转速传感器种类原理及发展趋势
- 格式:docx
- 大小:277.59 KB
- 文档页数:9
常见的转速传感器原理转速传感器是一种用于测量转子运动速度的装置,广泛应用于汽车、工业设备、航天航空等领域。
转速传感器的原理可以分为以下几种常见类型。
磁敏传感器是利用转子上的永磁体在转动时与传感器之间产生磁场变化,通过检测磁场变化来测量转速。
其中,常用的磁敏传感器包括霍尔传感器和磁阻传感器。
-霍尔传感器:霍尔传感器是利用霍尔效应原理,当转子上的永磁体通过传感器时,产生磁场变化,使得霍尔元件内部的霍尔电压发生变化,进而测量转速。
-磁阻传感器:磁阻传感器是利用转子上的永磁体与传感器之间的磁阻变化,通过测量磁阻的变化来计算转速。
通常磁阻传感器由磁阻片、线圈和磁通路组成,当转子上的永磁体通过传感器时,磁通路发生变化,使得线圈感应电压变化,从而得到转速信息。
光电传感器是利用转子上的标记与传感器之间的光电信号变化,来测量转速。
光电传感器通常由发光器件和光敏电阻组成,当转子上的标记通过传感器时,产生的光电信号经过光敏电阻转化为电压信号,从而得到转速信息。
光电传感器具有响应速度快、精度高的特点,因此在高速转动的设备中应用广泛。
电感传感器是利用转子上的铁芯与传感器之间的电感变化,来测量转速。
电感传感器通常由铁芯、线圈和驱动电路组成,当转子上的铁芯通过传感器时,铁芯与线圈之间的电感发生变化,由驱动电路测量和分析电感变化,得到转速信息。
超声波传感器是利用转子上的超声波信号与传感器之间的回波时间差,来测量转速。
通常超声波传感器由超声波发射器和接收器组成,发射器发出超声波信号,当信号与转子上的物体相遇产生回波时,接收器接收回波信号,根据回波时间差计算转速。
以上是常见的几种转速传感器原理,每种传感器原理都有其特点和适用场景,根据实际需求选择适合的传感器原理可以有效地进行转速测量。
转速传感器基本常识转速传感器是一种用于测量某个物体转速的装置。
在工业、机械和车辆中,转速的准确测量非常重要,转速传感器因此成为了许多设备中必不可少的部件。
本文将介绍转速传感器的基本工作原理、种类、以及应用场景。
工作原理转速传感器的工作原理基于霍尔效应。
当传感器中的磁场发生变化时,传感器内部的霍尔传感器会生成电信号。
转速传感器的磁场一般由附在转子上的永磁体产生。
传感器接收到这个磁场并产生电信号,这个信号含有能够描述转子转速的信息。
通过转速传感器,我们便能够获取旋转物体的速度、加速度、以及位置。
种类磁阻式转速传感器磁阻式转速传感器是一种被广泛使用的转速传感器。
它利用永磁体在旋转过程中产生的磁场,使内部的磁敏电阻与旋转物体之间产生磁阻力。
传感器通过测量这个磁阻力来测量转速。
磁阻式转速传感器可以在各种不同的应用场合下使用。
霍尔式转速传感器霍尔式转速传感器通过利用霍尔效应来测量转速。
与磁阻式转速传感器不同的是,当永磁体旋转时,传感器内部的霍尔元件会感测到磁场的变化,这个信号被转换成为电信号。
由于霍尔效应的特殊性质,这种传感器无需接触旋转物体。
光电式转速传感器光电式转速传感器则是利用光学传感器来测量旋转物体的转速。
光电式转速传感器的工作原理是,物体上的光栅状标记在旋转过程中在传感器前面流过,这个运动会导致光电元件中的电压发生变化。
传感器利用这个变化来测量物体的转速。
这种传感器在高速度旋转物体的测量中应用更为广泛。
应用场景转速传感器的应用非常广泛。
例如,水泵,发动机和变速器等许多汽车和工业设备都需要转速传感器。
下面是一些更具体的应用场景:螺旋桨技术如今,大多数船的螺旋桨转速都由转速传感器控制。
转速传感器在频繁的液体混合和机器运动的条件下运作良好。
汽车制动系统转速传感器是汽车制动系统中不可缺少的一部分。
在车轮旋转时,转速传感器会通过监控车轮旋转的速度来确保制动系统顺利工作。
能源设备可以使用转速传感器在太阳能电池板和风力涡轮机等类型的能源设备中确保更高的发电效率。
磁电式转速传感器的原理
磁电式转速传感器是一种常用于测量旋转机械设备转速的传感器。
它利用磁场和电信号的相互作用原理,将机械转速转化为电信号输出,从而实现对转速的准确监测和控制。
磁电式转速传感器的工作原理主要是基于霍尔效应和磁致伸缩效应。
