工程光学第三章
- 格式:ppt
- 大小:753.00 KB
- 文档页数:88
工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (1)第三节几何光学基本定律 (3)第四节光学系统的物象概念 (6)第二章共轴球面光学系统 (7)第一节符号规则 (7)第二节物体经过单个折射球面的成像 (8)第三节近轴区域的物像放大率 (10)第四节共轴球面系统成像 (12)第二章理想光学系统 (14)第一节理想光学系统的共线理论 (14)第二节无限远轴上物点与其对应像点F’---像方焦点 (14)第三节理想光学系统的物像关系 1, 作图法求像 (17)第四节理想光学系统的多光组成像 (22)第五节实际光学系统的基点和基面 (25)第六节习题 (27)第四章平面系统 (27)第一节平面镜 (27)第二节反射棱镜 (28)第三节平行平面板 (29)第四节习题 (30)第五章光学系统的光束限制 (31)第一节概述 (31)第二节孔径光栅 (33)第三节视场光栅 (34)第四节景深 (35)第五节习题 (35)第八章典型光学系统 (36)第一节眼睛的光学成像特性 (36)第二节放大镜 (39)第三节显微镜系统 (41)第四节望远镜系统 (45)第五节目镜 (46)第六节摄影系统 (48)第七节投影系统 (49)第八节光学系统外形尺寸计算 (50)第九节光学测微原理 (53)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系, 光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics), 可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年, 欧几里得论述了光的直线传播和反射定律。
2,公元前130年, 托勒密列出了几种介质的入射角和反射角。
3,1100年, 阿拉伯人发明了玻璃透镜。
4,13世纪, 眼镜开始流行。
5,1595年, 荷兰著名磨镜师姜森发明了第一个简陋的显微镜。
理想光学系统第三章 理想光学系统第一节 理想光学系统的共线理论● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ●描述理想光学系统必须满足的物像关系的理论称为“共线理论”共线理论(1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点)(2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面)● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上)● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数第二节 无限远轴上物点与其对应像点F ’---像方焦点● 设有一理想光学系统● 有一条平行于光轴的光线A1E1入射到这个系统● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点●在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点”共轴球面系统焦点、焦平面、主平面示意图焦点、焦平面、主平面示意图● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点● 像方平行于光轴的光线,表示像方光轴上的无限远点● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点3,垂轴放大率β=+1的一对共轭面——主平面● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f●焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距计算式tan tan h f U h f U '='=焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组无限远轴外物点的共轭像点焦点、焦平面、主平面示意图当光学系统的物方与像方处于同一介质中时,物方焦距与像方焦距数值相等,符号相反f = -f ’单折射球面的主平面和焦点共轴球面系统的成像性质可以用一对主平面和两焦点表示,为此目的,先研究单个折射球面的主平面和焦点位置。
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (1)第三节几何光学基本定律 (3)第四节光学系统的物象概念 (5)第二章共轴球面光学系统 (6)第一节符号规则 (6)第二节物体经过单个折射球面的成像 (7)第三节近轴区域的物像放大率 (10)第四节共轴球面系统成像 (11)第二章理想光学系统 (13)第一节理想光学系统的共线理论 (13)第二节无限远轴上物点与其对应像点F’---像方焦点 (14)第三节理想光学系统的物像关系 1,作图法求像 (17)第四节理想光学系统的多光组成像 (21)第五节实际光学系统的基点和基面 (25)第六节习题 (27)第四章平面系统 (27)第一节平面镜 (27)第二节反射棱镜 (28)第三节平行平面板 (30)第四节习题 (31)第五章光学系统的光束限制 (31)第一节概述 (31)第二节孔径光栅 (33)第三节视场光栅 (34)第四节景深 (35)第五节习题 (36)第八章典型光学系统 (36)第一节眼睛的光学成像特性 (36)第二节放大镜 (39)第三节显微镜系统 (40)第四节望远镜系统 (44)第五节目镜 (46)第六节摄影系统 (47)第七节投影系统 (49)第八节光学系统外形尺寸计算 (49)第九节光学测微原理 (52)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics),可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年,欧几里得论述了光的直线传播和反射定律。
2,公元前130年,托勒密列出了几种介质的入射角和反射角。
3,1100年,阿拉伯人发明了玻璃透镜。
4,13世纪,眼镜开始流行。
5,1595年,荷兰著名磨镜师姜森发明了第一个简陋的显微镜。
第三章 平面与平面系统1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解:镜子的高度为1/2人身高,和前后距离无关。
2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少? 解:OA M M //32 3211M M N M ⊥∴1''1I I -= 又 2''2I I -=∴α同理:1''1I I -=α 321M M M ∆中 ︒=-+-+180)()(1''12''2I I I I αAOBM 1M 2M 3 N1N 2-I 1 I ''1-I 2I ''2 αααα︒=∴60α 答:α角等于60︒。
3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。
如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解:θ'2f y = rad 001.0100022=⨯=θ αθx=mm a x 01.0001.010=⨯=⨯=∴θ图3-44. 一光学系统由一透镜和平面镜组成,如图3-29所示。
平面镜MM 与透镜光轴垂直交于D点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像''A ''B 至平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
图3-29 习题4图解: 由于平面镜性质可得''B A 及其位置在平面镜前150mm 处 ''''B A 为虚像,''B A 为实像则211-=β 21'1-==L L β 450150600'=-=-L L 解得 300-=L 150'=L 又'1L -L 1='1f mm f 150'=∴ 答:透镜焦距为100mm 。