热电偶测温性能实验报告
- 格式:doc
- 大小:50.50 KB
- 文档页数:7
热电偶实验报告引言热电偶是一种常见的温度测量仪器,利用热电效应测量物体的温度。
本次实验旨在通过热电偶测量不同温度下的热电势,进一步了解热电偶的原理和特性。
一、实验原理热电偶基于热电效应,即在两种不同材料的接触处,由于温度差异而产生的电压。
通常热电偶由两种不同金属的合金组成,两端形成接触点。
当一个接点被加热,另一个接点处于常温状态,则两个接点之间会产生一定的电势差。
二、实验材料本次实验使用的热电偶为常见的铁-铜热电偶,选用的金属合金分别是铁和铜的合金。
因为铁和铜的合金对于温度变化有较大的响应,故常被用于温度测量。
三、实验步骤1.将热电偶的铁合金端片固定于一个恒温器中,并通过电炉使其升温,同时将铜端片悬空。
2.使用万用表测量铁合金端片与铜端片之间的电势差。
3.依次升高恒温器的温度,并记录相应的电势差。
4.完成测量后,将数据整理并绘制电势差随温度变化的曲线。
四、实验结果通过实验测量,我们得到了热电势随温度变化的曲线图。
曲线呈现出一定的线性关系,即温度越高,热电势越大。
这与热电效应的原理相符合。
同时,根据实验数据我们还可以计算出热电偶的灵敏度,即单位温度差引起的热电势变化。
五、实验分析1.热电势与温度的线性关系说明了热电偶测温的可靠性。
热电偶可用于不同温度范围内的精确测量。
2.热电势的大小与所选金属合金的特性有关。
不同金属合金对温度响应的灵敏度不同,需要根据实际应用场景进行选择。
3.热电偶在实际应用中需要注意保护措施。
因为长期高温作用可能导致铁合金端片的氧化,从而影响测量精度。
4.实验中我们只使用了铁-铜热电偶,但实际上还有其他种类的热电偶,如铬-铜、铬-铓等。
不同热电偶适用于不同温度范围和环境条件,需要根据实际需求进行选择。
六、实验总结热电偶是一种常见且可靠的温度测量仪器。
通过本次实验,我们深入了解了热电偶的原理和特性,并通过实验数据对其性能进行了评估。
在实际应用中,我们应根据具体需求选择合适的热电偶,并注意使用和保养的细节。
热电偶测温实验结果分析热电偶测温是一种技术,可以准确测量有关介质内分布和变化的温度。
这种技术可以被广泛应用于发电厂、化工厂和食品加工厂,以及机械制造厂等多种场景,确保温度的准确控制,使生产过程能够有效地进行。
为了进一步了解热电偶测温技术的性能,本文通过对一次热电偶测温实验结果的分析,分析热电偶的优势和劣势,以及热电偶测温技术可能遇到的问题和解决方案。
一、实验性质本次实验应用了洛氏热电偶测温技术,拟目标温度为1200℃,实验温度控制在1150℃至1250℃之间,用时约为三个小时。
二、实验结果实验结果表明,在规定的温度范围内,热电偶能够准确测量各类介质的温度,并且能够严格控制温度变化,温度控制精度达到1℃以上。
此外,热电偶还具备了防护功能,即可以保护温度超出规定范围时不会发生过热现象,从而提高在实际操作中的安全性。
三、热电偶的优势1.速响应:热电偶的响应速度较快,可以迅速反映介质的温度变化;2.准确性:热电偶测温的准确性比其他传感器高,可以准确反映介质的温度;3.稳定性:热电偶能够更稳定地测量温度,不会受外界因素的影响;4.可靠性:热电偶可以稳定安全地测量温度,使用寿命较长;5.维护方便:由于热电偶测温系统没有活动部件,而仅仅是温度传感器,维护和保养成本较低。
四、热电偶的劣势1.精度较低:热电偶的测量精度一般在±1℃,较其他传感器低;2.灵敏度差:热电偶有一定的偏差,温度变化幅度较小时不能准确反映;3.数据传输速度慢:热电偶测量数据的传输速度较低,从而降低了实时性。
五、解决方案1.入多个热电偶:可以在安装热电偶的同时,引入多种温度传感器,以提高温度测量精度;2.使用智能温度控制系统:智能温度控制系统可以实时监测温度变化,从而及时采取措施调整温度,避免过冷或过热;3.提高热电偶的测量精度:可以通过改进热电偶的测量电路,采用更新的技术和设备,以提高热电偶测量温度的精度;4.优化数据采集技术:可以采用有线或无线传感技术进行数据采集,以提高数据传输的速度和可靠性。
e型热电偶测温实验报告e型热电偶测温实验报告引言:热电偶是一种常用的温度测量仪器,其原理基于热电效应。
本实验通过使用e 型热电偶,探究其在不同温度下的电压输出变化,以及与标准温度计的对比,以验证其测温的准确性和可靠性。
实验步骤:1. 实验器材准备本实验所需器材包括e型热电偶、标准温度计、数字温度计、电压表、实验电源等。
2. 实验环境准备将实验器材放置在恒定的室温环境中,确保实验过程中环境温度的稳定性。
3. 实验前校准使用标准温度计对实验环境的温度进行测量,并记录下来。
将电压表连接到电压源上,调整电压源的输出电压,使电压表示数稳定在零点。
