对顶角同位角内错角同旁内角
- 格式:doc
- 大小:63.50 KB
- 文档页数:2
同位角、内错角、同旁内角一、知识归纳1、同位角:∠1和∠8这两个角分别在l2、l3的同一方(上方或下方),并且都在直线l1的同侧,具有这种位置关系的一对角叫做同位角.2、内错角:∠3和∠8这两个角都在直线l2、l3之间,并且分别在直线l1的两侧,具有这种位置关系的一对角叫做内错角.3、同旁内角:∠3和∠5都在直线l2、l3之间,但它们在直线l1的同一旁,具有这种位置关系的一对角叫做同旁内角.二、例题讲解例1、(1)下图中,∠1和∠2不是同位角的是()(2)如图,能与∠α构成同位角的角有()A.4个B.3个C.2个D.1个(3)如图,与∠B是同旁内角的有()A.1个B.2个C.3个D.4个(4)如图所示①AB与BC被AD所截得的内错角有_____________;②DE与AC被AD所截得的内错角有_____________;③DE与AC被BC所截得的同位角有_____________;④∠5、∠7是_____________被_____________直线所截得的_____________角;⑤∠1、∠4是_____________被_____________所截得的_____________角;⑥∠B、∠7是_____________被_____________所截得的_____________角.(5)如图,直线AB、CD、EF两两相交,请指出∠1与其它有标号的角是什么角?例2、(1)如图,下列判断错误的是()A.∠1和∠2是同旁内角B.∠3和∠4是内错角C.∠5和∠6是同旁内角D.∠5和∠8是同位角(2)如图,指出∠1、∠2、∠3、∠4、∠5中是同位角的有__________对,是内错角的有__________对,是同旁内角的有__________对.一、选择题1、如图所示,∠1和∠2是同位角的是()A.②③B.①②③C.④D.①④2、∠1与∠2不是内错角的是()3、如图所示,直线AB,CD,EF两两相交,图中共有同旁内角()A.1对B.3对C.6对D.12对4、如图所示,有以下四种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠2和∠5是同位角,其中正确的说法有()A.1个B.2个C.3个D.4个5、如图所示,AB,BE被AC所截,下列说法不正确的是()A.∠1与∠2是同旁内角B.∠1与∠ACE是内错角C.∠B与∠4是同位角D.不能得到内错角∠1与∠3二、填空题6、如图所示,∠1和∠2是两条直线____________与____________被第三条直线____________所截的____________角;∠5和∠6是两条直线____________与____________被第三条直线____________所截的____________角;∠2和∠6是两条直线____________与____________被第三条直线____________所截的____________角.7、如图所示,∠ABD的同位角有____________,内错角有____________,同旁内角有____________;∠BGH的同位角有____________,内错角有____________,同旁内角有____________.8、如图所示,直线AB,CD被BD所截构成∠3和__________是内错角,AD,BC被BD所截构成的∠1和∠2是___________角,AD,BC被AB所截构成的∠5和∠ABC是___________角,∠6和∠ABC是____________角.三、综合题9、如图所示,∠1和∠E,∠2和∠3,∠3和∠E都是什么角,它们分别是哪两条直线被哪一条直线所截得的?10、如图所示,平行直线EF,MN被相交直线AB,CD所截,请问图中有多少对同旁内角?垂线一、知识归纳1、垂直:当两条直线所有的角为90°时,那么这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,AB与CD相交于O,当交角90°时,称AB与CD垂直,记作AB⊥CD于O. 其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.两直线垂直的位置关系是用角来刻画的.2、在同一平面内,过一点有且只有一条直线与已知直线垂直.3、垂线段最短.4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:垂线段:是一个几何图形;距离:是一个数量,这个数量是垂线段的长度.5、正确理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念.如上图(1)AB与CD相交,当交角90°时,称AB与CD垂直,其中的一条直线叫做另一条直线的垂线;如图(2)过P到这条直线所引的直线中,点P与垂足E之间的线段PE叫做垂线段;P到垂足E之间的距离叫点到直线的距离;如图3,点M和点N之间的线段的长度叫两点间距离.二、例题讲解例1、(1)下列条件中,位置关系互相垂直的是()A.相邻两角的角平分线B.互为对顶角的两角的角平分线C.互为邻补角的两角的角平分线D.