重积分_期末复习题_高等数学(下册)_(上海电机学院)
- 格式:doc
- 大小:889.50 KB
- 文档页数:16
第二学期期末高数(下)考试试卷及答案1 一、 填空题(每空 3 分,共 15 分) 1。
设()=⎰22t xFx e dt ,则()F x '=-22x xe。
2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:()(),,-+⎰⎰⎰⎰12330010xdy f x y dx dy f x y dx=(),-⎰⎰2302xx dx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰D LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5。
级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1。
当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0; B 。
等于13;C. 等于14; D 。
不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件; C 。
必要但非充分条件; D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA 。
e ;B 。
()+e dx dy ;C 。
()-+1e dx dy ; D. ()+x e dx dy .4。
若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA 。
绝对收敛; B.条件收敛; C 。
发散; D.收敛性不确定。
5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3x ae ; B 。
多元函数微分法和应⽤期末复习试题⾼等数学(下册)(上海电机学院)第⼋章偏导数与全微分⼀、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =??=则=??=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极⼤值B. 在点(-1, 3)处取极⼩值C. 在点(3, -1)处取极⼤值D. 在点(3, -1)处取极⼩值3.⼆元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分⽽⾮必要条件B.必要⽽⾮充分条件C.充分必要条件D.既⾮充分也⾮必要条件4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)⽅向的导数=??lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极⼤值B. 在点(1, 1)处取极⼩值C. 在点(0, 0), (1, 1)处都取极⼤值 D . 在点(0, 0), (1, 1)处都取极⼩值 6.⼆元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分⽽⾮必要条件 B.必要⽽⾮充分条件 C.充分必要条件D.既⾮充分也⾮必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极⼤值 B. 在点(2, 5)处取极⼩值C.在点(5, 2)处取极⼤值D. 在点(5, 2)处取极⼩值9.⼆元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要⽽⾮充分条件 B. 充分⽽⾮必要条件 C.充分必要条件 D.既⾮充分也⾮必要条件10. 曲线x=t, y=2t -, z=3t 所有切线中与平⾯x+2y+z=4平⾏的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使⼆元函数(,)x yf x y x y+=-沿某⼀特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满⾜222zy=,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使⼆元函数222(,)xy f x y x y=+在全平⾯连续,则它在(0,0)处应被补充定义为 B A.-1 B.0 C.1 D. 16.已知函数2 2(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y+= C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BC.x18.若xz y =,则在点 D 处有z z y x= A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ??-= B. 220z zx y y x ??-> C.220z zx y y x-0(,)11sin sin ,0xy f x y x y xy y x =??=?+≠??,则极限00lim (,)x y f x y →→( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极⼤值 (B) 有极⼩值 (C) 不是驻点 (D) ⽆极值 22.⼆元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,⽽r =,()f r 具有⼆阶连续导数,则222222u u ux y z++=( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要⽽⾮充分条件 (B) 充分⽽⾮必要条件(C) 充分必要条件 (D) 既⾮充分⼜⾮必要条件 25.函数221z x y =--的极⼤值点是( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ).(A) 14 (B) 14- (C) 12 (D) 12-27.极限24200lim x y x y x y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个⼀阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ??=+ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=??===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D )(A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1}(C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(yx xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =??; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=yx z2( D );)A ( e sin x y ; )B ( e e sin x x y +;)C ( e cos xy -; )D ( e sin xy -34.已知22),(y x y x y x f -=-+,则x f ??=??+yf ( C ); )A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()==?x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ?-?+?+→?00000,,lim(B )()()x y x f y x x f x ?-?+→?0000,,lim(C )()()x y x f y x x f x ?-?+→?00000,,lim (D )()x y x x f x ??+→?000,lim37. 设由⽅程0=-xyz e z确定的隐函数()==x zy x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. ⼆次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。
