第七章-无机材料的介电性能
- 格式:ppt
- 大小:2.27 MB
- 文档页数:154
第一章无机材料的受力形变1 简述正应力与剪切应力的定义2 各向异性虎克定律的物理意义3 影响弹性模量的因素有哪些?4 试以两相串并联为模型推导复相材料弹性模量的上限与下限值。
5 什么是应力松弛与应变松弛?6 应力松弛时间与应变松弛时间的物理意义是什么?7 产生晶面滑移的条件是什么?并简述其原因。
8 什么是滑移系统?并举例说明。
9 比较金属与非金属晶体滑移的难易程度。
10 晶体塑性形变的机理是什么?11 试从晶体的势能曲线分析在外力作用下塑性形变的位错运动理论。
12 影响晶体应变速率的因素有哪些?13 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么?14 影响塑性形变的因素有哪些?并对其进行说明。
15 为什么常温下大多数陶瓷材料不能产生塑性变形、而呈现脆性断裂?16 高温蠕变的机理有哪些?17 影响蠕变的因素有哪些?为什么?18 粘滞流动的模型有几种?19 影响粘度的因素有哪些?第二章无机材料的脆性断裂与强度1 试比较材料的理论强度、从应力集中观点出发和能量观点出发的微裂纹强度。
2 断裂能包括哪些内容?3 举例说明裂纹的形成?4 位错运动对材料有哪两方面的作用?5 影响强度的因素有哪些?6 Griffith关于裂纹扩展的能量判据是什么?7 试比较应力与应力强度因子。
8 有一构件,实际使用应力为1.30GPa,有下列两种钢供选:甲钢:sf =1.95GPa, K1c =45Mpa·m 1\2乙钢:sf =1.56GPa, K1c =75Mpa·m 1\2试根据经典强度理论与断裂强度理论进行选择,并对结果进行说明。
9 结构不连续区域有哪些特点?10 什么是亚临界裂纹扩展?其机理有哪几种?11 介质的作用(应力腐蚀)引起裂纹的扩展、塑性效应引起裂纹的扩展、扩散过程、热激活键撕裂作用引起裂纹扩展。
12 什么是裂纹的快速扩展?13 影响断裂韧性的因素有哪些?14 材料的脆性有哪些特点?通过哪些数据可以判断材料的脆性?15 克服材料脆性和改善其强度的关键是什么?16 克服材料的脆性途径有哪些?17 影响氧化锆相变的因素有哪些?18 氧化锆颗粒粒度大小及分布对增韧材料有哪些影响?19. 比较测定静抗折强度的三点弯曲法和四点弯曲法,哪一种方法更可靠,为什么?20. 有下列一组抗折强度测定结果,计算它的weibull模数,并对该测定数据的精度做出评价。
无机材料物理性能重点1.铁电体与铁磁体的定义和异同答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。
铁磁体是指具有铁磁性的物质。
2.本征(固有离子)电导与杂质离子电导答:本征电导是源于晶体点阵的基本离子的运动。
这种离子自身随着热振动离开晶体形成热缺陷。
这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。
显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。
杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。
相同点:二者的离子迁移率和电导率表达形式相同不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量b.由于杂质载流子的分解成不须要提供更多额外的活化能,即为他的活化能比在正常晶格上的活化能必须高得多,因此其系数b比本征电导高一些c.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高3.离子电导和电子电导答:携带电荷进行定向输送形成电流的带点质点称为载流子。