在传感器内部,通常包含一个磁铁和一个霍尔元件。
当机械设备旋转时,磁铁会随之旋转,产生一个磁场。
而霍尔元件则可以检测到这个磁场的变化,进而产生相应的电压信号输出。
具体来说,当磁铁旋转时,磁场的变化会使得霍尔元件内部的电荷分布发生改变,从而引起霍尔元件两侧产生不同电势差,即霍尔电压。
通过测量霍尔电压的大小,就可以确定机械设备的转速。
此外,磁电式转速传感器还可以通过磁致伸缩效应实现对转速的测量。
当机械设备旋转时,磁铁会使传感器内部的磁致伸缩材料发生形变,从而改变传感器的电阻值,进而产生电信号输出。
磁电式转速传感器具有灵敏度高、响应速度快、精度高等优点,广泛应用于汽车、船舶、飞机、工业生产等领域。
它可以实现对转速的实时监测,从而确保设备运行的安全稳定性。
此外,磁电式转速传感器还可以与其他控制系统集成,实现对设备转速的自动调节和控制,提高生产效率和质量。
总的来说,磁电式转速传感器通过利用磁场和电信号的相互作用原
理,将机械设备的转速转化为电信号输出,实现对转速的准确监测和控制。
它在工业生产和机械设备领域具有重要的应用意义,为提高生产效率和保障设备安全运行发挥着重要作用。
摩托车用霍尔效应转速传感器的研究与开发的开题报告【摘要】摩托车用霍尔效应转速传感器是摩托车电控系统中的核心部件之一,它主要用于测量摩托车发动机的转速。
本文将对摩托车用霍尔效应转速传感器的原理、特点及其市场需求进行分析,并依据市场需求和技术发展趋势,提出设计摩托车用霍尔效应转速传感器的思路和方法,同时探究转速传感器的应用前景和未来发展方向。
【关键词】摩托车、霍尔效应、转速传感器、市场需求、设计思路一、研究背景及意义随着社会的发展和科技的进步,摩托车已经成为了人们出行的重要交通工具之一。
而在摩托车中,电控系统是不可或缺的一部分,而转速传感器则是电控系统中比较重要的组成部分之一。
实际生产中,为了提高摩托车的性能和安全性,需要对摩托车的发动机进行精确的转速测量和监测。
同时,转速传感器也是车辆故障和维修的重要参考依据。
对此,本研究针对摩托车用霍尔效应转速传感器的原理和应用进行探究和开发,旨在开发一种高精度、高性能、可靠性好并能够适应市场需求的摩托车用霍尔效应转速传感器。
二、研究现状目前,国内外对摩托车用霍尔效应转速传感器的研究和应用已经比较成熟。
国外主要采用磁阻效应或霍尔效应作为传感器的测量原理,而国内则主要采用霍尔效应作为测量原理。
对于摩托车用转速传感器的应用,国内外厂商已经提出了多种方案,并在实际生产中得到了广泛的应用。
三、研究内容和方法本研究将运用霍尔效应作为传感器的测量原理,采用现代电子技术,针对市场需求和技术发展趋势,开发一种适应摩托车市场需求的高精度、高性能、可靠性好的霍尔效应转速传感器。
具体研究内容如下:1. 霍尔效应原理的分析和研究。
2. 对摩托车转速传感器的需求进行调查和分析。
3. 设计摩托车用霍尔效应转速传感器的电路,隔离并放大传感器的信号。
4. 对设计的转速传感器进行性能测试,对测试结果进行分析和评价,确定其性能指标。
5. 进行市场需求分析、竞争分析和大规模生产的可行性分析。
四、预期成果本研究预期通过对摩托车用霍尔效应转速传感器的研究和开发,实现以下预期成果:1. 开发出一种高精度、高性能、可靠性好的摩托车用霍尔效应转速传感器。
转速传感器种类、原理及发展趋势将旋转物体的转速转换为电量输出的传感器。
转速传感器属于间接式测量装置,可用机械、电气、磁、光和混合式等方法制造。
按信号形式的不同,转速传感器可分为模拟式和数字式两种。
前者的输出信号值是转速的线性函数,后者的输出信号频率与转速成正比,或其信号峰值间隔与转速成反比。
转速传感器的种类繁多、应用极广,其原因是在自动控制系统和自动化仪表中大量使用各种电机,在不少场合下对低速(如每小时一转以下)、高速(如每分钟数十万转)、稳速(如误差仅为万分之几)和瞬时速度的精确测量有严格的要求。
常用的转速传感器有光电式、电容式、变磁阻式以及测速发电机。
下面浅析这几种传感器。
一.光电式转速传感器光电式转速传感器对转速的测量,主要是通过将光线的发射与被测物体的转动相关联,再以光敏元件对光线的进行感应来完成的。