4. 测温实验将e型热电偶的两个接线端分别连接到电压表和数字温度计上。
将e型热电偶的探头放置在待测温度物体的表面,并等待一段时间,直到温度稳定。
5. 数据记录与分析记录下e型热电偶在不同温度下的电压输出值,并与数字温度计的测量结果进行对比。
通过计算得到热电偶的灵敏度和误差范围等数据。
实验结果与讨论:在实验过程中,我们将e型热电偶分别放置在室温环境和不同温度物体表面进行测温。
通过记录和对比实验数据,我们得到以下结果和讨论:1. 温度与电压输出的关系根据实验数据,我们发现e型热电偶的电压输出随着温度的升高而增加。
这符合热电效应的基本原理,即温度差引起的电势差。
2. 与标准温度计的对比将e型热电偶的测量结果与标准温度计的测量结果进行对比,我们发现两者的测温结果基本一致。
这表明e型热电偶在测温方面具有较高的准确性和可靠性。
3. 热电偶的灵敏度和误差范围通过计算实验数据,我们得到e型热电偶的灵敏度和误差范围。
灵敏度是指单位温度变化引起的电压输出变化,而误差范围则是指实际测量值与标准值之间的差异。
我们发现e型热电偶的灵敏度较高,误差范围较小,说明其在温度测量中的精度较高。
结论:通过本实验,我们验证了e型热电偶在温度测量方面的准确性和可靠性。
实验结果表明,e型热电偶的电压输出与温度之间存在一定的线性关系,且与标准温度计的测量结果基本一致。
热电偶测温实验总结
1 热电偶测温
热电偶是由金属导元和热敏元件组成的一种测温仪器,是一种无接触测量方法,主要用于对工作物体或测量介质表面温度的测试和测量。
在热电偶测温实验中,可以测量出被测温度,也可以计算出测温点处的信号数值。
2 实验目的
热电偶测温实验的目的在于通过测量热电偶中的输出电压,来测量温度变化,以确定热电偶的精度和性能,为实际应用做准备。
3 实验环境准备
实验前的准备工作比较简单,只需要一个使用新的热电偶的测温系统,一台数字多功能校准器,诸如热源、冷源等功能仪器,以及一些检测工具,如热电偶电阻表、电子表等。
4 实验步骤
(1) 温度补偿IC连接,先将热电偶的负载与温度补偿IC的连接线进行连接,并将补偿IC与校准器的地接短接;
(2) 安装温度补偿IC,然后将其安装到信号放大系统中;
(3) 温度模拟实验,先用冷源环境进行低温模拟实验,校准器给定电压V1,冷源仪器进行冷却,冷源温度在一定范围内调节,对热电偶电压V2测量;
(4) 高温模拟实验,用热源进行模拟实验,调节热源温度,测量热电偶输出V2,记录实测值与标准值数据;
(5) 温度补偿IC校准,用校准器给定电压V1,根据实测值与标准值之差,计算出来的电压值对温度补偿IC做校准,使温度补偿IC的灵敏度更接近标准值。
5 实验结果
根据实验步骤,最后结果显示,热电偶测温实验的精度达到标准要求,温度补偿的灵敏度接近标准值。
实验分析结果表明,热电偶工作稳定,可靠性好,具有良好的环境适应性和可操作性,是测温仪器中优越的选择。
总之,通过热电偶测温实验,可以较好地测量温度,检测热电偶校准的精度,为实际应用做准备,取得满意的测量结果。
热电偶测温性能实验报告第一:实验原理热电偶是基于“温差电效应”的测辐射热器件。
热电偶型温度传感器具有量程大、成本低、响应速度快、耐久性好等特点,被广泛的应用于工业现场的温度测量。
R型热电偶可以测量1700多度(℃)的高温,在高温测量场合有广泛的应用。
GB/T 16839将热电偶分成如下几个类别:热电偶的字母标志也称为分度号热电偶中两种金属的连接端称为测量端,也称为热端;与之相对应的一端称为冷端。
冷端作为参考端,早期使用冰水温度(0℃)作为参考。
通过测量的电压的不同,以冷端为参考,来计算热端的温度。
1. 温差电效应:简单地说,就是在由两种不同的金属导体或是半导体材料构成的结点处,可以产生接触电动势。
将这两种不同的材料连接成一对节点构成的闭合回路,并使其中一个结点接受辐射(热辐射或光辐射),则该节点就会产生“温度升高”,与另一个没有接受辐射的结点之间出现温度差,导致两个结点的接触电动势不同,从而在闭合回路中产生电流。
这种效应也叫作“塞贝克效应”。
2. 测温原理:使用热电偶时,通常利用其中一个结点作为测量端(热端),用于吸收热辐射而产生“温升”,而另一结点作为参考端(冷端),并维持恒温。
下图为简单测试原理结构图。
通过检测电流的大小就可以探测热辐射的大小,继而完成测温。
(一)、热电偶测温基本原理将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。
如图1所示。
温度t端为感温端称为测量端, 温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0), 因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0)式中EAB(t,t0)-热电偶的热电势;EAB(t)-温度为t时工作端的热电势;EAB(t0)-温度为t0时冷端的热电势。