高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程x yx y dx dy tan +=的通解为 。
7、方程04)4(=-y y的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰212sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面内部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππ C. ⎰⎰⎰104020sin dr r d d ϕϕθππ D. ⎰⎰⎰14020sin dr r d d θϕθππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---y x x dz x dy dx 21021010B. ⎰⎰⎰---yx x dz x dy dx 21021010 C. ⎰⎰⎰-1210210dz x dx dy y D. ⎰⎰⎰---y x y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D. 34π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰DA.220sin cos a d r dr πθθθ⎰⎰ B. 300sin cos ad r dr πθθθ⎰⎰C. 3(sin cos )ad r dr πθθθ-⎰⎰ D. 3200sin cos a d r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB. 212a C. 2a D.+∞7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 100(,)dy f x y dx ⎰B. 100(,)dy f x y dx ⎰ B. 11(,)dx f x y dy ⎰⎰D. 10(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B) 400(,)dy f x y dx ⎰(C) 242(,)xdy f x y dx ⎰⎰(D) 42(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A) 221r d re dr πθ⎰⎰ (B) 2221r d re dr ππθ-⎰⎰(C) 22210r d e dr ππθ-⎰⎰ (D) 22100r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=D dxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B );(A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C) D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤117.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A) 2π421d d r r θ⎰⎰; (B) 2π41d d r r θ⎰⎰;(C) 2π221d d r r θ⎰⎰; (D) 2π201d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )2 19. dxdy y x y x ⎰⎰≤++132222的值等于( A )A. π43;B. π76;C. π56;D. π2320. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D 又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )123. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形 22()Dx y dxdy -⎰⎰< D3.变换积分次序 2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换 dx e dy yx ⎰⎰1012的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(1010y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域 解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
重积分总复习题一 判 断1.若(,)f x y 在D 上的二重积分存在,则必定有(,)(,)DDf x y d f x y d σσ≤⎰⎰⎰⎰( )2.111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰. ( )二 填空题1.改换二次积分的积分次序⎰⎰yy dx y x f dy 2202),(= .2.化2220)adx x y dy +⎰为极坐标形式下的二次积分为 .3.将极坐标系下的二重积分化为直角坐标系下的二重积分21(cos ,sin )d f r r rdr πθθθ⋅=⎰⎰ ___________________4.二次积分2xdx f dy ⎰的极坐标形式的二次积分为 .5.交换二次积分201111(,)(,)xxdx f x y dy dx f x y dy --+⎰⎰⎰⎰的积分次序为 .三 选择题1.设区域D :221x y +≤,f 是域D 上的连续函数,则22()Df xy dxdy +=⎰⎰( )A.12()rf r dr π⎰B .104()rf r dr π⎰ C.122()rf r dr π⎰ D.04()rrf r dr π⎰2.设4(,)xI dx f x y dy =⎰⎰,交换积分次序,得( )A.24104(,)y y dy f x y dx ⎰⎰ B.21440(,)y ydy f x y dx -⎰⎰C.44104(,)dy f x y dx ⎰⎰ D.20144(,)y y dy f x y dx ⎰⎰3.设积分区域D 由x 轴,y 轴及直线1x y +=围成,则二重积分(,)Df x y d σ⎰⎰化为累次积分后为( ).A.10dx ⎰1(,)0x f x y dy -⎰. B.10x dy -⎰1(,)0f x y dx ⎰. C.10dx ⎰1(,)0f x y dy ⎰.D.10dy ⎰1(,)0f x y dx ⎰.4.),(z y x f =在有界闭区域D 上连续是二重积分σd ),(D⎰⎰y x f 存在的( )条件。