互为补角的两角的平分线(2)甲、乙、丙、丁四个同学在判断时针与分针在某一时刻是否互相垂直时,有下列几种说法,其中完全正确的是()A.甲说3点和3点半B.乙说6点一刻和6点3刻C.丙说9点和12点3刻D.丁说3点和9点例2、如图,根据下列语句画图:(1)过点P画射线AM的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线段AB延长线于Q点.例3、如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的是个数是()①点B到AC的垂线段是线段AB②线段AC是点C到AB的垂线段③线段AD是点D到BC的垂线段④线段BD是点B到AD的垂线段A.1 B.2 C.3 D.4例4、(1)如图,直线AB⊥CD于点O,点M是OC上的一个定点,点P是直线AB上的一个动点,则()A.PM>OM B.PM<OMC.PM≥OM D.PM≤OM(2)到直线l的距离等于2cm的点有()A.0个B.1个C.2个D.无数个(3)直线l上有A、B、C三点,直线l外有一点P,若PA=4cm,PB=3cm,PC=2cm,那么P点到直线l的距离()A.等于2cm B.小于2cmC.不大于2cm D.大于2cm而小于3cm(4)如图,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的取值范围是()A.小于bcmB.大于acmC.大于acm或小于bcmD.大于bcm且小于acm例5、(1)如图,直线AB与CD相交于点O,EO⊥AB于O,则图中∠1与∠2的关系是___________.(2)如图,将一张长方形的白纸折叠,使BD折到BD′处,BE折到BE′处,并且BD′与BE′在同一直线上,那么AB与BC 的位置关系是__________.(3)过一个钝角的顶点分别作这个角两边的垂线,若这两条垂线的夹角为40°,则此钝角为()A.140°B.160°C.120°D.110°例6、(1)如图,点O为直线AB上一点,ON平分∠BOC,OM⊥ON,试说明OM平分∠AOC的理由.(2)如图,AB⊥BC于B,AB=4,BC=3,AC=5,求B到AC的距离.一、选择题1、P为直线l上一点,Q为l外一点,下面画图一定可能的是()A.由P画l的垂线过Q点B.由Q画l的垂线过P点C.连接PQ使PQ⊥l D.过P或Q作l的垂线2、已知直线l外一点P,则点P到直线l的距离是指()A.点P到直线l的垂线的长度 B.点P到l的垂线C.点P到直线l的垂线段的长度 D.点P到l的垂线段3、已知OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数是()A.30°B.150°C.30°或150° D.以上都不对4、点P为直线l外一点,点A,B,C在直线l上,若PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.小于4cmC.不大于4cm D.5cm5、如图所示,OA⊥BC,OM⊥ON,则图中互余的角有()A.1对B.2对C.3对D.4对6、如图所示,∠PQR=138°,SQ⊥QR,QT⊥PQ,则∠SQT等于()A.42°B.64°C.48°D.24°二、填空题7、如图所示,计划把池中的水引到C处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所在的渠道最短,说明这种设计的依据是__________________.8、画图并回答:如图所示,已知点P在∠AOC的边OA上.(1)过点P画OA的垂线交OC于点B;(2)画点P到OB的垂线段PM;(3)指出上述所作的图中,线段___________的长表示P点到OB边的距离;(4)比较PM与OP的大小,并说明理由.三、综合题9、如图所示,O是直线AB上一点,OF,OC,OE是射线,OE⊥OF,若∠BOC=2∠COE,∠AOF比∠COE的4倍小8°,求∠EOC的度数.10、如图所示,∠1和∠2有公共顶点,且∠1的两边与∠2的两边分别垂直,又∠1∶∠2=5∶13,求∠1,∠2的度数.11、如图所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N是分别位于AB两侧的村庄.(1)设汽车行驶到公路AB上点P的位置时,距离村庄M最近;行驶到点Q的位置时,距离村庄N最近,请在图中的公路上分别画出P,Q的位置(保留画图痕迹);(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M,N两村越来越近?在哪一段路上离N村越来越近,而离村庄M却越来越远?(分别用文字表达你的结论,不必证明)。