第1篇一、实验目的1. 了解温度测量的基本原理和方法;2. 掌握常用温度传感器的性能特点及适用范围;3. 学会使用温度传感器进行实际测量;4. 分析实验数据,提高对温度测量技术的理解。
二、实验仪器与材料1. 温度传感器:热电偶、热敏电阻、PT100等;2. 温度测量仪器:数字温度计、温度测试仪等;3. 实验装置:电加热炉、万用表、连接电缆等;4. 待测物体:不同材质、不同形状的物体。
三、实验原理1. 热电偶测温原理:利用两种不同金属导体的热电效应,即当两种导体在两端接触时,若两端温度不同,则会在回路中产生电动势。
通过测量电动势的大小,可以计算出温度。
2. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,根据电阻值的变化,可以计算出温度。
3. PT100测温原理:PT100是一种铂电阻温度传感器,其电阻值随温度变化而线性变化,通过测量电阻值,可以计算出温度。
四、实验步骤1. 实验一:热电偶测温实验(1)将热电偶插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热电偶冷端温度;(3)根据热电偶分度表,计算热电偶热端温度;(4)比较实验数据与实际温度,分析误差。
2. 实验二:热敏电阻测温实验(1)将热敏电阻插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热敏电阻温度;(3)根据热敏电阻温度-电阻关系曲线,计算热敏电阻温度;(4)比较实验数据与实际温度,分析误差。
3. 实验三:PT100测温实验(1)将PT100插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量PT100温度;(3)根据PT100温度-电阻关系曲线,计算PT100温度;(4)比较实验数据与实际温度,分析误差。
五、实验结果与分析1. 实验一:热电偶测温实验实验结果显示,热电偶测温具有较高的准确性,误差在±0.5℃以内。
分析误差原因,可能包括热电偶冷端补偿不准确、热电偶分度表误差等。
2. 实验二:热敏电阻测温实验实验结果显示,热敏电阻测温具有较高的准确性,误差在±1℃以内。
热电偶测温实验报告
本文为热电偶测温实验报告,采用温度记录仪与热电偶结合的方法实
现被测物的温度测量。
实验内容包括:
一、实验仪器简介
1.温度记录仪:主要用于实时测量温度,可高精度测量温度。
2.热电偶:可实现物体的温度监测和控制,温度变化时可反映出来。
二、实验过程
1.校准仪器:使用校正仪器对温度记录仪、热电偶进行校准。
2.连接电源:将温度记录仪和热电偶连接到相应的电源上,完成电源线、启动电源。
3.安装热电偶:将测温介质根据需要连接在热电偶上;用铝箔等材料将热电偶与介质表面贴紧,完成热电偶的安装。
4.测试记录:调整好温度记录仪的记录间隔,用示波器等仪器查看温度输出,记录相应的温度数据。
三、实验结果
1.实验中,测试环境的温度大约为25℃,实验中的温度误差在±3℃之间,与理论数据相吻合。
2.利用温度记录仪实时监测被测物的温度,并将实际温度曲线图表示出来。
四、实验结论
通过本次实验,可以保证温度测量准确,实验结果与理论数据吻合,表明实验过程有效,可采用热电偶测温方法完成温度的测量。
总的来说,本次实验较为成功。
热电偶测温性能实验报告热电偶测温性能实验报告引言:热电偶是一种常用的温度测量装置,其原理基于热电效应。
热电偶由两种不同材料的导线组成,当两个导线的接触点处于不同温度时,就会产生电动势。
本实验旨在探究热电偶的测温性能,包括响应时间、测量精度和线性度等方面的考察。
实验装置:本实验采用了一组标准热电偶和温度控制装置。
标准热电偶由铜和常见的测温材料铁铬合金(K型热电偶)组成。
温度控制装置通过加热电源和温度传感器实现对被测温度的控制和监测。
实验步骤:1. 将标准热电偶的冷端固定在恒温槽中,确保冷端与环境温度相同。
2. 将标准热电偶的热端与被测温度接触,确保接触良好。
3. 打开温度控制装置,设定被测温度为25℃。
4. 记录热电偶输出电压,作为初始电压。
5. 逐步提高温度控制装置的设定温度,每次提高5℃,并记录热电偶输出电压。
6. 当设定温度达到80℃时,开始逐步降低温度控制装置的设定温度,每次降低5℃,并记录热电偶输出电压。
7. 重复步骤3-6,直到设定温度回到25℃。
实验结果:通过实验记录的数据,我们可以得到热电偶在不同温度下的输出电压。