上海电机学院高等数学考试及答案一、选择题(10分)1在yoz 坐标面上,求与三个点A(3,1,2),B(4,-2,-2),C(0,5,-1)等距离的点的坐标( )(若C 为(0,5,1)就选B ) A(0,1,-1) B(0,1,-2) C(1,0,-2) D(1,-2,0)2.直线341222--=+=-z y x 与平面x+y+z=4的关系是( A )A 直线在平面上B 平行C 垂直D 三者都不是 3.考虑二元函数f (x,y )的下面四条性质 (1)f(x,y)在点(x 0,y 0)连续(2)f x (x,y )、f y (x,y)在点(x 0,y 0)连续. (3)f(x,y)在点(x 0,y 0)可微分(4)f x (x 0,y 0)、f y (x 0,y 0)存在若用“P →Q ”表示可由性质P 推出性质Q ,则下列四个选项中正确的是( A )A (2)→(3)→(1)B (3)→(2)→(1)C (3)→(4)→(1)D (3)→(1)→(4) 4.设f (x,y )在点(x 0,y 0)处存在偏导,则limℎ→0f (x 0+2ℎ,y 0)−f(x 0−ℎ,y 0)ℎ=( D )A.0B.f x (x 0,y 0)C.2f x (x 0,y 0)D.3f x (x 0,y 0)二、填空题(40分)1.两平行平面2x-3y+4z+9=0与2x-3y+4z-15=0的距离是_√29__。
2.求过点P(2,1,3)且与直线l:X+13=y−12=z−1垂直相交的直线方程__x−22=y−1−1=z−34__________。
3.xoz平面上曲线z=e x(x>0)绕x轴旋转所得旋转曲面方程为___+−√y2+z2=e x_________。
4球面z=√4−x2−y2与锥面z=√3(x2+y2)的交线在xoy面上的投影曲面方程为__{x2+y2=1z=0_________。
5.设u=f(x,xy,xyz),f可微,则∂u∂x=__f'1+yf'2+yzf'3_____6.求z=√xy 的全微分dz=__12√xydx−√xy2y2dy________。
第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,z y yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yz xf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程22222430u u ux x y y∂∂∂++=∂∂∂∂ 化简为20uξη∂=∂∂. 证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u u u u u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22uη∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uuu u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂2.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧;(4)()()22d d Lx y x x y y x y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧;(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d Lx y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d Lx xy x y xy y -+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故 ()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t aa t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰ (6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x=⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415Lx xy x y xy yx x x x x x x xx x x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰3.证明: 本章关于散度的基本性质(1)~(3). 解:略。
2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.画出积分区域,改变累次积分的积分次序:(1) 2220d (,)d y yy f x y x ⎰⎰; (2) e ln 10d (,)d xx f x y y ⎰⎰;(3) 132d (,)d y y f x y x -⎰; (4) πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为: 04,2xx y ≤≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为: 01,e e,y y x ≤≤≤≤所以e ln 1e1ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D 为:01,32,y x y ≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)21d (,)d d (,)d d (,)d y x x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其中 D 1:01,02,y x y ≤≤≤≤ D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-。
第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1n nn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()n n n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n n n C .∑∞=-1321)1(n n n D .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )Λ+++++321161814121 (C )Λ+++3001.0001.0001.0(D )()()()Λ+-+-53535353432 17.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C ) (A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n n n B .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n n n19.