易错拔尖:同位角、内错角、同旁内角(解析版)➢ 易错点1.如图所示,找出图中所有的与∠1是同位角、内错角和同旁内角的角.思路导引:分四种情况讨论,(1)当AB 、BC 被AC 所截时,∠1和∠7是同旁内角;(2)当AB 、CD 被AC 所截时,∠1和∠2是内错角;(3)当AC 、BD 被AB 所截时,∠1和∠6是同旁内角;(4)当AC 、BC 被AB 所截时,∠1和∠ABC 是同旁内角.解:∠1没有同位角,∠1的内错角有∠2,∠1的同旁内角有∠6、∠ABC 、∠7.易错总结:解答此题时,常常误认为∠1和∠3是同位角,∠1和∠4是同旁内角等,事实上这两对角不是由两直线被第三条直线所截形成的,这是判定同位角、内错角、同旁内角前提条件.误点警示:不注意概念的运用,而导致识别错误➢ 拔尖角度角度1 利用“三线八角”的定义识别相关角1.如图1、图2中的∠1和∠2,∠3和∠4分别是哪两条直线被哪一条直线所截形成的?它们各是什么位置关系的角?思路引领:根据同位角,内错角,同旁内角的定义进行判定即可得出答案. 解:图1中,∠1和∠2分别是直线AB ,CD 被直线BD 所截形成的内错角; ∠3和∠4分别是直线AD ,BC 被直线BD 所截形成的内错角; 图2中,∠1和∠2分别是直线AB ,CD 被直线BC 所截形成的同位角; ∠3和∠4分别是直线AB ,BC 被直线AC 所截形成的同旁内角.总结提升:本题主要考查了同位角,内错角,同旁内角的定义,熟练掌握同位角,内错角,同旁内角的定义进行判定是解决本题的关键.D ABC 14325678角度2 利用“三线八角”的定义画示意图2.(2020春•江城区期末)两条直线被第三条直线所截,∠1和∠2是同旁内角,∠3和∠2是内错角.(1)根据上述条件,画出符合题意的示意图;(2)若∠1=3∠2、∠2=3∠3,求∠1,∠2的度数.思路引领:(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角,画出图形.(2)根据已知角的关系确定∠1=9∠3,再根据图形中∠1和∠3组成邻补角互补可得方程,再解即可.解:(1)如图所示:(2)∵∠1=3∠2、∠2=3∠3,∴∠1=9∠3,∵∠1+∠3=180°,∴9∠3+∠3=180°,∴∠3=18°,∴∠1=162°,∠2=54°.总结提升:此题主要考查了三线八角,以及角的计算,关键是掌握内错角的边构成“Z“形,同旁内角的边构成“U”形.角度3 利用“三线八角”的定义识别相关角3.如图所示.(1)∠1与∠C,∠2与∠B,∠3与∠C各是什么角,是哪两条直线被哪一条直线所截得的?(2)∠3的内错角有哪些?(3)写出直线DE,BC被AB所截得的同旁内角,直线DE,BC被EF所截得的同旁内角.思路引领:(1)在截线的同旁找同位角;(2)根据内错的概念找到即可;(3)由同旁内角的概念解答即可.解:(1)∠1与∠C是直线DE、BC被直线AC所截形成的同位角,∠2与∠B是直线DE、BC被直线AB所截形成的同位角,∠3与∠C是直线DF、AC被直线BC所截形成的同位角;(2)当直线DE与BC被DF所截时,∠3与∠EDF是内错角;当直线AB和BC被EF所截时,∠3与∠ADF是内错角;(3)直线DE,BC被AB所截得的同旁内角有∠B与∠BDE,直线DE,BC被EF所截得的同旁内角∠DEF与∠BFE.总结提升:本题主要考查学生对内错角与同旁内角的掌握情况,观察时,关键要抓住各类角的特征,这也是学生易错的地方,并且还容易出现漏解的情况.角度4 利用“三线八角”的特征说明相关角的关系4.如图,若∠1=∠B,那么∠2与∠B有何数量关系?并说明理由;若∠4+∠C=180,那么∠3与∠C有何数量关系?并说明理由.思路引领:根据“同位角相等,两直线平行”推知DE∥BC,则由“两直线平行,同旁内角互补”得到∠2+∠B=180°;由“同旁内角互补,两直线平行”和“两直线平行,同位角相等”得到∠3=∠C.解:∠2+∠B=180°.理由如下:∵∠1=∠B,∴DE∥BC,∴∠2+∠B=180°.∵∠4+∠C=180,∴DE∥BC,∴∠3=∠C.总结提升:本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.5.如图,有四条互相不平行的直线l1、l2、l3、l4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.思路引领:根据三角形的外角和为360°,三角形的内角和为180°以及三角形外角和定理即可写出三个角之间的数量关系.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线l1、l2、l3、l4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.总结提升:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.角度5 利用“三线八角”的定义探究角的对数6.(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有对,内错角有对,同旁内角有对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有对,内错角有对,同旁内角有对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有对,内错角有对,同旁内角有对.(用含n的式子表示)思路引领:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.解:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有2对,同旁内角有2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有12对,内错角有6对,同旁内角有6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n ﹣1)对,内错角有n(n﹣1)对,同旁内角有n(n﹣1)对,故答案为:4,2,2;12,6,6;2n(n﹣1),n(n﹣1),n(n﹣1).总结提升:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.角度6 复杂图形中找出已知角的同位角,内错角和同旁内角.7.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).思路引领:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:①∠A与∠1是同位角,此结论正确;②∠A 与∠B 是同旁内角,此结论正确; ③∠4与∠1是内错角,此结论正确; ④∠1与∠3不是同位角,原来的结论错误; 故答案为:①②③.总结提升:此题主要考查了同位角、内错角、同旁内角,在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系8.如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动后,到达终点角.跳动时,每一步只能跳到它的同位角、内错角或同旁内角的位置上.如从起始位置∠1跳到终点位置∠3的路径有跳径1:∠1→同旁内角∠9→内错角∠3;跳径2:∠1→内错角∠12→内错角∠6→同位角∠10→同旁内角∠3等.(1)写出从∠1到∠8的一条路径;(2)从起始位置∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点位置∠8? (3)写出从起始位置∠1跳到终点位置∠8的路径,要求跳遍所有的角,且不能重复.思路引领:首先根据已知条件找出角与角之间的关系,再根据“同位角、内错角、同旁内角”的定义进行判断,找到正确的游戏路线即可. 解:(1)∠1→同旁内角∠9→内错角∠8(路径不唯一);(2)能.∠1→同位角∠10 →内错角∠5→同旁内角∠8;(3)∠1→同旁内角∠9→同旁内角∠2→内错角∠10→同旁内角∠3→同旁内角∠4→内错角∠11→同旁内角∠5→同旁内角∠6→内错角∠12→同旁内角∠7→同旁内角∠8(路径不唯一).总结提升:本题考查同位角、同旁内角与内错角,熟练掌握同位角、同旁内角与内错角的定义是解答本题的关键.。
同位角、内错角、同旁内角知识讲解责编:康红梅【学习目标】1.了解“三线八角”模型特征;2.掌握同位角、内错角、同旁内角的概念,并能从图形中识别它们.【要点梳理】要点一、同位角、内错角、同旁内角的概念1. “三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1要点诠释:⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.要点诠释:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【高清课堂:平行线及其判定403102三线八角】要点二、同位角、内错角、同旁内角位置特征及形状特征要点诠释:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【典型例题】类型一、“三线八角”模型1.(1)图3中,∠1、∠2由直线被直线所截而成.(2)图4中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1) EF,CD; AB.(2)不是.【解析】(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【总结升华】判断“三线八角”的关键是找出哪两条直线是被截线,哪条直线是截线.类型二、同位角、内错角、同旁内角的辨别2.如图,(1)DE为截线,∠E与哪个角是同位角?(2)∠B与∠4是同旁内角,则截出这两个角的截线与被截线是哪些直线?(3)∠B和∠E是同位角吗?为什么?【答案与解析】解:(1)DE为截线,∠E与∠3是同位角;(2)截出这两个角的截线是直线BC,被截线是直线BF、DE;(3)不是,因为∠B与∠E的两边中任一边没有落在同一直线上,所以∠B和∠E不是同位角.【总结升华】确定角的关系的方法:(1)先找出截线,由截线与其它线相交得到的角有哪几个;(2)将这几个角抽出来,观察分析它们的位置关系;(3)再取其它的线为截线,再抽取与该截线相关的角来分析.举一反三:【变式】(2016春•邹城市校级期中)如图所示,下列说法错误的是()A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角【答案】B解:从图上可以看出∠1和∠5不存在直接联系,而其它三个选项都符合各自角的定义,正确.3.(2014秋•太康县期末)如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.