光电式转速传感器从工作方式角度划分,分为透射式光电转速传感器和反射式光电转速传感器两种。
1、投射式光电转速传感器投射式光电转速传感器设有读数盘和测量盘,两者之间存在间隔相同的缝隙。
投射式光电转速传感器在测量物体转速时,测量盘会随着被测物体转动,光线则随测量盘转动不断经过各条缝隙,并透过缝隙投射到光敏元件上。
投射式光电转速传感器的光敏元件在接收光线并感知其明暗变化后,即输出电流脉冲信号。
投射式光电转速传感器的脉冲信号,通过在一段时间内的计数和计算,就可以获得被测量对象的转速状态。
2、反射式光电转速传感器反射式光电转速传感器是通过在被测量转轴上设定反射记号,而后获得光线反射信号来完成物体转速测量的。
反射式光电转速传感器的光源会对被测转轴发出光线,光线透过透镜和半透膜入射到被测转轴上,而当被测转轴转动时,反射记号对光线的反射率就会发生变化。
反射式光电转速传感器内装有光敏元件,当转轴转动反射率增大时,反射光线会通过透镜投射到光敏元件上,反射式光电转速传感器即可发出一个脉冲信号,而当反射光线随转轴转动到另一位置时,反射率变小光线变弱,光敏元件无法感应,即不会发出脉冲信号。
发动机转速传感器原理
发动机转速传感器是一种用于测量发动机转速的设备。
其工作原理主要基于磁敏性材料的电阻变化。
具体而言,该传感器通常由一个绕组和一个磁敏核心组成。
绕组中通有一定的电流,当传感器靠近旋转的发动机部件时,磁敏材料在磁场的作用下发生变化。
磁敏材料的电阻随着其形状的变化而变化。
当发动机转速增加时,旋转部件的转动会导致传感器靠近和远离磁敏材料,从而使磁敏材料的电阻发生变化。
通过测量电阻的变化,可以计算出发动机的转速。
这种传感器通常使用模拟信号输出,输出的电信号幅值与发动机转速成正比。
通常情况下,传感器的输出信号会通过电气或电子设备进行进一步处理和转换,以便于被仪表板上的转速表或其他相关系统读取和显示。
总之,发动机转速传感器通过测量磁敏性材料电阻的变化来检测发动机转速,从而提供有关发动机运行状况的重要信息。
转速传感器该如何选择?什么是转速传感器?转速传感器是一种用于检测旋转物体速度的传感器。
它们通常被用于工业、汽车和航空等领域中。
转速传感器的工作原理是根据测量物体上的一些特殊标记或开关的旋转次数来计算出旋转速度。
转速传感器的工作原理在转速传感器中,通常有一个圆盘或齿轮将传感器和测量物件连接在一起。
圆盘上通常设有一系列凸起,通过对凸起计数并算出每秒旋转的次数,就能够计算出物体的旋转速度。
转速传感器种类转速传感器有不同种类,使用时需根据实际需要进行选择。
以下是一些常见的转速传感器种类:磁电式传感器磁电式传感器是一种基于磁性材料的传感器。
当被测物体在磁电式传感器附近旋转时,磁性物质会产生磁场变化,并在传感器中激发电子,最终以电压输出。
光电式传感器光电式传感器是一种利用光电效应来实现旋转测量的传感器。
其中通过在物体上安装一个光学传感器,在测量物体旋转时会产生光线强度变化,从而输出信号。
接触式传感器接触式传感器是一种通过接触测量物体旋转的传感器。
其中将传感器安装在物体表面,通过对传感器和物品之间的接触计数来计算旋转次数。
如何选择转速传感器?在选择转速传感器时,需要考虑以下几个方面:测量对象在选择转速传感器时,首先要考虑测量对象的性质。
例如,如果测量的是液体或者粉末等颗粒状物体,就需要考虑传感器材质的耐腐蚀性。
测量范围转速传感器的测量范围是指传感器能够测量的最高旋转速度。
当需要测量更高的速度时,我们需要选择相应的高精度传感器。
精度和稳定性改善精度和稳定性是增强测量过程稳定性的重要方法。
在选择转速传感器时,要考虑传感器的精度和稳定性等。
输出类型在选择转速传感器时,要考虑传感器的输出类型。
常见的输出类型有模拟输出和数字输出两种,可以根据实际情况来选择。
环境适应性在选择转速传感器时,需要考虑传感器的环境适应性。
通常需要考虑传感器的工作温度范围,以及是否能适应恶劣的环境。
总结转速传感器是一种常见的工业自动化设备。
在选择转速传感器时,首先要根据测量对象的具体情况以及测量范围等因素来进行选择。
转速传感器工作原理
转速传感器是一种引用器件,用于测量物体的转速。
它的工作原理基于霍尔效应或光电效应。