幂级数∑∞=++11)21(n nn x 的收敛区间是( C ) A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n n n n(B) ()n n n 111∑-∞= (C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫⎝⎛∞=+1152n n 的和S=( D )(A )23 (B) 35 (C) 52 (D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n a [D] A.1)1(2+-n n B.n n )1(2- C. 1)1(1+-n nD. 0 23. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n b [A] A. 0 B.n n)1(4- C. 1)1(2+-n n D. 1)1(4+-n n二、填空题 1.幂级数()∑∞=-02!1n nnn x的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。
第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
重积分期末练习题及答案一、选择题 1、交换积分0(,)(aydy f x y dx a ⎰⎰为常数)的次序后得( B )A 00(,)yadx f x y dy ⎰⎰ B0(,)aaxdx f x y dy ⎰⎰C(,)axdx f x y dy ⎰⎰ C(,)aydx f x y dy ⎰⎰2、设2222222()()x y z t F t f x y z dv ++≤=++⎰⎰⎰,其中 f 为连续函数,(0)f '存在,而(0)0,(0)1f f '==,则50()limt F t t →=( B )A πB 45πC 35πD 25π3、球面22224x y z a ++=与柱面222x y ax +=所围成立体体积(含在柱内部分)为( C )A2cos 2004a d πθθ⎰⎰ B2cos 208a d πθθ⎰⎰C2cos 204a d πθθ⎰⎰D2cos 202a d πθπθ-⎰⎰4、设D 是xy 平面上以点(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 是D 在第一象限的部分,则(cos sin )Dxy x y d σ+⎰⎰=( A )A 12cos sin D x yd σ⎰⎰ B 12D xyd σ⎰⎰ C 1(cos sin )D xy x y d σ+⎰⎰ D 05、设2222222222sin()1arctan 0(,)02x y x y x y x y f x y x y π⎧++≠⎪⎪++=⎨⎪+=⎪⎩ ,区域22:(0)D x y εε+≤>,则01lim (,)Df x y d εσπε+→⎰⎰=( A )A2πB πC 0D ∞ 二、填空题 1、 设(,,)I f x y z dxdydz Ω=⎰⎰⎰,积分区域:0z z y Ω≤≥≥所确定,则I 在柱面坐标系下的三次积分为120(cos ,sin ,)d rdr f r r z dz πθθθ⎰⎰2、 设D 是由3,(0)y x y x x ==>所围成的平面区域, 则sin Dxd x σ⎰⎰= 32(cos1sin1)-+ 3、二次积分222y xdx e dy -⎰⎰=41(1)2e -- 4、 设D是由11,22x y -≤≤-≤≤围成的平面区域,则3(2)Dxy dxdy +⎰⎰= 05、 设Ω是由球面2221x y z ++=所围成的闭区域,则222222ln(1)1z x y z dxdydz x y z Ω++++++⎰⎰⎰= 0 三、计算题 1、计算222:(0)Dxy dxdyD x y a a +≤>⎰⎰解:由对称性知224142()2aaDxy dxdy dx x a x dx a ==-=⎰⎰⎰⎰2、计算2421222xxxdx dy dx dy yyππ+⎰⎰解:由于sin2xdy yπ⎰的原函数不能用初等函数表示,因此要交换积分次序原式=22314(2)sinsin22y yDxxdxdy dy dx yyππππ+==⎰⎰⎰⎰3、计算D,其中D 为 221x y +≤的第一象限部分 解:原式=220(2)48d t r πππθπ==-⎰⎰⎰ 4、22224:9Dx y dxdy D x y +-+≤⎰⎰解:12222222222322024(4)(4)41(4)(4)2DD D x y dxdy x y dxdy x y dxdyd r rdr d r rdr ππθθπ+-=-+++-=-+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰5、设2222{(,)0,0},[1]D x y x y x y x y =+≤≥≥++表示不超过221x y ++的最大整数,计算二重积分22[1]Dxy x y dxdy ++⎰⎰解:22322132332001[1]sin cos [1]13sin cos [1]()28Dxy xy dxdy d r drd r dr r dr r dr ππθθθθθθ++=+=+=+=⎰⎰⎰⎰⎰6、计算Ω,其中 Ω为2216,4,0x y y z z +=+==所围成的区域解:原式=244sin 05123r d rdr rdz πθπθ-=⎰⎰⎰7、计算.,)(22222的球体是其中R z y x dxdydz z y x ≤++Ω++⎰⎰⎰Ω8、(1)把下列二重积分化为定积分:.1:,)(≤++⎰⎰y x D dxdy y x f D(2)计算.2,2,21:,z xy z y zx y xyzxyzdxdydz ≤≤≤≤≤≤Ω⎰⎰⎰Ω其中 9 (2009-11)椭球面1S 是椭圆13422=+y x 绕x 轴旋转而成,圆锥面2S 是过点(4,0)且与椭圆13422=+y x 相切的直线绕x轴旋转而成,(1)求1S ,2S 的方程,(2)求1S ,2S 之间的立体体积.。
第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1nnn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()nn n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n nnC .∑∞=-1321)1(n n nD .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )+++++321161814121(C ) +++3001.0001.0001.0(D )()()()+-+-5353535343217.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C )(A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n nnB .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n nn19.幂级数∑∞=++11)21(n nnx 的收敛区间是( C )A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n nn n(B)()n n n111∑-∞=(C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫ ⎝⎛∞=+1152n n 的和S=( D )(A )23(B) 35(C) 52(D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=n a [D]A. 1)1(2+-n nB.nn)1(2- C.1)1(1+-n nD. 023. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=nb [A]A. 0B.nn)1(4- C.1)1(2+-n nD. 1)1(4+-n n二、填空题1.幂级数()∑∞=-02!1n nnn x 的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。