【答案与解析】解:内错角:∠1与∠4,∠3与∠5,∠2与∠6,∠4与∠8;同旁内角:∠3与∠6,∠2与∠5,∠2与∠4,∠4与∠5;同位角:∠3与∠7,∠2与∠8,∠4与∠6.【总结升华】要分析各对角是由哪两条直线被哪一条直线所截的,可以把复杂图形按题目要求分解成简单的图形后,结论便一目了然.举一反三:【变式】如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】解:同位角:∠5与∠1,∠4与∠3;内错角:∠2与∠3,∠4与∠1;同旁内角:∠4与∠2,∠5与∠3,∠5与∠4.【高清课堂:平行线及其判定403102三线八角练习(2)】4. 分别指出下列图中的同位角、内错角、同旁内角.【答案与解析】解:同位角:∠B与∠ACD,∠B与∠ECD;内错角:∠A与∠ACD,∠A与∠ACE;同旁内角:∠B与∠ACB,∠A与∠B,∠A与∠ACB,∠B与∠BCE.【总结升华】在复杂图形中,分析同位角、内错角、同旁内角,应把图形分解成几个“两条直线与同一条直线相交”的图形,并抽取交点处的角来分析.举一反三:【变式】请写出图中的同位角、内错角、同旁内角.【答案】解:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8是同位角;∠2与∠8,∠3与∠5是内错角;∠2与∠5,∠3与∠8是同旁内角.类型三、同位角、内错角、同旁内角大小之间的关系5. 如图直线DE、BC被直线AB所截,(1)∠1和∠2、∠1和∠3、∠1和∠4各是什么角?每组中两角的大小关系如何?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?【答案与解析】解:(1)∠1和∠2是内错角;∠1和∠3是同旁内角;∠1和∠4是同位角.每组中两角的大小均不确定.(2) ∠1与∠2相等,∠1和∠3互补. 理由如下:①∵∠1=∠4(已知)∠4=∠2(对顶角相等)∴∠1=∠2.②∵∠4+∠3=180°(邻补角定义)∠1=∠4(已知)∴∠1+∠3=180°即∠1和∠3互补.综上,如果∠1=∠4,那么∠1与∠2相等,∠1和∠3互补.【总结升华】在“三线八角”中,如果有一对同位角相等,则其他对同位角也分别相等,并且所有的内错角相等,所有同旁内角互补.举一反三:【变式1】若∠1与∠2是内错角,则它们之间的关系是 ( ) .A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2【答案】D【变式2】下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为().A.4 B.3 C.2 D.1 【答案】C (提示:②④正确).。
对顶角、同位角、内错角与同旁内角
基础知识点:
1对顶角:(1)定义:有一个公共顶点,并且有一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角
(2
注意:
⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
1、如图,直线AB、CD相交于点O,OE平分∠BOC.已知∠BOE=65°,
求∠AOD、∠AOC的度数.
2、同位角、内错角与同旁内角
如图,直线b
a,被直线l所截
①∠1与∠5在截线l的同侧,同在被截直线b
a,的上方,叫做同位角(位置相同)
②∠5与∠3在截线l的两旁(交错),在被截直线b
a,之间(内),叫做内错角(位置在内且交错)
③∠5与∠4在截线l的同侧,在被截直线b
a,之间(内),叫做同旁内角。
④三线八角也可以成模型中看出。
同位角是“A”型;内错角是“Z”型;同旁内角是“U”型。
1、如图,∠1的内错角是,它们是直线、被直线所截得的;
∠1的同位角是,它们是直线、被直线所截得的;
∠1的同旁内角是,它们是直线、被直线所截得的;
2.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………………()
(A)①、②、③(
B)①、②、④(C)②、③、④(D)①、②、③、④
E
65
O
A
D
C
B
3、如图,图中的同位角共有…………………( ) (A )6对 (B )8对 (C )10对 (D )12对
二、巩固练习:
1.下面四个图形中,∠1与∠2是对顶角的图形的个数是( ) A .0 B .1 C .2 D .3
12
1
2
1
2
1
2
3.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD = 38°,
则∠AOC = ,∠COB = 。
O
D E
C
B
A
2.三条直线两两相交于同一点时,对顶角有m 对,交于不同三点时,对顶角有n 对,则m 与n 的关系是
( )
A .m = n
B .m >n
C .m <n
D .m + n = 10
4.如图,直线AB 、CD 相交于点O ,∠1-∠2=64°,
则∠AOC=______.
5、如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O , ∠1=50°,求∠COB 、∠BOF 的度数.。