一元二次方程及其解法测试卷a人教新课标九年级上
- 格式:docx
- 大小:22.91 KB
- 文档页数:4
【走进重高汇编】九上数学第二十一章一元二次方程单元测试A卷一.选择题(共8小题)1.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=2,x2=3 D.x1=2,x2=﹣32.方程(m﹣2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±23.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到600万元,设3月份到5月份营业额的平均月增长率为x,则下列方程正确的是()A.400(1+10%)(1+x)2=600 B.400(1+10%)x2=600C.400(1+x)2=600 D.400+400(1+10%)+400(1+x)2=6004.武汉市某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米,设人行道的宽为x米,下列方程:①(36﹣2x)(20﹣x)=96×6 ②2×20x+(36﹣2x)x=36×20﹣96×6③(18﹣x)(10﹣)=×96×6 其中正确的个数为()A.0个 B.1个C.2个D.3个5.关于x的方程ax2+bx+c=3的解与(x﹣1)(x﹣4)=0的解相同,则a+b+c的值为()A.2 B.3 C.1 D.46.已知a,b,c为△ABC的三边长,则关于x的一元二次方程4x2+4(a+b)x+c2=0的根的情况()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.无法判断7.下列方程中,无论b取什么实数,总有两个不相等的实数根的是()A.x2+bx+1=0 B.x2+bx=b2 C.x2+bx+b=0 D.x2+bx=b2+18.已知关于x的方程x2﹣(a2﹣2a﹣15)x+a﹣1=0的两个根互为相反数,则a是()A.5 B.﹣3 C.5或﹣3 D.1二.填空题(共8小题)9.若将方程x2﹣8x=7化为(x﹣m)2=n,则m= ,n= .10.已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a= ,另一根为.11.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是.12.关于x的一元二次方程mx2+(2m﹣1)x+m=0有两个不相等的实数根,则m的取值范围是.13.定义新运算“※”如下:当a≥b时,a※b=ab+b,当a≤b时,a※b=ab﹣a,若(2x﹣1)※(x+2)=0,则x= .14.已知实数a、b分别满足a2﹣6a+4=0,b2﹣6b+4=0,则+的值是.15.已知关于x的方程x2+3x+m=0.如果该方程有两个实数根,那么m的值可以是(任写一个);如果m取使方程x2+3x+m=0有两个实数根的最大整数,且方程x2+mx+n=0的两个实数根x1、x2满足x12+x22>1,那么n的取值范围是.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是.(填上你认为正确结论的所有序号)三.解答题(共8小题)17.选用适当的方法解下列方程:(1)(x﹣2)2﹣9=0;(2)x2+2x=3;(3);(4)2x2﹣5x+1=0.18.已知:矩形ABCD的对角线AC、BD的长是关于x的方程的两个实数根.(1)求m的值;(2)直接写出矩形面积的最大值.19.有一块长方形的土地,如图,宽为120m,建筑商把它分成三部分:甲、乙、丙.甲和乙为正方形,现计划甲建住宅区;乙建商场;丙开辟公园,公园的面积为3200m2,那么这块地长应为多少?20.法国数学家韦达最早发现一元n次方程中根与系数之间的关系,因此,人们把这个关系称为韦达定理.初中阶段我们了解的韦达定理为:一元二次方程ax2+bx+c=0(a≠0),若它的两根为.请根据下面例题所提供的方法,结合韦达定理,完成下面的解答.例题:已知:p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求的值.解:由p2﹣p﹣1=0,1﹣q﹣q2=0,可知p≠0,q≠0又∵pq≠1∴∴1﹣q﹣q2=0可变形为的特征,所以p与是方程x2﹣x﹣1=0的两个不相等的实数根由韦达定理得:∴(1)若,且p≠q,求的值.(2)2m2﹣5m﹣1=0,,且m≠n.求的值.21.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.22.在2016年圣诞期间,甲卖家的A商品进价为400元,他首先在进价的基础上增加100元,由于销量太好,他又连续两次涨价,结果标价比进价的2倍还多45元.(1)求甲卖家这两次涨价的平均增长率;(2)在这个圣诞期间,乙商家利用节日效应,大量销货、减少库存.原来乙商家卖的B商品销售单价为80元,一周的销量仅为40件,圣诞期间他把销售单价下调a%,并作大量宣传,结果在圣诞节这一天的销量就比原来一周的销量增加(a+10)%,结果圣诞节那一天的总销售额达到3456元.求a 的值.23.如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.24.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP= 6cm,BQ= 12cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10cm2?(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.【走进重高汇编】九上数学第二十一章一元二次方程单元测试A卷一.选择题(共8小题)1.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=2,x2=3 D.x1=2,x2=﹣3【分析】方程利用因式分解法求出解即可.【解答】解:方程(x﹣2)(x+3)=0,可得x﹣2=0或x+3=0,解得:x1=2,x2=﹣3,故选:D.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.方程(m﹣2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2【分析】由一元二次方程的定义可知|m|=2,且m﹣2≠0,从而可求得m的值.【解答】解:∵方程(m﹣2)x|m|+3mx+1=0是关于x的一元二次方程,∴|m|=2,且m﹣2≠0.解得:m=﹣2.故选:C.【点评】本题主要考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键.3.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到600万元,设3月份到5月份营业额的平均月增长率为x,则下列方程正确的是()A.400(1+10%)(1+x)2=600 B.400(1+10%)x2=600C.400(1+x)2=600 D.400+400(1+10%)+400(1+x)2=600【分析】3月份的营业额=2月份的营业额×(1+10%),4月份的营业额=3月份的营业额×(1+x),5月份的营业额=4月份的营业额×(1+x),把相关数值代入即可得到相应方程.【解答】解:∵2月份的营业额为400万元,3月份的营业额比2月份增加10%,∴3月份的营业额=400×(1+10%),∴4月份的营业额=400×(1+10%)×(1+x),∴5月份的营业额=400×(1+10%)×(1+x)×(1+x),【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.