载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导不同点:a.离子电导就是载流子接力赛式移动,电子电导就是载流子通往式移动b.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏c.离子电导产生很困难,但若存有冷瑕疵则可以难很多;通常材料不能产生电子电导,通常通过参杂形式构成能量上的自由电子d.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加4.铁电体与反华铁电体答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料不同点:1.在反华铁电体的晶格中,离子存有自发性极化,以偶极子形式存有,偶极子雄雀的按反华平行方向排序,这两部分偶极子的偶极矩大小成正比,方向恰好相反;而在铁电体的晶格中,偶极子的极性就是相同的,为平行排序2.反铁电体具有双电滞回线,铁电体具有电滞回线3.当外电场降到零时,反铁电体并无余下极化,铁电体存有余下计5.声频支与光频支的异同请问:相同点:声频Saharanpur光频支都就是由于一维双原子图形的振动引发的,且都就是单一制的格波,频率都与元胞振动频率相同不同点:1.声频支是相邻原子具有相同的振动方向,表示了元胞的质量中心的振动;光频支是相邻两种原子振动方向相反,表示了元胞的质量中心维持不同,因而引起了一个范围很小,频率很高的振动2.声频九支低温下的格波,频率大影响范围广,就是同一类原子相同晶胞之间相互振动引发的;光频九支晶体熔融温度下的格波,频率低,影响范围大,就是相同类原子同一晶胞之间相互振动引发的。
介电性能由于无机介质材料在电场的作用下,带电质点发生短距离的位移,而不是传导电流,因此在电场中表现出特殊的性状,大量地用于电绝缘体和电容元件。
在这些应用中,涉及到介电常数、介电损耗因子和介电强度等。
6.1介质的电极化通过定义电介极化强度,建立起电介质内部电介极化强度与宏观电场之间的关系,电介极化强度与作用在晶体点阵中一个原子位置上的局部电场之间的关系,推导出介电常数与质点极化率的关系。
分析讨论各种极化的微观机制及影响极化率的因素。
6.1.1 介质的极化强度6.1.1.1电偶极矩(1)基本概念一个正点电荷q 和另一个符号相反数量相等的负点电荷-q ,由于某种原因而坚固地互相束缚于不等于零的距离上,形成一个电偶极子。
若从负电荷到正电荷作一矢量l ,则这个粒子具有的电偶极矩可表示为矢量p=ql (6.1) 电偶极矩的单位为C ⋅m (库仑⋅米)(2)外电场对点偶极子的作用在外电场E 的作用下一个点电偶极子p 的位能为U=-p ⋅E (6.2)上式表明当电偶极矩的取向与外电场同向时,能量为最低,而反向时能量为最高。
点电偶极子所受外电场的作用力f 和作用力矩M 分别为⋅ f=p ·∇E (6.3)M=p ⨯E (6.4)因此力使电偶极矩向电力线密集处平移,而力矩则使电偶极矩朝外电场方向旋转。
(3)电偶极子周围的电场距离点电偶极子p 的r 处的电场为543r r o πεpr r p 2)(E(r)-⋅= (6.5)6.1.1.2极化强度(1)定义称单位体积的电偶极矩为这个小体积中物质的极化强度。
极化强度是一个具有平均意义的宏观物理量,其单位为C/m 2。
(2)介质的极化强度与宏观可测量之间的关系极化强度为P=(ε-ε0)E=ε0 (εr -1)E (6.6) 把束缚电荷和自由电荷的比例定义为电介质的相对电极化率χe有 P= ε0χe E (6.7) 式(6.10)为作用物理量E 与感应物理量P 间的关系.还可以得出电介质的相对介电常数与相对电极化率χe 有以下关系εr =E PE 00εε+=1+χe (6.8)6.1.2宏观电场与局部电场 在外电场的作用下电介质发生极化,整个介质出现宏观电场,但作用在每个分子或原子上使之极化的局部电场(也叫有效场)并不包括该分子或原子自身极化所产生的电场,因而局部电场不等于宏观电场。
介电性能求助编辑介电性能是指在电场作用下,表现出对静电能的储蓄和损耗的性质,通常用介电常数和介质损耗来表示.材料应用高频技术时,如实木复合地板采用高频热压时介电性能是非常重要的性质。
介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率。
目录编辑本段简介无机介质材料表现出来的介电性能的应用中,还涉及到介电常数、介电损耗因子和介电强度等。
介电常数又叫介质常数、介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。
编辑本段损耗因子仅与介质有关,其大小可作为绝缘材料的判据。