以下是两种常见的工作原理:
1. 霍尔效应:
转速传感器利用霍尔元件来检测磁场的变化,从而测量物体的转速。
霍尔元件是一种半导体器件,它在有磁场存在时会产生电压。
传感器将霍尔元件放置在旋转的物体附近,并通过磁铁或磁场产生装置产生磁场。
当物体旋转时,磁场的变化会导致霍尔元件产生电压信号。
通过测量电压信号的频率或幅度变化,传感器可以计算出物体的转速。
2. 光电效应:
转速传感器利用光电传感器来检测物体的旋转,并通过光门的开闭进行测量。
光电传感器包括发光二极管和光敏元件。
传感器的发光二极管发出光线,而光敏元件检测到光线的反射。
当物体旋转时,反射光线的强度会发生变化。
传感器通过检测光线的变化来计算物体的转速。
通常,在旋转物体上会安装一些反射式标记,例如反光贴或光栅。
当标记通过光门时,光线会被遮挡或反射,从而导致光电传感器检测到光线的变化。
这些工作原理的转速传感器广泛应用于汽车、飞机、电机等领域,用于监测和控制转速。
光电转速传感器测量原理简析光电转速传感器,作为一种常用于测量物体转速的传感器,广泛应用于工业自动化领域。
它利用光电传感技术,通过测量物体旋转时光电信号的变化来实现转速的测量。
本文将对光电转速传感器的测量原理进行简要分析,以帮助读者更好地理解其工作原理和应用。
一、光电转速传感器的基本原理光电转速传感器的测量原理基于光电传感技术和旋转物体的视觉变化。
其基本构成包括光源、光敏元件和信号处理电路。
当旋转物体转速改变时,光源发射出的光线通过反射或透过物体表面,进入光敏元件。
光敏元件对光线进行探测,并产生电压信号。
通过测量这些电压信号的变化,可以得到旋转物体的转速信息。
二、光电转速传感器的工作原理光电转速传感器的工作原理可以简要描述如下:1. 光源发射光线:光电转速传感器通常采用红外光源或激光光源作为光源。
光源发射的光线照射到旋转物体表面。
2. 光线的反射或透过:光线在经过旋转物体时,会发生反射或透过。
反射光线与透过光线的比例取决于物体的反射特性和透明度。
3. 光敏元件接收光线:光线经过旋转物体后,进入光敏元件。
光敏元件可以是光敏电阻、光敏二极管或光敏晶体管等。
光敏元件对接收到的光线进行探测,并将其转化为电压信号。
4. 信号处理电路处理信号:光敏元件输出的电压信号经过信号处理电路进行放大和滤波等处理。
处理后的信号可以用于测量物体的转速。
三、光电转速传感器的应用光电转速传感器作为一种精密的测量设备,广泛应用于各种工业场景中。
它在自动化生产线、机械设备、汽车工业等领域扮演着重要角色。
具体应用包括但不限于以下几个方面:1. 转子转速测量:光电转速传感器可以用于测量旋转机械设备(如发动机、电机等)的转速。
通过监测转轮表面的光线变化,可精确地获取设备的转速信息,以便实时监控和控制。
2. 风扇、风机转速测量:在空调、冷却设备、风力发电等领域,光电转速传感器常被用于测量风扇、风机等转速。
通过对转速的监测,可实现设备的安全运行和性能优化。
电子转速传感器仪工作原理电子转速传感器是一种用于测量机械设备转速的重要工具。
它采用先进的电子技术,能够准确地测量旋转物体的转速,并将信号转化为数字或模拟形式输出。
在工业生产和科学研究中,电子转速传感器发挥着重要的作用。
一、电子转速传感器的基本原理电子转速传感器利用电磁感应原理来测量物体的转速。
当被测物体旋转时,其上的齿轮、磁体或编码盘等装置会产生变化的磁场。
传感器通过感应这个变化的磁场,测量转速并输出相应的信号。
二、电子转速传感器的工作过程电子转速传感器通常由磁敏传感器、信号调理电路和输出电路组成。
具体的工作过程如下:1. 磁敏传感器感应磁场:磁敏传感器是电子转速传感器的核心部件之一,它根据被测物体上的磁场变化来感应转速。
磁敏传感器上通常带有敏感元件,如霍尔元件或磁电阻元件,能够感应到磁场的变化。
2. 变化的磁场产生电信号:当被测物体旋转时,磁场的变化会导致敏感元件产生电信号。
这个信号的特征与物体的转速有关,一般是脉冲信号或变化的电压信号。
3. 信号调理电路处理电信号:传感器的信号调理电路会对从敏感元件获取的电信号进行处理,以获取更为准确和可靠的转速信息。
信号调理电路常用的处理方法包括滤波、放大和数字转换。
