中国矿业大学徐海学院高等数学——方法上3课件PPT教学
- 格式:pptx
- 大小:1.14 MB
- 文档页数:52
高等数学完整全套教学课件一、教学内容1. 极限与连续数列极限的定义及性质函数极限的定义及性质无穷小、无穷大的概念极限的运算法则函数在一点处的连续性定义函数在区间上的连续性2. 导数与微分导数的定义及几何意义基本导数公式高阶导数微分的定义及运算法则隐函数、参数方程函数求导3. 微分中值定理与导数的应用罗尔定理、拉格朗日中值定理柯西中值定理洛必达法则泰勒公式函数的单调性、凹凸性、极值和最值二、教学目标1. 掌握极限、导数、微分等基本概念及其性质、运算法则。
2. 能够运用微分中值定理解决实际问题,分析函数的性质。
3. 培养学生的抽象思维能力、逻辑推理能力和数学建模能力。
三、教学难点与重点1. 教学难点:极限、导数、微分等概念的理解;微分中值定理的应用。
2. 教学重点:极限、导数、微分的基本性质和运算法则;函数的单调性、凹凸性、极值和最值的求解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入通过实际案例,如物体的运动轨迹、温度变化等,引出极限、导数、微分等概念。
2. 例题讲解选取具有代表性的例题,详细讲解极限、导数、微分的基本性质和运算法则。
结合图形,解释函数的单调性、凹凸性、极值和最值的概念。
3. 随堂练习布置与例题难度相当的练习题,让学生巩固所学知识。
对学生进行个别辅导,解答疑问。
4. 课堂小结六、板书设计1. 极限、导数、微分的基本概念及性质。
2. 极限、导数、微分的运算法则。
3. 微分中值定理及其应用。
4. 函数的单调性、凹凸性、极值和最值。
七、作业设计1. 作业题目求下列函数的极限、导数、微分。
判断下列函数的单调性、凹凸性,并求极值、最值。
2. 答案详细的解答过程和答案。
八、课后反思及拓展延伸2. 拓展延伸:引导学生研究更高级的微积分概念,如泰勒级数、场论等。
鼓励学生参加数学竞赛、数学建模等活动,提高数学素养。
重点和难点解析1. 教学内容的布局与组织2. 教学目标的设定3. 教学难点与重点的识别4. 教学过程的实践情景引入5. 例题讲解的深度和广度6. 板书设计的清晰度与逻辑性7. 作业设计的针对性与答案的详细性8. 课后反思与拓展延伸的实际效果详细补充和说明:一、教学内容的布局与组织教学内容应遵循由浅入深、循序渐进的原则。
《高等数学教案》PPT课件第一章:导数与微分1.1 导数的概念引入导数的定义解释导数的几何意义举例说明导数的计算方法1.2 基本函数的导数计算常数函数、幂函数、指数函数、对数函数的导数总结常用函数的导数公式1.3 微分的概念与应用引入微分的定义解释微分的几何意义举例说明微分的计算方法介绍微分在实际问题中的应用第二章:积分与微分方程2.1 积分的概念引入积分的定义解释积分的几何意义举例说明积分的计算方法2.2 基本函数的积分计算常数函数、幂函数、指数函数、对数函数的积分总结常用函数的积分公式2.3 微分方程的概念与解法引入微分方程的定义解释微分方程的意义举例说明微分方程的解法介绍微分方程在实际问题中的应用第三章:级数与极限3.1 级数的概念引入级数的定义解释级数的收敛性与发散性举例说明级数的计算方法3.2 幂级数的概念与应用引入幂级数的定义解释幂级数的收敛区间与收敛半径举例说明幂级数的计算方法介绍幂级数在实际问题中的应用3.3 极限的概念与性质引入极限的定义解释极限的意义举例说明极限的计算方法介绍极限在实际问题中的应用第四章:向量与矩阵4.1 向量的概念与运算解释向量的几何意义举例说明向量的运算方法4.2 矩阵的概念与运算引入矩阵的定义解释矩阵的意义举例说明矩阵的运算方法4.3 向量空间与线性变换引入向量空间的概念解释线性变换的意义举例说明线性变换的性质介绍向量空间与线性变换在实际问题中的应用第五章:概率与统计5.1 概率的基本概念引入概率的定义解释概率的意义举例说明概率的计算方法5.2 随机变量的概念与分布引入随机变量的定义解释随机变量的意义举例说明随机变量的分布方法5.3 统计的基本概念与方法解释统计的意义举例说明统计的计算方法介绍统计在实际问题中的应用第六章:多变量微积分6.1 多元函数的概念引入多元函数的定义解释多元函数的意义举例说明多元函数的计算方法6.2 偏导数与全微分引入偏导数的定义解释偏导数的意义举例说明偏导数的计算方法介绍全微分的概念与应用6.3 多重积分的概念与应用引入多重积分的定义解释多重积分的意义举例说明多重积分的计算方法介绍多重积分在实际问题中的应用第七章:常微分方程7.1 常微分方程的概念引入常微分方程的定义解释常微分方程的意义举例说明常微分方程的解法7.2 线性微分方程与非线性微分方程引入线性微分方程与非线性微分方程的定义解释线性微分方程与非线性微分方程的区别与联系举例说明线性微分方程与非线性微分方程的解法7.3 常微分方程的应用介绍常微分方程在物理、工程等领域的应用举例说明常微分方程解决实际问题的方法第八章:数值计算方法8.1 数值计算方法的概念引入数值计算方法的定义解释数值计算方法的意义举例说明数值计算方法的计算过程8.2 数值积分与数值微分引入数值积分与数值微分的定义解释数值积分与数值微分的意义举例说明数值积分与数值微分的计算方法8.3 