介质由介电状态变为导电状态的临界电场强度称为介电强度。
常见溶剂的介电常数:H2O (水) 78.5HCOOH (甲酸) 58.5CH3COOH(乙酸)6.15CH3COOC2H5(乙酸乙酯)6.02HCON(CH3)2 (N,N-二甲基甲酰胺)36.7CH3OH (甲醇) 32.7C2H5OH (乙醇) 24.5CH3CH2CH2-OH(正丙醇)20.1CH3CH2CH2CH2-OH(正丁醇)17.8n-C6H13OH (正己醇)13.3CH3COCH3 (丙酮) 20.7C6H6 (苯) 2.28CCl4 (四氯化碳) 2.24n-C6H14 (正己烷)1.88CH3SOCH3(二甲基亚砜,DMSO)47.2编辑本段特性是指物质分子中的束缚电荷(只能在分子线度范围内运动的电荷)对外加电场的响应特性,它主要由相对介电常数εr'、相对介质损耗因数εr〃、介质损耗角正切tanδ和介质等效阻抗等参数来表征。
油和水(纯净的水)都属绝缘体。
但纯净的水的介电性能远远高于油。
拿相对介电常数来讲,水的介电常数是81,而变压器油的在3-5之间。
高聚物的介电性能高聚物的介电性能是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质,通常用介电常数和介电损耗来表示。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
实验一 测定无机非金属材料的介电常数一、实验目的1、掌握测定无机非金属材料介电常数的操作过程二、实验原理相对介电常数通常是通过测量试样与电极组成的电容、试样厚度和电极尺寸求得。
相对介电常数(εr )测试可用三电极或二电极系统。
对于二电极试样,由于方形电容C x 的计算公式是:dYX C ⋅⋅⋅=0r x εε (1)因此,待测材料的介电常数可以表示为:YX dC ⋅⋅⋅=0x r εε (2)式2中C x 为试样电容(法),X 为电极长度(米),Y 为电极宽度(米),d 为电极板之间的距离(米),ε0=8.854 187 818× 10-12法拉/米(F/m)。
图1 电容法测量材料介电常数示意图测试中,选择电极极为重要。
常用的是接触式电极。
可用粘贴铝箔、烧银、真空镀铝等方法制作电极,但后者不能在高频下使用。
低频测量时,试样与电极应屏蔽。
在高频下可用测微电极以减小引线影响。
在某些特殊场合,可用不接触电极,例如薄膜介电性能测试和频率高于30兆赫时介电性能的测量。
无机材料物理性能课程实验指导书三、实验仪器PGM—2型数字小电容测试仪、玻璃刀、玻璃板、游标卡尺、铝质平板电极、连接导线四、实验步骤1、采取边长为100×100mm的正方型玻璃板,记录电极板的长X、宽Y以及实际玻璃板的厚度d。
2、按照图1连接仪器。
3、开启数字电容仪。
4、松开电极板紧定螺丝,将上电容板台到适当高度,在中间放入一块测量好的玻璃,使上下电容板与玻璃板相接触,然后旋紧固定螺丝。
5、读取电容数字。
6、然后重复4、5步骤,将玻璃板换成2-5块,分别测出其电容值。
7、结束实验,关闭仪器。
实验数据五、思考题1.介电常数与介电材料的厚度有什么样的关系?2.介电现象是如何产生的?实验二 热电效应实验一、实验目的1、了解热电材料的赛贝克(seeback)定律,珀耳帖(Peltier)效应,汤姆孙效应等热电材料的特性。
2、熟练的使用万用表来测量热电效应产生的电势差。
无机材料物理性能课后习题答案The document was prepared on January 2, 2021《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。
则有当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。
1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程:)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