4. 输出电路输出转速信号:处理完的信号将通过输出电路进行进一步处理并输出。
输出的形式可以是模拟信号,如电压或电流的变化;也可以是数字信号,如脉冲信号或数字码。
三、电子转速传感器的应用领域电子转速传感器被广泛应用于各个行业,如汽车、航空航天、工程机械等。
它们的主要应用包括以下几个方面:1. 车辆转速监测:电子转速传感器可以用于测量汽车、摩托车等车辆发动机的转速,帮助实时监测引擎工作状态、控制点火时机等,提高燃烧效率和驾驶安全性。
2. 机械设备控制:电子转速传感器可用于工程机械设备如钻机、起重机等的控制系统中。
通过实时测量转速,可根据需要进行调整控制,确保设备运行在安全、高效的状态下。
3. 生产过程监测:电子转速传感器可以用于生产线上的转速监测和控制,保证生产过程的稳定性和工艺要求的满足。
发动机转速传感器工作原理
发动机转速传感器是一种用于测量发动机转速的设备。
它通常由一个传感器和一个输出信号电路组成。
传感器部分一般采用霍尔元件或光电元件进行转速检测。
其中,霍尔元件通过检测铁芯旋转时的磁场变化来确定发动机转速。
光电元件则利用光遮断原理,当转速齿轮遮挡光源时,光电元件输出信号。
当发动机转动时,转速齿轮或飞轮上的齿轮会与传感器接触或靠近,导致传感器接收到相应的物理信号。
传感器将这些信号转换为电信号,然后通过输出信号电路进行处理。
处理后的信号可以被发动机控制单元(ECU)读取,并根据转速变化调整燃油喷射量、点火时机等参数。
发动机转速传感器的工作原理基本上是通过检测齿轮或飞轮旋转的物理变化来间接测量发动机转速。
它能够实时准确地监测发动机的转速,从而确保发动机正常运行和提供必要的动力输出。
磁阻式转速传感器原理
磁阻式转速传感器是一种测量旋转物体转速的传感器。
它基于磁阻效应的原理工作。
磁阻效应是指在磁场中,磁场方向的改变会引起材料电阻的变化。
磁阻式转速传感器由磁敏元件和信号处理电路组成。
磁敏元件通常是一块具有磁敏效应的芯片,如霍尔元件或磁电阻元件。
当被测转动物体上有一个磁铁时,磁场会影响磁敏元件,并引起其电阻的变化。
信号处理电路接收并处理磁敏元件输出的电阻变化信号,将其转换为转速信息。
信号处理电路通常包括放大器、滤波器和ADC(模数转换器)等组件。
它们将磁敏元件输出的弱信号放大、滤波并转换成数字信号,以便进一步处理和显示。
在实际应用中,磁阻式转速传感器通常安装在被测转动物体的固定部分,而磁铁则固定在旋转部分。
当旋转部分转动时,磁铁靠近磁敏元件,改变了磁场的强度和方向,导致磁敏元件的电阻变化。
通过测量电阻的变化,可以计算出转速信息。
磁阻式转速传感器具有高度灵敏度、稳定性好、响应快速等优点。
它广泛应用于汽车、航空航天、工业自动化等领域,用于测量转速、位置和角度等参数。
分别列举10种接触、非接触传感器种类及原理接触式位移传感器:1位移传感器及其原理:计量光栅是利用光栅的莫尔条纹现象来测量位移的。
“莫尔”原出于法文Moire,意思是水波纹。
几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。
一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。
计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。
下面以透射光栅为例加以讨论。
透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。
目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。
光栅的横向莫尔条纹测位移,需要两块光栅。
一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。
为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。
当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。
