信号与系统 第一节基本概念
- 格式:ppt
- 大小:429.50 KB
- 文档页数:15
信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
第一章信号与系统概述 (1)1。
1 信号与系统基本概念 (1)1。
1.1 信号基本概念 (1)1.1。
2 系统基本概念 (2)1.2 连续时间信号及分类 (2)1。
2。
1 确定性信号和随机信号 (3)1。
2.2 连续和分段连续时间信号 (3)1.2。
3 实信号与复信号 (4)1.2.4 周期信号与非周期信号 (7)1。
2。
5能量信号和功率信号 (7)1.2.6 MA TLAB实现常见标准信号波形 (8)1。
3 连续时间信号的基本运算 (11)1。
3。
1 信号的+、-、×运算 (11)1。
3.2 信号的时间变换运算 (12)1.3。
3 尺度变换(横坐标展缩) (14)1.3.4 微分与积分运算 (15)1。
3.5 MATLAB实现信号的时域运算和变换 (16)1.4 奇异信号 (19)1.4.1 阶跃函数 (19)1。
4.2 冲激函数 (21)1.5 系统的分类及性质 (26)1.5。
1 连续系统与离散系统 (26)1。
5.2 动态系统与即时系统 (26)1。
5。
3 线性系统与非线性系统 (26)1.5.4 时不变系统与时变系统 (28)1.5.5 因果系统与非因果系统 (28)1.5.6 稳定系统与不稳定系统 (29)1。
5。
7 LTI连续系统的微分特性和积分特性 (29)1。
6 连续系统描述方法 (30)1。
6。
1 系统的解析描述-—建立微分方程 (30)1。
6。
2 系统的框图描述——物理模型 (32)*1.7 LTI系统分析概述 (34)本章小结 (36)习题一 (36)第一章信号与系统概述本章将介绍信号与系统的概念以及它们的分类方法,然后讨论线性时不变(LinearTimer—Invariant,简称LTI)系统的特性和描述方法,同时深入地研究阶跃函数、冲激函数以及其特性,它们在LTI系统分析中占有十分重要的地位。
1。
1 信号与系统基本概念信号与系统在自然科学和社会科学领域中发挥着越来越重要的作用,信号与系统问题无处不在.近代,人们在自然科学以及工程、经济、社会科学等许多领域中,广泛地引用“系统"的概念、理念和方法,并根据各学科自身规律,建立相应的数学模型,研究各自的问题。