清华大学出版社《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3(E=380GPa)和5%的玻璃相(E=84GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5%的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3GPa 和293.1GPa 。
1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t=0,t=∞和t=τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
第二章脆性断裂和强度2-1求融熔石英的结合强度,设估计的表面能力为1.75J/m 2;Si-O 的平衡原子间距为1.6*10-8cm;弹性模量从60到75Gpaa E th γσ==GPa 64.28~62.2510*6.175.1*10*)75~60(109=- F τ N 60°53° Ф3mm )(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移2-2融熔石英玻璃的性能参数为:E=73Gpa ;γ=1.56J/m 2;理论强度σth=28Gpa 。
无机材料的介电性能及其机制研究介电性能是无机材料研究中一个重要的方面,它涉及到材料在电场作用下的响应和性能表现。
无机材料的介电性能不仅对于电子学器件的设计和制备具有重要意义,还在能量存储、传感器等领域具有广泛的应用。
本文将介绍无机材料的介电性能及其机制研究的相关内容。
一、介电性能的基本概念介电性能是指材料在电场作用下的响应特性,主要包括介电常数、介电损耗和介电强度等指标。
介电常数是材料在电场作用下的极化程度的度量,它反映了材料对电场的响应能力。
介电损耗是指材料在电场作用下发生的能量损耗,它与材料的电导率和介电常数有关。
介电强度是指材料能够承受的最大电场强度,它是材料的耐电击能力的指标。
二、无机材料的介电性能无机材料的介电性能与其结构和组成密切相关。
常见的无机材料如氧化物、氮化物和硅酸盐等具有良好的介电性能。
其中,氧化物材料如氧化铝、氧化锌等具有高介电常数和低介电损耗的特点,适用于电子元件中的绝缘层和电容器等部件。
氮化物材料如氮化硼、氮化铝等具有高介电强度和低介电常数的特点,适用于高压和高频电子器件。
硅酸盐材料如钛酸锶、钛酸钡等具有较高的介电常数和良好的介电强度,适用于微波器件和声表面波器件等。
三、无机材料的介电性能机制研究无机材料的介电性能机制研究是为了揭示材料的电子结构和极化行为,为材料的设计和应用提供理论依据。
目前,研究者们通过实验和理论模拟等手段,对无机材料的介电性能机制进行了深入研究。
首先,实验方法方面,研究者们通过电容法、阻抗谱法和介电松弛法等手段,对材料的介电性能进行表征和分析。
这些实验方法可以测量材料的介电常数、介电损耗和介电强度等参数,从而揭示材料的介电特性和性能。
其次,理论模拟方面,研究者们通过密度泛函理论、分子动力学模拟和量子力学计算等方法,对材料的电子结构和极化行为进行模拟和计算。
这些理论模拟方法可以揭示材料的电子能带结构、电荷分布和极化机制,为解释实验结果和指导材料设计提供理论依据。
/register.php?invitecode=7db8407acaii1hHt名词解释【力学】牛顿流体:受力后极易变形,剪切力跟速度梯度成正比符合牛顿定律的的流体;粘性系数:粘性:液体在流动时,在其分子间产生摩擦的性质,粘性大小用粘度表示,是用来表征液体性质相关的阻力因子;热稳定系数:材料承受温度急剧变化而不致破坏的能力,又称抗热震性;热冲击断裂性:材料发生瞬间断裂,抵抗这类破坏的性能;抗热冲击损伤性:热冲击循环作用下,材料表面开裂、剥落并不断扩展,最终破裂或变质,抵抗这类破坏的性能;静态疲劳(亚临界生长):裂纹在使用应力下,随着时间的推移而缓慢扩展,这种缓慢扩展也称亚临界生长或静态疲劳;动态疲劳:材料在循环应力或渐增应力作用下的延时破坏;Griffith微裂纹理论:实际材料中总存在许多的细小裂纹或缺陷,在外力作用下这些裂纹和缺陷附近产生应力集中现象,当应力达到一定程度时,裂纹就开始扩展而导致断裂,故断裂不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果;【热学】声子:晶格振动能量的量子化单元hw称为声子,h为普朗克常数,w 