注意先求得3月份的营业额.4.武汉市某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米,设人行道的宽为x米,下列方程:①(36﹣2x)(20﹣x)=96×6②2×20x+(36﹣2x)x=36×20﹣96×6③(18﹣x)(10﹣)=×96×6其中正确的个数为()A.0个B.1个C.2个D.3个【分析】六块草坪组合到一起,正好构成一个矩形,根据这矩形的面积,设人行道的宽为x米,则矩形的长是(36﹣2x)m,宽是(20﹣x)m,即可得到方程①(36﹣2x)(20﹣x)=96×6;根据六块草坪的面积的和等于矩形场地的面积﹣路的面积,即可列出方程2×20x+(36﹣2x)x=36×20﹣96×6;将方程①两边同除4可得:(18x﹣x)(10﹣)=×96×6.【解答】解:依题意得可列出方程①、(36﹣2x)(20﹣x)=96×6;②、20x×2+36×x+96×6=36×20;即2×20x+(36﹣2x)x=36×20﹣96×6;③、将方程①两边同除4可得:(18x﹣x)(10﹣)=×96×6;∴正确的为①、②、③,故选:D.【点评】一元二次方程的运用,此类题是看准题型列出方程,题目不难,重在看准题;每一块草坪的面积=草坪的长×草坪的宽.5.关于x的方程ax2+bx+c=3的解与(x﹣1)(x﹣4)=0的解相同,则a+b+c的值为()A.2 B.3 C.1 D.4即可求出a+b+c的值.【解答】解:∵方程(x﹣1)(x﹣4)=0,∴此方程的解为x1=1,x2=4,∵关于x的方程ax2+bx+c=3与方程(x﹣1)(x﹣4)=0的解相同,∴把x1=1代入方程得:a+b+c=3,故选:B.【点评】本题主要考查了一元二次方程的知识,解答本题的关键是求出方程(x﹣1)(x﹣4)=0的两根,此题难度不大.6.已知a,b,c为△ABC的三边长,则关于x的一元二次方程4x2+4(a+b)x+c2=0的根的情况()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根D.无法判断【分析】根据三角形中任意两边之和大于第三边,再结合根的判别式求出即可.【解答】解:∵a,b,c为△ABC的三边长,∴a+b>c,∵关于x的一元二次方程4x2+4(a+b)x+c2=0中,b2﹣4ac=[4(a+b)]2﹣4×4×c2=16[(a+b)2﹣c2],∴b2﹣4ac>0,∴关于x的一元二次方程4x2+4(a+b)x+c2=0的根的情况是有两个不相等的实数根.故选:A.【点评】此题主要考查了三角形三边关系以及根的判别式,得出b2﹣4ac的符号是解题关键.7.下列方程中,无论b取什么实数,总有两个不相等的实数根的是()A.x2+bx+1=0 B.x2+bx=b2C.x2+bx+b=0 D.x2+bx=b2+1【分析】若一元二次方程总有两不等实根,则根的判别式△=b2﹣4ac>0,根据所给方程,逐一判断即可.【解答】解:A、△=b2﹣4ac=b2﹣4×1×1=b2﹣4,不能保证△一定大于0,故不符合题意.B、△=b2﹣4ac=b2+4×1×b2=5b2≥0,方程有两个实数根,两个实数根可能相等,故不符合题意.C、△=b2﹣4ac=b2﹣4×1×b=b2﹣4b,不能保证△一定大于0,故不符合题意.D、△=b2﹣4ac=b2﹣4×1×[﹣(b2+1)]=b2+4b2+4=5b2+4>0,方程一定有两个不相等的实数根.【点评】一元二次方程根的情况与判别式△的关系是:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.已知关于x的方程x2﹣(a2﹣2a﹣15)x+a﹣1=0的两个根互为相反数,则a是()A.5 B.﹣3 C.5或﹣3 D.1【分析】利用根与系数的关系得出x1+x2=﹣=a2﹣2a﹣15=0,进而求出即可,注意一元二次方程根的情况确定方法.【解答】解:∵关于x的方程x2﹣(a2﹣2a﹣15)x+a﹣1=0的两个根互为相反数,∴x1+x2=0,即:x1+x2=a2﹣2a﹣15=0,解得:a=﹣3或5,当a=5时,x2+5﹣1=0,x2=﹣4,故a=5不合题意舍去,故a=﹣3,故选:B.【点评】此题主要考查了根与系数的关系以及一元二次方程根的求法等知识,此题容易忽略a=5时方程无解.二.填空题(共8小题)9.若将方程x2﹣8x=7化为(x﹣m)2=n,则m= 4 ,n= 23 .【分析】由x2﹣8x=7知x2﹣8x+16=7+16,即(x﹣4)2=23,据此可得.【解答】解:∵x2﹣8x=7,∴x2﹣8x+16=7+16,即(x﹣4)2=23,则m=4、n=23,故答案为:4,23.【点评】本题主要考查配方法解一元二次方程的能力,解题的关键是熟练掌握配方法解方程的一般步10.已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a= ﹣2或1 ,另一根为2或.【分析】将x=﹣1代入方程2x2+ax﹣a2=0,可得关于a的方程,解方程即可,进而求出另一根.【解答】解:根据题意得:2﹣a﹣a2=0,解得:a=﹣2或1,当a=﹣2,则2x2+ax﹣a2=0为:2x2﹣2x﹣4=0,整理得出:x2﹣x﹣2=0,(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2,另一根为:2,当a=1,则2x2+ax﹣a2=0为:2x2+x﹣1=0,(x+1)(x﹣)=0,解得:x1=﹣1,x2=,另一根为:,故答案为:﹣2或1;2或.【点评】本题主要考查了方程的解得定义,解题关键是将已知的根代入方程,转化为解另一个未知数的一元二次方程.11.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是20% .【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1﹣x)元,第二次在第一次降价后的基础上再降,变为100(1﹣x)(1﹣x),即100(1﹣x)2元,从而列出方程,求出答案.【解答】解:设每次降价的百分率为x,第二次降价后价格变为100(1﹣x)2元.根据题意,得100(1﹣x)2=64,即(1﹣x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.故答案为:20%.【点评】考查了一元二次方程的应用,此题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍.12.关于x的一元二次方程mx2+(2m﹣1)x+m=0有两个不相等的实数根,则m的取值范围是m<且m≠0 .【分析】由二次项系数不为0,且根的判别式大于0,求出m的范围即可.【解答】解:∵关于x的一元二次方程mx2+(2m﹣1)x+m=0有两个不相等的实数根,∴m≠0且△=(2m﹣1)2﹣4m×m=﹣4m+1>0,则m的范围为m<且m≠0.故答案为:m<且m≠0.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.定义新运算“※”如下:当a≥b时,a※b=ab+b,当a≤b时,a※b=ab﹣a,若(2x﹣1)※(x+2)=0,则x= ﹣1、.【分析】根据题中所给出的新运算法则,分2x﹣1≥x+2即x≥3时和2x﹣1≤x+2即x≤3时两种情况把对应的数值代入对应的式子计算即可.【解答】解:2x﹣1≥x+2即x≥3时,(2x﹣1)※(x+2)=(2x﹣1)(x+2)+x+2=0,解得:x=0或x=﹣2,∵x≥3∴x=0或x=﹣2均舍去;2x﹣1≤x+2即x≤3时,(2x﹣1)※(x+2)=(2x﹣1)(x+2)﹣(2x﹣1)=0,解得:x=﹣1或x=.故答案为:﹣1、.【点评】本题主要考查的是一元二次方程的应用及一元一次不等式的知识,解决本题的关键是正确的对两种情况进行讨论.14.