2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。
解:(1,1,2)(1,1,2)(1,1,2)cos cos cos u u u uy l x z αβγ∂∂∂∂=++∂∂∂∂22(1,1,2)(1,1,2)(1,1,2)πππcoscos cos 5.(2)()(3)343xy xz y yz z xy =++=---2.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰ 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xx xy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-.故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭.3.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧; (4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧; (5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面z 与平面z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向;(6)()()22d d d d d d +++-⎰⎰y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.((()()()()()()22222π422002π2222222002π2200354*******d d d d d cos sin d 1sin 2d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yr r rR R r r R R R R r R R R r R r ∑θθθθθθθ=-=-=-⎡⎤+--⎣⎦⎡=---⎣=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:x =(y ,z )∈D yz,故30d d d d 3yzD x y z y z z yy∑===⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:y =(x ,z )∈D xz ,故3d d d d 3xzD y z x z x z x x∑===⎰⎰⎰⎰⎰⎰⎰因此:d d d d d d 236π643π2z x y x y z y z x x x∑++⎡⎤=⎢⎥⎣⎦==⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为cos α=cos β=cos γ=图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1, 故()()12344110d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰ 因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x y x y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x y x y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号.5.利用曲线积分,求下列曲线所围成的图形的面积: (1)星形线x = a cos 3t ,y = a sin 3t ; (2)双纽线r 2 = a 2cos2θ; (3)圆x 2+y 2 = 2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得cos x a =sin y a =从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰6.计算对坐标的曲线积分:(1)d Lxyz z ⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ封限;(2)()()()222222d d d Ly z x z x y x y z -+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0d cos d sin cos d sin 2d 1cos 4d 2xyz z t t t t t t t t t t ttΓ===-==⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233y z x z x y x y zt t t t t t t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度大小为z ρ=. 22221:():22xy z x y D x y ∑=++≤221d d ()d 2xy D M s z s x y x y ∑∑ρ===+⎰⎰⎰⎰⎰⎰12π222122225322220d (1)d 2π1)(1)(1)2π2π221)(1)(1)21553r r r r r r d r r r θ=+=+-++⎡==+-+⎢⎥⎣⎦⎰8.计算下列对弧长的曲线积分:(1)22()d nLx y s +⎰,其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);(2)()d Lx y s +⎰,其中L 为连接(1,0)及(0,1)两点的直线段;(3)d Lx s ⎰,其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界;(4)22ed x y Ls +⎰,其中L 为圆周x 2+y 2=a 2,直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; (5)2221d s x y zΓ++⎰,其中Γ为曲线x =e t cos t ,y =e t sin t ,z =e t 上相应于t 从0变到2的这段弧; (6)2d x yz s Γ⎰,其中Γ为折线ABCD ,这里A ,B ,C ,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2);(7)2d y s Γ⎰,其中L 为摆线的一拱x =a (t -sin t ),y =a (1-cos t )(0≤t ≤2π);(8)22()d Lxy s +⎰,其中L 为曲线x =a (cos t +t sin t ), y = a (sin t -t cot), (0≤t ≤2π);(9)222d z s x yΓ+⎰,其中Γ为螺旋线,x = a cos t , y = a sin t , z =at (0≤t ≤π).解:(1)2π2222220()d (cos sin )n Lx y s a t a t t +=+⎰⎰221210d 2πn n a t a π++==⎰.(2)L 的方程为y =1-x (0≤x ≤1).1()d (1Lx y s x x x x +=+-==⎰⎰⎰(3)L 由曲线L 1:y =x 2(0≤x ≤1),及L 2:y =x (0≤x ≤1)组成(如图10-66所示)。