由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。
如图 1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。
每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。
由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。
(上海德测电子科技有限公司产品)2螺杆式空压机压力传感器螺杆式空压机压力传感器:是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压力传感器。
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。
其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。
转速传感器种类、原理及发展趋势将旋转物体的转速转换为电量输出的传感器。
转速传感器属于间接式测量装置,可用机械、电气、磁、光和混合式等方法制造。
按信号形式的不同,转速传感器可分为模拟式和数字式两种。
前者的输出信号值是转速的线性函数,后者的输出信号频率与转速成正比,或其信号峰值间隔与转速成反比。
转速传感器的种类繁多、应用极广,其原因是在自动控制系统和自动化仪表中大量使用各种电机,在不少场合下对低速(如每小时一转以下)、高速(如每分钟数十万转)、稳速(如误差仅为万分之几)和瞬时速度的精确测量有严格的要求。
常用的转速传感器有光电式、电容式、变磁阻式以及测速发电机。
下面浅析这几种传感器。
一.光电式转速传感器
光电式转速传感器对转速的测量,主要是通过将光线的发射与被测物体的转动相关联,再以光敏元件对光线的进行感应来完成的。
光电式转速传感器从工作方式角度划分,分为透射式光电转速传感器和反射式光电转速传感器两种。
1、投射式光电转速传感器
投射式光电转速传感器设有读数盘和测量盘,两者之间存在间隔相同的缝隙。
投射式光电转速传感器在测量物体转速时,测量盘会随着被测物体转动,光线则随测量盘转动不断经过各条缝隙,并透过缝隙投射到光敏元件上。
投射式光电转速传感器的光敏元件在接收光线并感知其明暗变化后,即输出电流脉冲信号。
投射式光电转速传感器的脉冲信号,通过在一段时间内的计数和计算,就可以获得被测量对象的转速状态。
2、反射式光电转速传感器
反射式光电转速传感器是通过在被测量转轴上设定反射记号,而后获得光线反射信号来完成物体转速测量的。
反射式光电转速传感器的光源会对被测转轴发出光线,光线透过透镜和半透膜入射到被测转轴上,而当被测转轴转动时,反射记号对光线的反射率就会发生变化。
反射式光电转速传感器内装有光敏元件,当转轴转动反射率增大时,反射光线会通过透镜投射到光敏元件上,反射式光电转速传感器即可发出一个脉冲信号,而当反射光线随转轴转动到另一位置时,反射率变小光线变弱,光敏元件无法感应,即不会发出脉冲信号。
二、变磁阻式转速传感器
它属于变磁阻式传感器。
变磁阻式传感器的三种基本类型,电感式传感器、变压器式传感器和电涡流式传感器都可制成转速传感器。
电感式转速传感器应用较广,它利用磁通变化而产生感应电势,其电势大小取决于磁通变化的速率。
这类传感器按结构不同又分为开磁路式和闭磁路式两种。
开磁路式转速传感器(图4a)结构比较简单,输出信号较小,不宜在振动剧烈的场合使用。
闭磁路式转速传感器由装在转轴上的外齿轮、内齿轮、线圈和永久磁铁构成(图4b)。
内、外齿轮有相同的齿数。
当转轴连接到被测轴上一起转动时,由于内、外齿轮的相对运动,产生磁阻变化,在线圈中产生交流感应电势。
测出电势的大小便可测出相应转速值。
三.电容式转速传感器
它属于电容式传感器,有面积变化型和介质变化型两种。
1、面积变化型
图3中是面积变化型的原理,图中电容式转速传感器由两块固定金属板和与转动轴相连的可动金属板构成。
可动金属板处于电容量最大的位置,当转动轴旋转180°时则处于电容量最小的位置。
电容量的周期变化速率即为转速。
可通过直流激励、交流激励和用可变电容构成振荡器的振荡槽路等方式得到转速的测量信号。