已知实数a、b分别满足a2﹣6a+4=0,b2﹣6b+4=0,则+的值是2或7 .【分析】由于a、b满足a2﹣6a+4=0,b2﹣6b+4=0,则可分类讨论:当a=b时,易得原式=2;当a≠b 时,a、b可看作方程x2﹣6x+4=0的两个根,根据根与系数的关系得到a+b=6,ab=4,再变形得到原式==,然后利用整体代入的方法进行计算.【解答】解:a、b满足a2﹣6a+4=0,b2﹣6b+4=0,当a=b时,原式=1+1=2;当a≠b时,a、b可看作方程x2﹣6x+4=0的两个根,所以a+b=6,ab=4,∴原式====7.故答案为2或7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.15.已知关于x的方程x2+3x+m=0.如果该方程有两个实数根,那么m的值可以是1(答案不唯一)(任写一个);如果m取使方程x2+3x+m=0有两个实数根的最大整数,且方程x2+mx+n=0的两个实数根x1、x2满足x12+x22>1,那么n的取值范围是n≤1 .【分析】先根据关于x的方程x2+3x+m=0有两个实数根得出m的取值范围,在取值范围内写出任意一个实数即可;找出m的最大整数解,由根与系数的关系用n表示出x1、x2与x1、x2的值,代入x12+x22>1,求出n 的取值范围即可.【解答】解:∵于x的方程x2+3x+m=0有两个实数根,∴△=9﹣4m≥0,∴m≤,∴m可以是1,m的最大整数值为2;∴方程x2+mx+n=0可化为方程x2+2x+n=0,∴x1+x2=﹣2,x1•x2=n,∵x12+x22=(x1+x2)2﹣2x1•x2=4﹣2n又∵x12+x22>1,∴4﹣2n>1,解得n<.∵△=4﹣4n≥0,∴n≤1.故答案为:n≤1.故答案为:1(答案不唯一);n≤1.【点评】本题考查的是一元二次方程根的判别式及根与系数的关系,属开放性题目,答案不唯一.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是①②.(填上你认为正确结论的所有序号)【分析】(1)可以利用方程的判别式就可以判定是否正确;(2)根据两根之积就可以判定是否正确;(3)利用根与系数的关系可以求出x12+x22的值,然后也可以判定是否正确.【解答】解:①∵方程x2﹣(a+b)x+ab﹣1=0中,△=(a+b)2﹣4(ab﹣1)=(a﹣b)2+4>0,∴x1≠x2故①正确;②∵x1x2=ab﹣1<ab,故②正确;③∵x1+x2=a+b,即(x1+x2)2=(a+b)2,∴x12+x22=(x1+x2)2﹣2x1x2=(a+b)2﹣2ab+2=a2+b2+2>a2+b2,即x12+x22>a2+b2.故③错误;综上所述,正确的结论序号是:①②.故答案是:①②.【点评】本题考查的是一元二次方程根的情况与判别式△的关系,及一元二次方程根与系数的关系,需同学们熟练掌握.三.解答题(共8小题)17.选用适当的方法解下列方程:(1)(x﹣2)2﹣9=0;(2)x2+2x=3;(3);(4)2x2﹣5x+1=0.【分析】(1)利用平方差公式把方程左边分解得到(x﹣2﹣3)(x﹣2+3)=0,则一元二次方程转化为两个一元一次方程x﹣2﹣3=0或x﹣2+3=0,然后解一元一次方程即可;(2)先移项,再利用十字相乘法分解得到(x+3)(x﹣1)=0,则一元二次方程转化为两个一元一次方程x+3=0或x﹣1=0,然后解一元一次方程即可;(3)方程左边利用完全平方公式分解得到(x﹣)2=0,即可得到两等根为;(4)利用求根公式法解方程,先计算出△=(﹣5)2﹣4×2×1=17,然后根据一元二次方程的求根公式直接求解即可.【解答】解:(1)∵(x﹣2﹣3)(x﹣2+3)=0,∴x﹣2﹣3=0或x﹣2+3=0,∴x1=5,x2=﹣1;(2)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x+3=0或x﹣1=0,∴x1=﹣3,x2=1;(3)∵x2﹣2x+()2=0,∴(x﹣)2=0,∴,x1=x2=;(4)∵a=2,b=﹣5,c=1,∴△=(﹣5)2﹣4×2×1=17,∴x=,∴x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程化为一般式ax2+bx+c=0(a≠0),再把方程左边因式分解,然后把一元二次方程转化为两个一元一次方程,解一元一次方程得到一元二次方程的解.也考查了利用求根公式法解一元二次方程.18.已知:矩形ABCD的对角线AC、BD的长是关于x的方程的两个实数根.(1)求m的值;(2)直接写出矩形面积的最大值.【分析】(1)由于矩形的对角线相等,那么△=0,解关于m的一元二次方程可得m=3或﹣1,而AC、BD为正数,易求m=3;(2)由(1)可知矩形的对角线为定值,当对角线垂直时,面积最大.先把m=3代入原方程,求出对角线,此时矩形的面积=对角线乘积的一半.【解答】解:(1)由矩形ABCD的对角线AC=BD得△=0,所以,解得m=3或﹣1,而AC、BD为正数,∴m=3;(2)把m=3代入原方程,可得x2﹣3x+=0,解得x=,即AC=BD=,当AC⊥BD时,矩形的面积最大,最大面积=×()2=,∴矩形面积的最大值=.【点评】本题考查了矩形的性质、根的判别式,解题的关键是知道当矩形的对角线固定,矩形为正方形时面积最大.19.有一块长方形的土地,如图,宽为120m,建筑商把它分成三部分:甲、乙、丙.甲和乙为正方形,现计划甲建住宅区;乙建商场;丙开辟公园,公园的面积为3200m2,那么这块地长应为多少?【分析】可设这块土地的长为x米,根据叙述可以得到甲是边长是120米的正方形,乙是边长是(x ﹣120)米的正方形,丙的长是(x﹣120)米,宽是120﹣(x﹣120),根据矩形的面积公式即可列方程求解.【解答】解:设这块土地的长为x米,因为甲和乙为正方形,结合图形可得丙的长为:x﹣120同样乙的边长也为x﹣120,丙的宽为(240﹣x),所以丙的面积为:(x﹣120)(240﹣x)=3200,解方程得:x1=200,x2=160,故这块土地的长为200米或160米.答:这块土地的长为200米或160米.【点评】此题考查了利用一元二次方程解决生活中实际的问题.本题情景能贴近学生生活,很好的考查了学生要善于将实际问题转化为数学问题,根据等量关系推导公式进而解决问题.同时引导学生理解题意,求解时关键是等量关系要找对.20.法国数学家韦达最早发现一元n次方程中根与系数之间的关系,因此,人们把这个关系称为韦达定理.初中阶段我们了解的韦达定理为:一元二次方程ax2+bx+c=0(a≠0),若它的两根为.请根据下面例题所提供的方法,结合韦达定理,完成下面的解答.例题:已知:p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求的值.解:由p2﹣p﹣1=0,1﹣q﹣q2=0,可知p≠0,q≠0又∵pq≠1∴∴1﹣q﹣q2=0可变形为的特征,所以p与是方程x2﹣x﹣1=0的两个不相等的实数根由韦达定理得:∴(1)若,且p≠q,求的值.(2)2m2﹣5m﹣1=0,,且m≠n.求的值.【分析】(1)根据题意知、是关于x的方程x2﹣x﹣1=0的两个根,根据根与系数的关系进行解答即可;(2)根据题意知、是关于x的方程x2+5x﹣2=0的两个根,根据根与系数的关系进行解答即可.【解答】解:(1)依题意得、是关于x的方程x2﹣x﹣1=0的两个根,则=1;(2)依题意得、是关于x的方程x2+5x﹣2=0的两个根,则=﹣5.【点评】本题考查了根与系数的关系.根据阅读材料得出关于x的方程的一般形式是解题的难点.21.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.22.在2015年圣诞期间,甲卖家的A商品进价为400元,他首先在进价的基础上增加100元,由于销量太好,他又连续两次涨价,结果标价比进价的2倍还多45元.