根据热电偶的特性曲线,我们可以计算出热电偶的响应时间、测量精度和线性度等性能指标。
1. 响应时间:响应时间是指热电偶从遇到温度变化到输出电压稳定的时间。
通过实验数据的处理,我们可以绘制出热电偶的响应时间曲线。
从曲线上可以看出,热电偶在温度变化后,输出电压会迅速变化,并在一段时间后趋于稳定。
响应时间可以通过计算输出电压达到稳定值所需的时间来确定。
2. 测量精度:测量精度是指热电偶测量温度与真实温度之间的偏差。
通过实验数据的处理,我们可以计算出热电偶的测量精度。
一般来说,热电偶的测量精度与热电偶的材料和制造工艺有关。
在实验中,我们可以通过与其他精度更高的温度测量装置进行比对,来评估热电偶的测量精度。
3. 线性度:线性度是指热电偶输出电压与温度之间的关系是否呈线性。
通过实验数据的处理,我们可以绘制出热电偶的线性度曲线。
温度传感器—热电偶测温实验一、实验原理:由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。
图1 热电偶测温系统图图1中T 为热端,To 为冷端,热电势Et=)T ()T (o AB AB本实验中选用两种热电偶镍铬—镍硅(K )和镍铬—铜镍(E )。
实验所需部件:K 、E 分度热电偶、温控电加热炉、214位数字电压表(自备) 二、实验步骤:1、观察热电偶结构(可旋开热电偶保护外套),了解温控电加热器工作原理。
温控器:作为热源的温度指示、控制、定温之用。
温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。
温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止。
然后将拨动开关扳向“测量”侧,(注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。
2、首先将温度设定在50℃左右,打开加热开关,热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端,E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,214位万用表置200mv 档,当钮子开关倒向“温控”时测E 分度热电偶的热电势,并记录电炉温度与热电势E 的关系。
3、因为热电偶冷端温度不为0℃,则需对所测的热电势值进行修正E (T ,To )=E(T,t 1)+E(T 1,T 0)实际电动势=测量所得电势 +温度修正电势查阅热电偶分度表,上述测量与计算结果对照。
4、继续将炉温提高到70℃、90℃、110℃和130℃,重复上述实验,观察热电偶的测温性能。
三、注意事项:加热炉温度请勿超过150℃,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加热炉温度。
热电偶测温性能实验一、实验目的了解热电偶测量温度的性能与应用范围。
二、基本原理热电偶测温原理是利用热电效应。
当两种不同的金属组成回路,如两个接点有温度差,就会产生热电势,这就是热电效应。
温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的 0ºC、25ºC。
冷热端温差越大,热电偶的输出电动势就越大,因此可以用热电动势大小衡量温度的大小。
常见的热电偶有 K(镍铬-镍硅或镍铝)、E(镍铬-康铜)等,并且有相应的分度表即参考端温度为 0℃时的测量端温度与热电动势的对应关系表,可以通过测量热电偶输出的热电动势再查分度表得到相应的温度值。
热电偶分度表是定义在热电偶的参考端为 0℃时热电偶输出的热电动势与热电偶测量端温度值的对应关系。
热电偶测温时要对参考端进行补偿,计算公式:E(t,to)=E(t,to′)+E(to′,to)式中:E(t,to)是热电偶测量端温度为 t,参考端温度 to=0℃时的热电动势值;E(t,to′)是热电偶测量温度 t,参考端温度为 to′不等于 0℃的热电动势;E(to′,to)是热电偶测量端温度为 to′,参考端温度为 to=0℃的热电动势。
三、需用器件与单元K 型、E 型热电偶、温度测量控制仪、温度源、差动放大器、电压表、直流稳压电源+15V。
四、实验步骤:1、将温控表上的“加热”和“冷却”拨到内控,将 K、E 热电偶插到温度源的插孔中,K 型的自由端接到温度控制仪上标有传感器字样的插孔中。
然后将温度源的航空插头插入实验箱侧面的航空插头,将实验箱的+15V 电压、地接到温度源的 2-24V 上,将实验箱的多功能控制器 D0 两端接到温度源的风机电源 Di 上。
2、首先将差动放大器的输入端短接并接到地,然后将放大倍数顺时针旋转到底,调节调零电位器使输出电压为零。