2、介质变化型
介质变化型是在电容器的两个固定电极板之间嵌入一块高介电常数的可动板而构成的。
可动介质板与转动轴相连,随着转动轴的旋转,电容器板间的介电常数发生周期性变化而引起电容量的周期性变化,其速率等于转动轴的转速。
图中齿轮外沿面作为电容器的动极板,当电容器定极板与齿顶相对时,电容量最大,而与齿隙相对时,电容量最小。
因此,电容量的变化频率应与齿轮的转频成正比。
四、霍尔转速传感器
霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。
霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。
1、霍尔转速传感器的工作原理
霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。
霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。
霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。
2、霍尔转速传感器的测量方法
霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质
的运动状态。
霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。
高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。
霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。
五、测速发电机
测速发电机是自动控制系统中的信号元件,它可以把转速信号转换成电气信号。
测速发电机有直流测速发电机和异步测速发电机。
直流测速发电机是一种微型直流发电机,按励磁方式分为它激式和永磁式两大类。
在理想情况下,输出特性为一条直线,而实际上输出特性与直线有误差。
引起误差的主要原因是:电枢反应的去磁作用,电刷与换向器的接触压降,电刷偏离几何中性线,温度的影响等。
因此,在使用时必须注意电机的转速不得超过规定的最高转速,负载电阻不小于给定值。
在精度要求严格的场合,还需要对测速机进行温度补偿。
纹波电压造成了输出电压不稳定,降低了测速发电机的精度。
异步测速发电机的结构与空心杯转子交流伺服电动机完全相同。
当异步测速发电机的励磁绕组产生的磁通d Φ& 保持不变,转子不转时输出电压为零,转子旋转时切割励磁磁通产生感应电动势和电流,建立横轴方向的磁通,在输出绕组中产生感应电动势,从而产生输出电压。
输出电压的大小与转速成正比,但其频率与转速无关,等于电源的频率。
理想的输出
特性也是一条直线,但实际上并非如此。
引起误差的主要原因是: d Φ& 的大小和相位都随着转速而变化,负载阻抗的大小和性质,励磁电源的性能,温度以及剩余电压,其中剩余电压是误差的主要部分。
表征异步测速发电机性能的主要技术指标有线性误差、相位误差和剩余电压。
引起剩余电压的原因很多,如磁路不对称、气隙不均匀、输出绕组和励磁绕组在空间不是严格相差90°电角度、绕组匝间短路、铁芯片间短路、转子杯材料和厚度不均匀以及寄生电容的存在等等。
在控制系统中,剩余电压的同相分量引起系统误差,正交和高次谐波分量将使放大器饱和。
消除剩余电压的方法很多,除了改进电机的制造材料和工艺外,还可采用外接补偿装置。
在实际中为了提高异步测速发电机的性能通常采用四极电机。
为了减小误差,应增大转子电阻和负载阻抗,减小励磁绕组和输出绕组的漏阻抗,提高励磁电源的频率(采用400HZ 的中频励磁电源)。
使用时电机的工作转速不应超过规定的转速范围。
为了满足控制系统的要求,对测速发电机的性能要求也越来越高。
为此人们在普通测速发电机的基础上,研制出了永磁高灵敏度直流测速发电机和无刷直流测速发电机。
测速发电机在自动控制系统中是一个非常重要的元件,它可作为校正元件、阻尼元件、测量元件、解算元件和角加速度信号元件等。
五、各公司转速传感器外观
华夏变速箱传感器外观
华夏单路输出传感器外观
华夏双路输出传感器外观。