或行为。
1.2 控制系统的基本概念控制系统由输入、处理和输出三个基本要素组成。
输入是系统接收的信息或指令,处理是对输入信息进行处理和计算,输出是系统对处理结果产生的响应。
控制系统还包括传感器、执行器和控制器等组件。
1.3 控制系统的分类根据控制系统的特性和实现方式,控制系统可分为开环控制系统和闭环控制系统。
开环控制系统的输出不受系统状态的影响,闭环控制系统则通过测量系统状态并与期望状态进行比较,控制系统的输入来调整系统的行为。
第二章数学基础2.1 线性代数线性代数是控制工程的基础,它涉及到向量、矩阵、线性方程组等概念和运算。
控制系统的建模和分析中经常使用线性代数的方法进行求解和分析。
2.2 微积分微积分是控制工程的另一个基础,它涉及到函数、极限、导数和积分等概念和运算。
控制系统的建模和分析中经常使用微积分的方法进行求解和分析。
2.3 概率统计概率统计是控制工程中用来描述不确定性和随机性的工具。
控制系统的建模和分析中经常使用概率统计的方法进行不确定性的建模和分析。
第三章控制系统的数学表示3.1 传递函数表示法传递函数是描述控制系统输入和输出关系的一种表示方法。
传递函数可以通过对系统进行建模和实验来获得。
3.2 状态空间表示法状态空间表示是描述控制系统状态和动力学行为的一种表示方法。
状态空间表示可以通过系统的状态方程和输出方程来获得。
第四章控制系统的分析方法4.1 频域分析频域分析是通过对控制系统的输入和输出信号进行频率分析来获得系统的频率响应和稳定性等性能指标。
4.2 时域分析时域分析是通过对控制系统的输入和输出信号进行时域分析来获得系统的时域响应和稳定性等性能指标。
二到四章答案2-1试建立题2-1图所示各系统的微分方程[其中外力的),位移x(f)和电压为输入量;位移y⑺和电压顽)为输出量;k(弹性系数),"(阻尼系数),R(电阻),C(电容)和m(质量)均为常数]。
////////m/(O M(a)题2-1图系统原理图解:2-l(a)取质量m为受力对象,如图,取向下为力和位移的正方向。
作用在质量块m上的力有外力f(t),重力mg,这两个力向下,为正。
有弹簧恢复力4X0+Jo]和阻尼力〃也也,这两个力向上,为负。
其中,光为at扣)=0、物体处于静平衡位置时弹簧的预伸长量。
A A dtmv v7(0哗根据牛顿第二定理£F=ma,有f(t)+mg一灯yQ)+为]—#«')=/花』,?)其中:mg=ky0代入上式得f(t)-ky(f)-r顿')=m"半)at dt整理成标准式:d2y(t)dyit)...…..m-—以—ky(t)=/(0dt dt或也可写成:H顷)~dT m at m m它是一个二阶线性定常微分方程。
2-l(b)如图,取A点为辅助质点,设该点位移为x A(t),方向如图。
再取B点也为辅助质点,则该点位移即为输出量X0,方向如图A 点力平衡方程:4M 。
一%“)] = //[竺史一¥]at atB 点力平衡方程:k 2y(t}= 〃[也也—也£1]dt dt由①和②:^[%(z)-x A (O] = k 2y(t}得:xA (t) = x(t)-^y(t)二边微分,办a ") _办⑺ *2 ©(,)dt将③代入②:①dt 、 dt整理成标准式:k 、+ k 2 dy(t) * k 2 y(Q _ dx(t)k 、 dt 〃 dt或也可写成:dy(t)工 k x k 2+ ,,仰)=灯如)dt /u(k\ + 幻) k x +k 2 dt它是一个一阶线性定常微分方程。
控制工程基础习题解答第一章1-1.控制论的中心思想是什么?简述其发展过程。
维纳(N.Wiener)在“控制论——关于在动物和机器中控制和通讯的科学”中提出了控制论所具有的信息、反馈与控制三个要素,这就是控制论的中心思想控制论的发展经历了控制论的起步、经典控制理论发展和成熟、现代控制理论的发展、大系统理论和智能控制理论的发展等阶段。
具体表现为:1.1765年瓦特(Jams Watt)发明了蒸汽机,1788年发明了蒸汽机离心式飞球调速器,2.1868年麦克斯威尔(J.C.Maxwell)发表“论调速器”文章;从理论上加以提高,并首先提出了“反馈控制”的概念;3.劳斯(E.J.Routh)等提出了有关线性系统稳定性的判据4.20世纪30年代奈奎斯特(H.Nyquist)的稳定性判据,伯德(H.W.Bode)的负反馈放大器;5.二次世界大仗期间不断改进的飞机、火炮及雷达等,工业生产自动化程度也得到提高;6.1948年维纳(N.Wiener)通过研究火炮自动控制系统,发表了著名的“控制论—关于在动物和机器中控制和通讯的科学”一文,奠定了控制论这门学科的基础,提出了控制论所具有的信息、反馈与控制三要素;7.1954年钱学森发表“工程控制论”8.50年代末开始由于技术的进步和发展需要,并随着计算机技术的快速发展,使得现代控制理论发展很快,并逐渐形成了一些体系和新的分支。
9.当前现代控制理论正向智能化方向发展,同时正向非工程领域扩展(如生物系统、医学系统、经济系统、社会系统等),1-2.试述控制系统的工作原理。
控制系统就是使系统中的某些参量能按照要求保持恒定或按一定规律变化。
它可分为人工控制系统(一般为开环控制系统)和自动控制系统(反馈控制系统)。
人工控制系统就是由人来对参量进行控制和调整的系统。
自动控制系统就是能根据要求自动控制和调整参量的系统,系统在受到干扰时还能自动保持正确的输出。
它们的基本工作原理就是测量输出、求出偏差、再用偏差去纠正偏差。
第一章习题解笞U]>U2 U\ U2第二章习题解答2-1a) b)d)f)L^f| 忙d)f\ — fl =^2X O严(f)=$(M+E ⑴虑 如(f) =iQ)RRC^-u o (t)^u o (t) = RC^-u^t) at at fs (r)=B 低[xi (f) -曲(幼 j/B (t)=fK (t) = KXo(t) B dB d 『八10602斤不%()+%©二斤击可()占dR^c —% (0+ (*i + 心)% ⑴=邛应 ~u i (0+ R 2u t (0 atati =i R +,C u o =IR?:R R 严冃3宙 % =gR\ +u oa)=K ](旳一兀)+」:dx o ](J?l + J?2)C —«c (!)+ %("■ R Q C — Wj(O + tti (Oat at(K[ + K2)B — x o (t)+ K\K2X o (t)= K\R 〒曲(f)+ 琦心再(f)dt at10602a) b) c) Q © f)U Q —1/?2 + — j icit— Z/?| + iR-f H —J idte)dxK\% K i (兀 _ %) = K 》(兀)—x)=号二dtoB 2+ (®K° ++ B'B? + 场*3 + 水2〃?)& 2+ (K }B 2+K }B 3 + 心汝 + KM 巴2 + K }K 2X 2 dt3J S + 2用 + 8S-丘($ + 2)($戈+2$十4)广、■炉+ 5,2+9用+7E ($+恥 + 2)乡一rn\fU2K 2rdx { dx 2< dt dt ;/(O™-坷罕~_叭 dtdxj … 一 —- - K?x^ = m dtdx l dx 2dt dt护d 2x 2 2~d^ k,用典2+ (的+创坷+用2创+加2*3);?7皿乔对)13173 G($)= --------------- —(£+。