为晶格振动的角频率,对应每一次晶格热振动,晶体内部产生或吸收一个声子,声子是虚拟粒子,是原子激发的形态之一;格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波;晶格热振动:晶体中原子以平衡位置为中心不停地振动,是产生热容、热膨胀等现象的物理基础;热膨胀系数:物体由于温度改变而有胀缩现象,其变化能力以等压下,单位温度所导致的体积变化来表示;能流密度:在一定空间范围内,单位面积所取得的或单位重量能源所产生的某种能源的能量或功率,是评价能源的主要指标;热导率(热导系数):是指单位温度梯度下,单位时间内通过单位垂直面积的热量,单位是w/m2.k;【电学】电流密度:描述电路中某点电流强弱和流动方向的物理量,矢量,大小等于单位时间内通过垂直于电流方向单位面积的电量,正电荷流动方向为正方向;电导率:介质中该量与电场强度之积等于传导电流密度;即电阻率的倒数,物理意义表示物质导电性能;载流子迁移率:载流子在单位电场作用下的平均漂移速率,即载流子在电场作用下运动速度的快慢量度,运动越快迁移率越大;半导体施主能级:一个能级被电子占用时成中性,不被电子占据时带正电;受主能级:一个能级不被电子占据时成中性,被电子占据时带负电;西贝克效应(温差电动势效应):由于两种不同的电导体或半导体的温度差异而引起两种物质间电压差的热电现象,具体说:半导体材料的两端如果有温度差,则在较高温度区有更多的电子被激发到导带中去,但热电子趋向于扩散到较冷的区域,当这两种效应引起的化学势梯度和电场梯度相等其方向相反时,就达到稳定状态,多数载流子扩散到冷端,产生△V/△T,结果在半导体两端就产生温差电动势;【介介电性质】正温度系数效应PTC:价控型BaTiO3半导体在居里点(正方相↔立方相相变点)附近,电阻率随温度而发生突变的现象,机理是几何半导体陶瓷晶界上具有表面能级,此表面能级可捕获载流子,从而在两边晶粒内产生一层电子损耗层,形成肖特基势垒,该势垒与介电常数有关,当温度高于居里点,介电常数剧减,势垒增加,电阻率增加;压敏效应:a.指对电压变化敏感的非线性电阻效应,即在某一临界电压以下,电阻值非常之高,几乎无电流通过,超过该临界电压,电阻迅速降低,让电流流过。
第七章无机材料的介电性能概述无机材料是一类广泛应用于电子、光学、能源等领域的材料。
介电性能是描述无机材料在电场作用下的响应能力的重要指标,对材料的电学性质和应用具有重要影响。
本章将介绍无机材料的介电性能,包括介电常数、介电损耗、介电饱和极化等内容。
介电常数介电常数是描述无机材料在电场中响应能力的一个重要参数。
它衡量了材料在电场作用下的极化程度,即材料中电荷的重新分布情况。
介电常数通常由介电常数实部和虚部组成,分别表示材料的储存能量和耗散能量。
实部描述了材料对电场的响应程度,虚部表示了能量损耗的程度。
介电常数可以通过实验测量或模拟计算得到。
不同的无机材料具有不同的介电常数,这决定了材料在电子器件和光学器件中的应用。
介电损耗介电损耗是介电材料在电场作用下吸收和耗散能量的过程。
它是材料的一种特性,通常通过介电常数的虚部来描述。
介电损耗会导致能量的转换和散失,影响材料的电学性能和应用效果。
无机材料的介电损耗与多种因素有关,如材料的晶体结构、杂质含量和温度等。
在工程应用中,需要考虑介电损耗对电子器件、光学器件等的影响,以保证材料的性能和稳定性。
介电饱和极化介电饱和极化是指无机材料在高频电场作用下的极化现象。
介电饱和极化与外加电场频率和强度相关。
当电场频率较低或电场强度较小时,材料的极化程度较弱。
随着电场频率的增加或电场强度的增加,材料的极化程度逐渐增强,直到达到极限值,无法继续增加。
这种现象称为介电饱和极化,在实际应用中需要考虑介电饱和极化带来的限制,以避免对材料性能和应用造成不利影响。
无机材料的应用无机材料的介电性能决定了它在电子、光学和能源等领域的应用。
在电子器件中,无机材料常被用作介电层、储能层或传输层,以实现电信号的传输和存储。
光学器件中,无机材料的介电性能决定了其透过率、反射率和透射率等光学性质。
此外,无机材料还被广泛应用于能源领域,如太阳能电池、超级电容器等。
通过研究和调控无机材料的介电性能,可以提高材料的性能和应用效果,推动相关领域的发展。