第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππ C. ⎰⎰⎰104020sin dr r d d ϕϕθππ D. ⎰⎰⎰14020sin dr r d d θϕθππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---y x x dz x dy dx 21021010B. ⎰⎰⎰---yx x dz x dy dx 21021010 C. ⎰⎰⎰-1210210dz x dx dy y D. ⎰⎰⎰---y x y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D. 34π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰DA.220sin cos a d r dr πθθθ⎰⎰ B. 300sin cos ad r dr πθθθ⎰⎰C. 3(sin cos )ad r dr πθθθ-⎰⎰ D. 3200sin cos a d r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB. 212a C. 2a D.+∞7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 100(,)dy f x y dx ⎰B. 100(,)dy f x y dx ⎰ B. 11(,)dx f x y dy ⎰⎰D. 10(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B) 400(,)dy f x y dx ⎰(C) 242(,)xdy f x y dx ⎰⎰(D) 42(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A) 221r d re dr πθ⎰⎰ (B) 2221r d re dr ππθ-⎰⎰(C) 22210r d e dr ππθ-⎰⎰ (D) 22100r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=D dxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B );(A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C) D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤117.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A) 2π421d d r r θ⎰⎰; (B) 2π41d d r r θ⎰⎰;(C) 2π221d d r r θ⎰⎰; (D) 2π201d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )219. dxdy y x y x ⎰⎰≤++132222的值等于( A )A. π43;B. π76;C. π56;D. π2320. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D 又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )1 23. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形 22()Dx y dxdy -⎰⎰< D3.变换积分次序 2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换 dx e dy yx ⎰⎰1012的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(1010y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域 解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
解:xy dxdy Ω⎰⎰=aadx dy -⎰=22()aaa x x dx --⎰=2202()aa x xdx -⎰(1分)=42a5.22224x y ππ≤+≤⎰⎰解:22224x y ππ≤+≤⎰⎰=220sin d r rdr πππϕ⎰⎰=22sin r rdr πππ⎰=26π- 6.222()xy z ze dxdydz -++Ω⎰⎰⎰,其中Ω为球体2221x y z ++≤在0z ≥上的部分。
解:利用球面坐标变换sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩,Ω对应于1{(,,)02,01,0}2r r πϕθθπϕΩ=≤≤≤≤≤≤故222()xy z ze dxdydz -++Ω⎰⎰⎰=213sin cos r r e drd d ϕϕϕθ-Ω⎰⎰⎰=22132000sin cos r d r e dr d ππθϕϕϕ-⎰⎰⎰=11()2eπ-7.计算重积分211y xI dx e dy -=⎰⎰的值。
解:210(2)yy I dy edx -=⎰⎰分222100110()|(2)1|211(1)(1)2y yy y xe dy ye dy e e---===-=-⎰⎰分分8.计算三重积分222()x y z dv Ω++⎰⎰⎰,其中222:2x y z z Ω++≤。
解:Ω的边界曲面方程2222x y z z ++≤用球面坐标表示:22cos r r ϕ=,即2cos r ϕ=。
Ω为:02,0,02cos 2r πθπϕϕ≤≤≤≤≤≤,于是22222cos 2222200022cos 2200050()sin (2)sin 322sin cos 532(3).15x y z dv d d r r dr d d r r drd ππππϕπϕθϕϕθϕϕπϕϕϕπΩ++===⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰分分9.证明:000()().a yaa xa x dy ef x dx xe f a x dx --=-⎰⎰⎰证明:左边0()(2)a aa x xdx e f x dy -=⎰⎰分()()()(3)()(3)aa x a x uu aax e f x a x dxe f a u udu xe f a x dx --==---=-⎰=⎰⎰令分分=右边所以原式得证。