(1)求甲卖家这两次涨价的平均增长率;(2)在这个圣诞期间,乙商家利用节日效应,大量销货、减少库存.原来乙商家卖的B商品销售单价为80元,一周的销量仅为40件,圣诞期间他把销售单价下调a%,并作大量宣传,结果在圣诞节这一天的销量就比原来一周的销量增加(a+10)%,结果圣诞节那一天的总销售额达到3456元.求a 的值.【分析】(1)设甲卖家这两次涨价的平均增长率为x,则首次标价为500(1+x),二次标价为500(1+x)(1+x)即500(1+x)2,据此即可列出方程.(2)根据销售单价×销售数量=总销售额列出关于a的方程并解答.【解答】解:(1)设甲卖家这两次涨价的平均增长率为x,根据题意得,(400+100)(1+x)2=400×2+45,解之得,x1=0.3=30%,x2=﹣2.3(不符合题意,故舍去),∴甲卖家这两次涨价的平均增长率为30%.(2)由题意得:80(1﹣a%)•40[1+(a+10)%]=3456,解之得,a1=10,a2=﹣20(不符合题意,故舍去),∴a=10.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.【分析】(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;(2)将△PBQ的面积表示出来,根据△=b2﹣4ac来判断.【解答】解:(1)设经过x秒,△PBQ的面积等于8cm2则:BP=6﹣x,BQ=2x,所以S△PBQ=×(6﹣x)×2x=8,即x2﹣6x+8=0,可得:x=2或4(舍去),即经过2秒,△PBQ的面积等于8cm2.(2)设经过y秒,线段PQ恰好平分△ABC的面积,△PBQ的面积等于12cm2,S△PBQ=×(6﹣y)×2y=12,即y2﹣6y+12=0,因为△=b2﹣4ac=36﹣4×12=﹣12<0,所以△PBQ的面积不会等于12cm2,则线段PQ不能平分△ABC 的面积.【点评】本题考查了一元二次方程的应用.关键是用含时间的代数式准确表示BP和BQ的长度,再根据三角形的面积公式列出一元二次方程,进行求解.24.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP= 6cm 6cm,BQ= 12cm 12cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10cm2?(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.【分析】(1)根据路程=速度×时间,求出BQ,AP的值就可以得出结论;(2)先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论;(3)作QD⊥AB于D,由勾股定理可以表示出DQ,然后根据面积公式建立方程求出其解即可;(4)由(3)求出△BPQ面积的函数表达式,利用二次函数的性质即可求解.【解答】解:(1)由题意,得AP=6cm,BQ=12cm,∵△ABC是等边三角形,∴AB=BC=12cm,∴BP=12﹣6=6cm.(2)∵△ABC是等边三角形,∴AB=BC=12cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∴∠BPQ=30°,∴BP=2BQ.∵BP=12﹣x,BQ=2x,∴12﹣x=2×2x,解得x=,当∠QPB=90°时,∴∠PQB=30°,∴BQ=2PB,∴2x=2(12﹣x),解得x=6.答:6秒或秒时,△BPQ是直角三角形;(3)作QD⊥AB于D,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,∴=10,解得x1=10,x2=2,∵x=10时,2x>12,故舍去,∴x=2.答:经过2秒△BPQ的面积等于10cm2.;(4)∵△BPQ的面积==﹣x2+6x,∴当x==6时,△BPQ的面积最大,此时最大值为﹣×62+6×6=18.故答案为:6cm、12cm.【点评】本题考查了一元二次方程的应用,等边三角形的性质的运用,30°角的直角三角形的性质的运用,勾股定理的运用,三角形的面积公式的运用,解答时建立根据三角形的面积公式建立一元二次方程求解是关键.。
《一元二次方程及其解法》习题1一、选择题1.方程:①2113x x -=,②22250x xy y -+=,③2710x +=,④202y =中,一元二次方程是( ). A .①和② B .②和③ C .③和④ D .①和③2.一元二次方程23450x x --=的二次项系数、一次项系数、常数项分别是( )A .345,-,-B .3,45-,C .3,4,5D .3,4,5-3.已知x 1=是一元二次方程2x mx 20+-=的一个解,则m 的值是( )A .1B .1-C .2D .2-4.方程x 2﹣x =0的解为( )A .x 1=x 2=1B .x 1=x 2=0C .x 1=0,x 2=1D .x 1=1,x 2=﹣15.已知关于x 的方程(2)30x x m -+=有两个不相等的实数根,则m 的取值范围是( )A .m <13B .m >13-C .m <13且m ≠0D .m >13-且m ≠0 6.用配方法解方程2870,x x ++=配方正确的是( )A .()249x +=B .()2857x +=C .()249x -=D .()2816x -=7.若方程()200++=≠ax bx c a 中,a 、b 、c 满足a+b+c=0和a-b+c=0,则方程的根是( )A .1,0B .-1,0C .1,-1D .无法确定8.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( )A .1m <B .m 1≥C .1mD .1m9.如果关于x 的方程x 2﹣2x ﹣k =0有实根.那么以下结论正确的是( )A .k >lB .k =﹣1C .k ≥﹣1D .k <﹣110.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .811.已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是( )A .2-B .1-C .2D .1012.设a 、b 为x 2+x ﹣2011=0的两个实根,则a 3+a 2+3a+2014b=( )A .2014B .﹣2014C .2011D .﹣201113.已知关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,若k 为非正整数,则k 等于( )A .12B .0C .0或﹣1D .﹣114.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是( )A .a b m n <<<B .m n a b <<<C .a m n b <<<D .m a b n <<< 二、填空题15.一元二次方程290x -=的解是_ _.16.已知关于x 的一元二次方程(m +1)x 2+4x +m 2+m =0的一个根为0,则m 的值是_________.17.关于x 的一元二次方程ax 2+2x +c =0(a ≠0)有两个相等的实数根,写出一组满足条件的实数a ,c 的值:a =_____,c =_____.18.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0 的解是__________.三、解答题19.如果方程()()22131m m x m x m --+-+-是关于x 的一元二次方程,试确定m 的值,并指出二次项系数、一次项系数及常数项.20.已知方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程.