常微分方程的数值解法引入常微分方程的数值解法的定义解释常微分方程的数值解法的意义举例说明常微分方程的数值解法第九章:概率与统计(续)9.1 描述统计与推断统计引入描述统计与推断统计的定义解释描述统计与推断统计的意义举例说明描述统计与推断统计的方法9.2 假设检验与置信区间引入假设检验与置信区间的定义解释假设检验与置信区间的意义举例说明假设检验与置信区间的计算方法9.3 回归分析与相关分析引入回归分析与相关分析的定义解释回归分析与相关分析的意义举例说明回归分析与相关分析的方法第十章:高等数学在实际问题中的应用10.1 高等数学在物理学中的应用介绍高等数学在经典力学、电磁学等物理学领域中的应用举例说明高等数学解决物理学问题的方法10.2 高等数学在工程学中的应用介绍高等数学在土木工程、机械工程等工程领域中的应用举例说明高等数学解决工程学问题的方法10.3 高等数学在经济学、生物学等领域的应用介绍高等数学在经济学、生物学等领域中的应用举例说明高等数学解决经济学、生物学等领域问题的方法重点解析第一章:导数与微分重点:理解导数和微分的定义及其几何意义,掌握基本函数的导数和微分计算。
高等数学完整全套教学课件一、教学内容本节课的教学内容来自高等数学教材的第五章——多元函数微分学。
本章主要内容包括多元函数的求导法则、隐函数求导、泰勒公式以及多元函数的极值问题。
具体教学内容如下:1. 多元函数的求导法则:主要包括偏导数的定义及其求导法则,如四则法则、链式法则、反函数求导法则等。
2. 隐函数求导:主要讲解如何利用偏导数求解隐函数的导数,包括直接求解和间接求解两种方法。
3. 泰勒公式:介绍泰勒公式的定义及其在多元函数中的应用,重点讲解如何利用泰勒公式展开多元函数。
4. 多元函数的极值问题:包括极值的存在性定理、极值的判定方法以及极值的求解方法。
二、教学目标1. 理解并掌握多元函数的求导法则,能够熟练运用各种法则求解多元函数的导数。
2. 学会隐函数求导的方法,能够独立求解复杂的隐函数导数问题。
3. 掌握泰勒公式的应用,能够利用泰勒公式展开多元函数并进行简化。
4. 理解多元函数极值的概念,学会使用极值判定方法和求解方法解决实际问题。
三、教学难点与重点1. 教学难点:隐函数求导、泰勒公式的应用以及多元函数极值的求解。
2. 教学重点:多元函数的求导法则、隐函数求导、泰勒公式以及多元函数的极值问题。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、签字笔、直尺、橡皮。
五、教学过程1. 实践情景引入:以实际问题为例,引入多元函数的求导问题。
2. 讲解多元函数的求导法则:通过示例,讲解四则法则、链式法则、反函数求导法则等。
3. 隐函数求导方法讲解:以具体例子为例,讲解直接求解和间接求解两种方法。
4. 泰勒公式的介绍与应用:讲解泰勒公式的定义及其在多元函数中的应用,通过示例让学生掌握泰勒公式的运用。
5. 多元函数极值问题的讲解:介绍极值的存在性定理、极值的判定方法以及极值的求解方法,并通过实例进行分析。
6. 随堂练习:布置具有代表性的题目,让学生现场解答,检验学习效果。
六、板书设计1. 多元函数的求导法则:四则法则、链式法则、反函数求导法则。
高等数学(高职高专)完整全套教学课件一、教学内容本节课的教学内容来自于高等数学教材的第五章——多元函数微分学。
具体内容包括:多元函数的极限与连续性,偏导数,全微分,复合函数的偏导数,隐函数的偏导数,以及高阶偏导数。
二、教学目标1. 使学生掌握多元函数的极限与连续性的概念及其判断方法。
2. 使学生理解偏导数的概念,掌握偏导数的计算方法。
3. 使学生掌握全微分的概念及其计算方法,能够求解复合函数的偏导数。
4. 使学生掌握隐函数的偏导数求解方法,能够求解高阶偏导数。
三、教学难点与重点1. 教学难点:隐函数的偏导数求解方法,高阶偏导数的求解。
2. 教学重点:多元函数的极限与连续性,偏导数的计算,全微分的计算,复合函数的偏导数。
四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。
2. 学具:笔记本,笔,高等数学教材。
五、教学过程1. 实践情景引入:通过生活中的实际问题,引导学生思考多元函数的极限与连续性的重要性。
2. 知识讲解:讲解多元函数的极限与连续性的概念,并通过例题进行讲解。
3. 偏导数讲解:讲解偏导数的概念,并通过例题进行讲解。
4. 全微分讲解:讲解全微分的概念,并通过例题进行讲解。
5. 复合函数偏导数讲解:讲解复合函数的偏导数求解方法,并通过例题进行讲解。
6. 隐函数偏导数讲解:讲解隐函数的偏导数求解方法,并通过例题进行讲解。
7. 高阶偏导数讲解:讲解高阶偏导数的求解方法,并通过例题进行讲解。
8. 随堂练习:针对所学内容,进行随堂练习,巩固知识点。
六、板书设计板书设计如下:1. 多元函数的极限与连续性定义判断方法2. 偏导数定义计算方法3. 全微分定义计算方法4. 复合函数的偏导数求解方法例题5. 隐函数的偏导数求解方法例题6. 高阶偏导数求解方法例题七、作业设计1. 题目:判断下列函数在某一点的极限与连续性。
函数1:f(x, y) = (x^2 + y^2) / (x^2 + y^2)函数2:g(x, y) = x^2 + y^22. 题目:求下列函数的偏导数。