第一章 信号与系统基本概念
- 格式:pdf
- 大小:764.82 KB
- 文档页数:12
第一章信号与系统的基本概念一、信号的定义①广义地说,信号就是随时间和空间变化的某种物理量或物理现象.②在通信工程中,一般将语言、文字、图像、数据等统称为消息,在消息中包含着一定的信息③信号是消息的载体,是消息的表现形式,是通信的客观对象,而消息则是信号的内容④应当注意,信号与函数在概念的内涵与外延上是有区别的。
信号一般是时间变量t的函数,但函数并不一定都是信号,信号是实际的物理量或物理现象,而函数则可能只是一种抽象的数学定义。
二、信号的分类(1) 确定信号与随机信号。
按信号随时间变化的规律来分,信号可分为确定信号与随机信号。
实际传输的信号几乎都是随机信号。
因为若传输的是确定信号,则对接收者来说,就不可能由它得知任何新的信息,从而失去了传送消息的本意。
但是,在一定条件下,随机信号也会表现出某种确定性,例如在一个较长的时间内随时间变化的规律比较确定,即可近似地看成是确定信号。
随机信号是统计无线电理论研究的对象。
本书中只研究确定信号。
(2)连续时间信号与离散时间信号。
按自变量t取值的连续与否来分,信号有连续时间信号与离散时间信号之分,分别简称为连续信号与离散信号。
(3)周期信号与非周期信号。
设信号f(t),t∈R,若存在一个常数T,使得f(t-nT)=f(t) n∈Z (1-1)则称f(t)是以T为周期的周期信号。
从此定义看出,周期信号有三个特点:1) 周期信号必须在时间上是无始无终的,即自变量时间t的定义域为t∈R。
2) 随时间变化的规律必须具有周期性,其周期为T。
3) 在各周期内信号的波形完全一样。
(4) 正弦信号与非正弦信号。
(5) 功率信号与能量信号。
三、信号的相关名词1. 有时限信号与无时限信号若在有限时间区间(t1<t<t2)内信号f(t)存在,而在此时间区间以外,信号f(t)=0,则此信号即为有时限信号,简称时限信号,否则即为无时限信号。
2. 有始信号与有终信号设t1为实常数。
若t<t1时f(t)=0, t>t1时f(t)≠0,则f(t)即为有始信号,其起始时刻为t1。
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
西北工业大学《827信号与系统》重难点解析第1讲第一章信号与系统的基本概念一、信号的主要分类(1)连续时间信号:自变量的取值是连续的离散时间信号:自变量的取值是离散的(2)周期信号:具有周期性,且是无始无终信号非周期信号:不具有周期性(3)因果信号:t<0时,f( t) =0;t>0时,f( t) ≠0的信号非因果信号:t>0时,f( t) =0的信号(4)功率信号:平均功率为有限值,能量趋近于无穷;能量信号:平均功率为0,能量为有限值的信号注意:(1)两个连续周期信号的和不一定是周期信号,只有当这两个信号的周期比为有理数时,该信号才是周期信号,且周期为原信号周期的最小公倍数;(2)直流信号和有界的周期信号均为功率信号;阶跃信号和有始周期信号也是功率信号;有界的非周期信号均为能量信号;无界的周期信号和无界的非周期信号均为非功率非能量信号。
一个信号只能是功率信号和能量信号两者之一,不会两者都是,但可以两者都不是,也就是非周期非能量信号。
【例1】判断下列各信号是否为周期信号后,若为周期信号,求出其周期。
(1)f( t) =cos8t-sin12t(2)f(k) =cos k+2sin2πk解:(1) T1==T2==由于=,故f( t)为周期信号,其周期为T1和T2的最小公倍数,即T=(2) cos k为周期信号,N1==842π2π故f(k)为周期信号,为N1和N2的最小公倍数,即N=8个间隔2cos2πk为周期信号,N2==1三、δ(t )和 δ′( t ) 函数的性质【例 2】 (3t -2)[ δ(t ) + δ(t -2) ]dtt 2 -2t + 3) δ'( t -2)dt(3t -2) δ(t -2)dt= -2 + (3 ×2 -2) = 2(2) 原式 = - ( t 2 + 3 -2t ) ' t =2 = - (2t -2) t =2 = -2四、系统的分类(1)线性系统:同时满足齐次性和叠加性的系统 非线性系统:不能同时满足以上两个条件的系统 (2)时不变系统:满足时不变的系统 时变系统:不满足时不变的系统(3)因果系统:响应不产生激励之前的系统 