(1)求a 的取值范围;(2)若该方程的一次项系数为0,求此方程的根.21.用公式法解方程:2420x x -+=.22.先化简,再求值:2a 22a 1a 1a 1a 1--⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程x 2-x=6的根.23.已知方程260ax bx +-=与方程22150ax bx +-=有一个公共解是3,求a 、b 的值.24.已知关于x 的一元二次方程()2320x m x m -+++= (1)求证:无论实数 m 取何值,方程总有两个实数根;(2)若方程有一个根的平方等于 9,求m 的值.25.请你先认真阅读下列材料,再参照例子解答问题:已知(3)(4)10+-++=-x y x y ,求x +y 的值.解:设t =x +y ,则原方程变形为(3)(4)10-+=-t t ,即t 2+t ﹣2=0∴(2)(1)0+-=t t 得t 1=﹣2,t 2=1∴x +y =﹣2或x +y =1已知()()2222427+-++=x y x y ,求x 2+y 2的值.26.在等腰△ABC 中,三边分别为a 、b 、c ,其中a =5,若关于x 的方程x 2+(b+2)x+6﹣b =0有两个相等的实数根,求△ABC 的周长.答案一、选择题1.C .2.A .3.A .4.C .5.A .6.A.7.C.8.D.9.C .10.A .11.C .12.B,13.D .14.D .二、填空题15.x 1=3,x 2=﹣3.16.017.1 1.18.x=-4,x=-1三、解答题19.根据一元二次方程的定义可得20m -≠且22m -=,则4m =,将m 代入()()22131m m x m x m --+-+-可得22311x x ++,则二次项系数为2,一次项系数为3,常数项为11.20.解:()1化简,得()2a 1x 3ax 8a 160-+-+=.方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程,得a 10-≠,解得a 1≠,当a 1≠时,方程()22(a x)a x x a 8a 16-=++-+是关于x 的一元二次方程;()2由一次项系数为零,得a 0=.则原方程是2x 160-+=,即2x 160-=.因式分解得()()x 4x 40+-=,解得1x 4=-,2x 4=.21.221,4,2,4(4)4128a b c b ac ==-=-=--⨯⨯= ,42221b x a -±∴===⨯,1222x x ∴==22.解:原式=()()()()()()()2222a 12a 1a 2a 2a 2a a 2a 111====a 1a 1a 1a 1a 1a 1a 1a a 2a a 1a a-------+÷÷⋅-++-++----. ∵a 是方程x 2-x=6的根,∴a 2-a=6.∴原式=211=a a 6-.23.∵方程ax 2+bx −6=0与ax 2+2bx −15=0有一个公共根是3,∴ax 2+2bx −15=ax 2+bx −6+bx −9=bx −9=0,∴3b −9=0,得b=3,将x=3代入ax 2+bx −6=0,得a ×32+3×3−6=0,解得,a=−13即a 的值是−13,b 的值是3.24.(1)证明:∵△=[﹣(m +3)]2﹣4(m +2)=(m +1)2≥0,∴无论实数 m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于 9,∴x =±3,当 x =3 时,m =1;当 x =﹣3时, m =﹣5.综上所述,m 的值为 1 或﹣5.25.设t =x 2+y 2>0∴(t ﹣4)(t +2)=7t 2﹣2t ﹣15=0,解得:t 1=5,t 2=﹣3(舍去)∴x 2+y 2=5.26.∵关于x 的方程2(2)60x b x b +++-=有两个相等的实数根, ∴△=2(2)4(6)0b b +--=,即28200b b +-=;解得2b =,10b =-(舍去);①当a 为底,b 为腰时,则2+2<5,构不成三角形,此种情况不成立; ②当b 为底,a 为腰时,则5﹣2<5<5+2,能够构成三角形; 此时△ABC 的周长为:5+5+2=12;故△ABC 的周长是12.。
第21章一元二次方程单元测试一、选择题(共10小题).1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=02.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1 3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.25.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥16.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为.13.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①,②,③,④.(2)猜想:第n个方程为,其解为.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.2.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1解:∵(x﹣1)2=0,∴x﹣1=0,x=1,即x1=x2=1,故选:C.3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选:D.5.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.6.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是解:∵方程x2+bx+a=0有一个根是1,∴1+b+a=0,∴a+b=﹣1.故选:B.7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选:D.8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法解:方程(5x﹣1)2=(2x+3)2的最适当方法应是直接开平方法.故选:A.9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对解:x2﹣14x+40=0,(x﹣4)(x﹣10)=0,x﹣4=0或x﹣10=0,所以x1=4,x2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选:C.10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为x2+x﹣3=0.解:方程整理得:x2+x﹣3=0,故答案为:x2+x﹣3=013.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=17.解:由原方程,得2x2﹣3x﹣1=0,∴二次项系数a=2,一次项系数b=﹣3,常数项c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=9+8=17;故答案是:17.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值﹣1.解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为1.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7.解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.解:(1)由题意可得,,解得,241≤x≤300,即x的取值范围是:241≤x≤300(x为正整数);铅笔的零售价每支应为:元;铅笔的批发价每支应为:元;(2)由题意可得,15×﹣15×=1,化简,得x2+60x﹣900(m2﹣1)=0,解得,x1=30(m﹣1),x2=﹣30(m+1)(舍去),∴241≤30(m﹣1)≤300,解得,≤m≤11,∴m=10或m=11,当m=10时,m2﹣1=99<100,故m=10不合题意,舍去,当m=11时,m2﹣1=120>100,符合题意,∴m=11,∴x=30(m﹣1)=300,经检验x=300是原分式方程的解,答:初三年级共有300名学生,m的值是11.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4由题意知:(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,由题意知:(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。