去掉输入端的短接线,将 E 型热电偶的自由端与差动放大器的输入端相接(红色接正,蓝色接负),同时 E 型热电偶的蓝色接线端子接地。
热电偶测温性能实验报告一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理(1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。
一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。
热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。
热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。
因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。
B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度(2)分类:(S型热电偶)铂铑10-铂热电偶铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。
该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
(R型热电偶)铂铑13-铂热电偶铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。
R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。
1967年至1971年间,英国NPL,美国NBS和加拿大NRC三大研究机构进行了一项合作研究,其结果表明,R型热电偶的稳定性和复现性比S型热电偶均好,我国目前尚未开展这方面的研究。
R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
(B型热电偶)铂铑30-铂铑6热电偶铂铑30-铂铑6热电偶(B型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(BN)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。
该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800℃。
B型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长,测温上限高等优点。
适用于氧化性和惰性气氛中,也可短期用于真空中,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。
B型热电偶一个明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。
B型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
(K型热电偶)镍铬-镍硅热电偶镍铬-镍硅热电偶(K型热电偶)是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。
正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分为:Ni:Si=97:3,其使用温度为-200~1300℃。
K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。
广泛为用户所采用。
K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。
(N型热电偶)镍铬硅-镍硅热电偶镍铬硅-镍硅热电偶(N型热电偶)为廉金属热电偶,是一种最新国际标准化的热电偶,是在70年代初由澳大利亚国防部实验室研制成功的它克服了K型热电偶的两个重要缺点:K型热电偶在300~500℃间由于镍铬合金的晶格短程有序而引起的热电动势不稳定;在800℃左右由于镍铬合金发生择优氧化引起的热电动势不稳定。
正极(NP)的名义化学成分为:Ni:Cr:Si=84.4:14.2:1.4,负极(NN)的名义化学成分为:Ni:Si:Mg=95.5:4.4:0.1,其使用温度为-200~1300℃。
N型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,抗氧化性能强,价格便宜,不受短程有序化影响等优点,其综合性能优于K 型热电偶,是一种很有发展前途的热电偶.N型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。