非因果系统:响应产生于激励之前的系统(4)稳定系统:系统的激励有界,响应也有界的系统 非稳定系统:系统的激励有界,响应无界的系统【例 3】 已知系统:a :y ( t ) =2f ( t ) +3 b :y ( t ) =f (2t ) c :y ( t ) =f ( -t ) d :y ( t ) =tf ( t ) 试判断上述哪些系统满足下列条件: (1)不是线性系统的是: (2)不是稳定系统的是: (3)不是时不变系统的是: (4)不是因果系统的是:解:(1) a (2)d (3)b ,c ,d (4)b ,c五、线性时不变系统的性质f ( t ) →y ( t ),f 1 ( t ) →y 1 ( t ),f 2 ( t ) →y 2 ( t ), A 1,A 2,A 为任意常数,常见性质如下: 1.齐次性:Af ( t ) →Ay ( t )2.叠加性:f 1 ( t ) +f 2 ( t ) →y 1 ( t ) +y 2 ( t )5 555西北工业大学《827 信号与系统》重难点解析3.线性:A 1f 1 ( t ) +A 2f 2 ( t ) →A 1 y 1 ( t ) +A 2 y 2 ( t ) 4.时不变性:f ( t -τ) →y ( t -τ) 5.微分性:→6.积分性:)d τ→)d τ【例 4】 一阶系统的初始状态为 y (0 - ),激励与响应分别为f ( t ),y ( t ) 。
第一章信号与系统的基本概念§1.1 绪言信号与系统是一门重要的专业基础课。
是许多专业(通信、信息处理、自动化、计算机、系统工程)的必修课。
重要性体现在两个方面:一是我们将来从事专业技术工作的重要理论基础;二是上述各类专业硕士研究生入学考试课程。
在教学计划中起着承前启后的作用,前期课程是高数、微分方程、差分方程、工程数学中的积分变换(傅立叶变换和拉普拉斯变换),还有电路分析基础;而其本身是后续专业课(通信原理、数字信号处理)的基础。
信号研究的主要内容:顾名思义系统合成:信号一个典型的电系统—通信系统信息源转换电信号电信号还原受信者(声音、文字、图象)/响应通信系统○1系统:控制系统抽象为理想化的模型,讨论激励与响应的关系经济系统○2信号:时间的函数f(t),一维函数,确定信号* 信号与系统的关系:互相依存信号是运载消息的工具,要很好的利用信号,需经过系统的传输、处理.系统则是为传输信号或对信号进行处理而由元器件构成的某种组合。
离开了信号,系统就失去了意义.§1.2 信号一.定义:信号是带有信息的(如声音、图象等)随时间(或空间)变化的物理量。
本课程主要研究电信号(电流、电压)。
二.信号的分类:从不同的角度1 从函数的定义域(时间)是否连续:○1连续时间信号:在连续的时间范围内有定义。
t是连续的,f (t)可是,也可不是表达方式时间的函数(解析式),如f(t)=Asinπt波形图表示:上述两种表达方式,可以互换。
信号和函数两个词可互相通用○2离散时间信号:在一些离散的瞬间才有定义。
t=kT点上有定义,其余无定义序列f (k )=2k ,k ≥0 表达方式 图形表示:序列值f (k )={0、1、2、4、8、……}2 从信号的重复性:○1 周期信号:定义在(-∞,+∞)区间,每隔一定时间T 重复变化连续f (t )=f (t+mT )离散f (k )=f (k+mK ) K 为整数 ○2 非周期信号:不具有周期性的信号 例:正弦序列f (k )=sink β β为角频率,反映周期性重复的速率, 决定序列是否具有周期性按定义:sink β=sin(β·k+m ·2π) β=6π时,βπ2 =12,为整数,是周期序列,k =12β=318π时,βπ2=431,为有理数,是周期序列,k =31β=21时,βπ2 =4π,为无理数,是非周期序列tf (kt )−−→−简化f (k ) 0 T 2T 3T间隔相等 kT3 实信号:物理可实现的复信号:实际上不能产生,但理论分析重要——复指数信号 表达式:f (t )=e st ,-∞<t <+∞, δ= σ+j ω f (t )=e (σ+j ω)t =e σ t ·e j ωt = e σ t cos ωt+j e σ t sin ωt σ>0,增幅振荡 σ<0,衰减振荡 σ=0,等幅振荡当ω=0,f (t )= e σt 为实指数信号当σ=ω=0,f (t )=1,为直流信号 重要特性:对时间的微分和积分仍然是复指数信号。