九年级上册第一单元一元二次方程测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.42.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20 B.n(n﹣1)=20C. =20 D.n(n+1)=203.方程x(x﹣2)+x﹣2=0的解为( )A.x=2 B.x1=2,x2=1 C.x=﹣1 D.x1=2,x2=﹣14.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )2=28.85.一元二次方程x 2﹣8x ﹣1=0配方后可变形为( ) A .(x+4)2=17B .(x+4)2=15C .(x ﹣4)2=17D .(x ﹣4)2=156.若25x 2=16,则x 的值为() A .45±B .54±C .1625±D .2516±7.关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( ) A .B .C .D .8.x=1是关于x 的一元二次方程x 2+mx ﹣5=0的一个根,则此方程的另一个根是() A . 5B . ﹣5C . 4D . ﹣49.如图,点E 在正方形ABCD 的边AD 上,已知AE=7,CE=13,则阴影部分的面积是( )A .114B .124C .134D .14410.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ) A .x (x ﹣1)=10B .=10 C .x (x+1)=10 D .=1011.有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是…….( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根;D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.关于x 的一元二次方程0222=++n mx x 有两个整数根且乘积为正,关于y 的一元二次方程0222=++m ny y 同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②2)1()1(22≥-+-n m ;③1221≤-≤-n m .其中正确结论的个数是( ) A .0个B .1个C .2个D .3个二 、填空题(本大题共6小题,每小题4分,共24分)13.已知(m ﹣1)x |m|+1﹣3x+1=0是关于x 的一元二次方程,则m= . 14.设x 1,x 2是方程2x 2+4x ﹣3=0的两个根,则x 12+x 22= . 15.不解方程,判断方程2x 2+3x ﹣2=0的根的情况是__________.16.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是 17.若x=1是一元二次方程x 2+x+c=0的一个解,则c 2= . 18.读诗词解题(通过列方程,算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流人物. 而立之年督东吴,早逝英才两位数.十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜.周瑜去世时 ________岁.三、解答题(本大题共8小题,共78分)19.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.20.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?21.关于x 的一元二次方程(k ﹣2)x 2﹣2(k ﹣1)x+k+1=0有两个不同的实数根是x l 和x 2. (1)求k 的取值范围;(2)当k=﹣2时,求4x 12+6x 2的值.22.已知关于x 的一元二次方程x 2+2x+2k ﹣2=0有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,求该方程的根.23.李先生乘出租车去某公司办事,下车时,打出的电子收费单为“里程错误!未找到引用源。
一、选择题1.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=3.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根4.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 5.若整数a 使得关于x 的一元二次方程()222310a x a x -+++=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5 6.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .187.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长 8.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 9.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( )A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=7 10.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根C .有两个不相等的实数根D .无法确定11.下列方程是一元二次方程的是( ) A .20ax bx c ++= B .22(1)x x x -=-C .2325x x y -+=D .2210x += 12.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.15.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.16.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______. 17.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.18.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积六十步,只云长阔共十六步,问长多阔几何”.