(E型热电偶)镍铬-铜镍热电偶镍铬-铜镍热电偶(E型热电偶)又称镍铬-康铜热电偶,也是一种廉金属的热电偶,正极(EP)为:镍铬10合金,化学成分与KP相同,负极(EN)为铜镍合金,名义化学成分为:55%的铜,45%的镍以及少量的锰,钴,铁等元素。
该热电偶的使用温度为-200~900℃。
E型热电偶热电动势之大,灵敏度之高属所有热电偶之最,宜制成热电堆,测量微小的温度变化。
对于高湿度气氛的腐蚀不甚灵敏,宜用于湿度较高的环境。
E热电偶还具有稳定性好,抗氧化性能优于铜-康铜,铁-康铜热电偶,价格便宜等优点,能用于氧化性和惰性气氛中,广泛为用户采用。
E型热电偶不能直接在高温下用于硫,还原性气氛中,热电势均匀性较差。
(J型热电偶)铁-铜镍热电偶铁-铜镍热电偶(J型热电偶)又称铁-康铜热电偶,也是一种价格低廉的廉金属的热电偶。
它的正极(JP)的名义化学成分为纯铁,负极(JN)为铜镍合金,常被含糊地称之为康铜,其名义化学成分为:55%的铜和45%的镍以及少量却十分重要的锰,钴,铁等元素,尽管它叫康铜,但不同于镍铬-康铜和铜-康铜的康铜,故不能用EN和TN来替换。
铁-康铜热电偶的覆盖测量温区为-200~1200℃,但通常使用的温度范围为0~750℃J型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,广为用户所采用。
J型热电偶可用于真空,氧化,还原和惰性气氛中,但正极铁在高温下氧化较快,故使用温度受到限制,也不能直接无保护地在高温下用于硫化气氛中。
(T型热电偶)铜-铜镍热电偶铜-铜镍热电偶(T型热电偶)又称铜-康铜热电偶,也是一种最佳的测量低温的廉金属的热电偶。
它的正极(TP)是纯铜,负极(TN)为铜镍合金,常之为康铜,它与镍铬-康铜的康铜EN通用,与铁-康铜的康铜JN不能通用,尽管它们都叫康铜,铜-铜镍热电偶的盖测量温区为-200~350℃。
T型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,特别在-200~0℃温区内使用,稳定性更好,年稳定性可小于±3μV,经低温检定可作为二等标准进行低温量值传递。
T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制2 热电偶的补偿1. 补偿导线的选择补偿导线一定要根据所使用的热电偶种类和所使用的场合进行正确选择。
例如,k型偶应该选择k型偶的补偿导线,根据使用场合,选择工作温度范围。
通常kx工作温度为-20~100℃,宽范围的为-25~200℃。
普通级误差为±2.5℃,精密级为±1.5℃。
2. 接点连接与热电偶接线端2个接点尽可能近一点,尽量保持2个接点温度一致。
与仪表接线端连接处尽可能温度一致,仪表柜有风扇的地方,接点处要保护不要使得风扇直吹到接点。
3. 使用长度因为热电偶的信号很低,为微伏级,如果使用的距离过长,信号的衰减和环境中强电的干扰偶合,足可以使热电偶的信号失真,造成测量和控制温度不准确,在控制中严重时会产生温度波动。
根据我们的经验,通常使用热电偶补偿导线的长度控制在15米内比较好,如果超过15米,建议使用温度变送器进行传送信号。
温度变送器是将温度对应的电势值转换成直流电流传送,抗干扰强。
4. 布线补偿导线布线一定要远离动力线和干扰源。
在避免不了穿越的地方,也尽可能采用交叉方式,不要平行。
5. 屏蔽补偿导线为了提高热电偶连接线的抗干扰性,可以采用屏蔽补偿导线。
对于现场干扰源较多的场合,效果较好。
但是一定要将屏蔽层严格接地,否则屏蔽层不仅没有起到屏蔽的作用,反而增强干扰。
热电偶用补偿导线的作用是来延伸热电极即移动热电偶的冷端,与显示仪表联接构成测温系统。
本产品等效采用IEC 584-3《热电偶第三部份-补偿导线》国家标准。
绝缘层和护层选用进口优质氟塑料,并采用整体连续挤出新工艺,使该产品具有优良的耐酸、碱、耐磨和不燃延之性能,可浸入油水中长期使用。
使用温度在60-205-260℃,属于当代国际先进水平。
产品主要应用于各种测温装置,已被广泛用核电、石油、化工、冶金、电力等部门。
热电偶补偿导线的作用是来延伸热电极即移动热电偶的冷端,与显示仪表联接构成测温系统。
本产品采用GB/T 4989-94《热电偶用补偿导线》国家标准(等效采用IEC584-3《热电偶第三部分—补偿导线》国际标准),绝缘层和护层选用进口优质氟塑料,并采用整体连续挤出新工艺,使该产品具有优良的耐酸,碱、耐磨和不燃延之性能,可浸入油水中长期使用。
使用温度—60—205—260℃,属于当代国际先进水平。
产品主要应用于各种测温装置,已被广泛用于石油、化工、冶金、电力等部门。