解:&) 4.909x10 《材料物理馅能》第一章材料的力学性能1.1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
F 4500 、—= ---------------- =995( MPa)A 4.524x1()2真应变勺=In上=In色=In 7 = 0.0816 1° A 2.42名义应力a = — = —- =917 (MP。
) —o名义应变 ^ = - = —-1=0.0851/。
A山计算结果町知:真应力大于名义应力,真应变小于名义应变。
1- 5 —陶瓷含体积百分比为95%的A12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令Ei=380GPa,E2=84GPa,Vi=0.95,V2=0.05。
则有上限弹性模量=E}V{ +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GF Q)下限弹性模量曲=(4 +生尸=(性 + 些广=323.1(。
「。
)E] E2 380 84当该陶瓷含有5%的气孔时,将P=0. 05代入经验计算公式E=E o(l-1.9P+O. 9P2)可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。
1-11 一圆柱形MO]晶体受轴向拉力F,若其临界抗剪强度弓为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:由题意得图示方向滑移系统的剪切强度可表示为:Feos 53。
T = -------- ;— x cos 600.00152〃r f xO.00152^- 2nFmin = ---------------- = 3.17 x 103 (N)m,n cos 53° X cos 60°此拉力下的法向应力为:(7 =317xI0_xcos60° = L12xl08(P€/) = 112(A/P6Z) 0.00152^/cos 60°0.0 应变蠕变曲线 =25.62 〜28.64GF“ 1-6试分别画出应力松弛利应变蠕变与时间的关系示意图,并算出t 二0, t=g 和L 二T 时的纵 坐标表达式。
氢氧化铝介电常数、介电损耗氢氧化铝是一种常见的无机化合物,具有重要的应用价值。
它具有一定的介电性能,其中介电常数和介电损耗是评价材料介电性能的两个重要参数。
本文将从介电常数和介电损耗两个方面介绍氢氧化铝的介电特性。
介电常数是材料在电场作用下的电极化能力的量度。
对于氢氧化铝而言,它的介电常数较高,通常在8-10之间。
这意味着在外加电场的作用下,氢氧化铝能够较好地电极化,产生较大的极化电荷。
这种电极化现象使得氢氧化铝具有良好的绝缘性能,可以在电子器件中作为绝缘层材料使用。
介电损耗是材料在电场作用下产生的能量损耗的量度。
对于氢氧化铝而言,它的介电损耗较低,一般在0.001以下。
这意味着在外加电场的作用下,氢氧化铝能够较好地保持电能的传输和储存,减少能量的损耗。
这种低介电损耗特性使得氢氧化铝在电子器件中具有较低的信号衰减和能量损耗,有利于提高电子器件的性能。
氢氧化铝的高介电常数和低介电损耗主要与其晶体结构及分子极性有关。
氢氧化铝的晶体结构是由铝离子和氢氧根离子组成的,铝离子与氢氧根离子之间通过离子键相互结合。
这种离子键的形成使得氢氧化铝具有较高的介电常数,因为离子键的形成能够增加材料内部的极化电荷数量。
同时,氢氧化铝的分子极性也会影响其介电性能。
分子极性是由于铝离子和氢氧根离子之间电子云的不均匀分布而产生的,使得分子具有正负极性。
这种分子极性使得氢氧化铝在外加电场的作用下能够更好地电极化,从而增加了材料的介电常数。
除了高介电常数和低介电损耗外,氢氧化铝还具有其他的介电特性。
例如,氢氧化铝具有较好的耐热性和耐化学性,能够在高温和腐蚀性环境下保持稳定的介电性能。
此外,氢氧化铝还具有较低的介电吸收,能够减少电磁波的衰减,有利于电子器件的信号传输和接收。
氢氧化铝具有较高的介电常数和较低的介电损耗,这使得它在电子器件中具有广泛的应用前景。
通过合理利用氢氧化铝的介电特性,可以提高电子器件的性能和稳定性,满足不同领域对材料介电性能的要求。