意思是:一块矩形田地的面积为60平方步,只知道它的长与宽共16步,根据题意得,设长为x 步,列出方程_______. 19.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.三、解答题21.如图,有一道长为10m 的墙,计划用总长为54m 的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD .若花圃ABCD 面积为272m ,求AB 的长.22.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.23.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 24.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?25.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.26.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.2.D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.4.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 5.B解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0,∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.B解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得x a =±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.A解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x 1=0,x 2=1,故选:A .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 9.B解析:B【分析】根据长方形的周长可以用x 表示另一边,然后根据面积公式即可列出方程.【详解】解:设矩形的一边为x 米,则另一边为(20-x )米,∴x (20-x )=75,故选:B.【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键. 10.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.11.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解. 14.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 16.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解 解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.17.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】根据题意得x1+x2=﹣42=﹣2,x1x2=﹣32,所以x1+x2+x1x2=﹣2﹣32=﹣72.故答案为:﹣72.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.18.x(16-x)=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x)步再利用矩形的面积公式即可得出关于x的一元二次方程【详解】解:矩形的长为x步则宽为(16-x)步∴x(16-x)=60解析:x(16-x)=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x)步,再利用矩形的面积公式即可得出关于x的一元二次方程.【详解】解:矩形的长为x步,则宽为(16-x)步,∴x(16-x)=60.故答案为:x(16-x)=60【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.19.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.20.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.AB 的长是12m【分析】设AB 的长是x m ,则BC 的长是(18-x )m ,根据题意得方程,解方程即可得到结论.【详解】解:设AB 的长是x m ,则BC 的长是()18x -m .根据题意,得()1872-=x x .解这个方程,得16x =,212x =.当6x =时,181210-=>x (不合题意,舍去).当12x =时,186-=x 符合题意.答:AB 的长是12m .【点睛】本题考查了一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.22.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.23.(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克; 根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭,解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.24.(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.25.(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0,因式分解,得,(x ﹣1)(x +1)=0于是,得,x ﹣1=0或x +1=0,解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0于是,得,x +12=0或x ﹣1=0,解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。
一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 2.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或203.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -= B .()217x -= C .()214x -= D .()215x +=4.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=7.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确8.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1 B .m =1 C .m ≥1D .m ≠0 10.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x += 11.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 12.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2 二、填空题13.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 14.一元二次方程 x ( x +3)=0的根是__________________.15.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 16.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.18.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.19.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______ 20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 22.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 23.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 24.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.25.用配方法解方程:22450x x +-=.26.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.3.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 7.C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.8.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b2﹣4ac=9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.B解析:B【分析】设方程的另一个根为x1,根据根与系数的关系可得出关于x1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x1,根据题意得:2+x1=3,∴x1=1.故选:B.【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.二、填空题13.0【分析】由于定义一种运算*为:m*n=mn+n所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=14-变为(a+1)x2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【详解】解:由x*(a*x)=14-得(a+1)x2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.14.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.15.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a 的方程然后利用一元二次方程的定义确定a 的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x 2+2x+a 2-1=0,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值.【详解】解:把x=0代入(a+1)x 2+2x+a 2-1=0得a 2-1=0,解得a=1或a=-1,而a+1≠0,所以a 的值为1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 17.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.19.【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的 解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x =当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.23.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义, 则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键. 24.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解.25.121122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.26.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.。
人教版九年级上册数学《一元二次方程》测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题).1.若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【答案解析】B;关于一元二次方程的定义考查点有两个:①二次项系数不为0,②最高次项的次数为22.关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【答案解析】C;21a +恒大于03.如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A .1k <B .0k ≠C .10k k <≠且D .1k >【答案解析】C ;由题可得363600k k ∆=->⎧⎨≠⎩,所以 10k k <≠且4.不解方程判定下列方程根的情况:⑴2210x ax a ++-=220-+=;⑶4(1)30x x +-=;⑷2(1)(2)x x m --=【答案解析】⑴两个不等的实数根;⑵无实数根;⑶两个不相等的实数根;⑷两个不相等的实数根5.已知2是关于x 的方程23202x a -=的一个根,则21a -的值是( )A.3B.4C.5D.6【答案解析】C6.小明要在一幅长90厘米、宽40厘米的水彩画得外围镶上一条宽度相等的金色彩条,要求使水彩画的面积是整幅画面积的54%,设金色彩条的宽为x 厘米,根据题意列方程为( )A.(90)(40)54%9040x x ++⨯=⨯B.(902)(402)54%9040x x ++⨯=⨯C.(90)(402)54%9040x x ++⨯=⨯D.(902)(40)54%9040x x ++⨯=⨯【答案解析】B7.不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【答案解析】A ;由方程可得3680∆=+>,所以方程有两个不相等的实数根.8.对于方程2()ax b c +=下列叙述正确的是( )A.不论c 为何值,方程均有实数根B.方程根是c b x a-=C.当0c ≥时,方程可化为:ax b +=ax b +=当0c =时,bx a =【答案解析】C9.已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【答案解析】C;22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b a c b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .10.若方程20ax bx c ++=(0)a ≠的一个根是另一个根的3倍,则a 、b 、c 的关系是()A.2316b ac =B.2316b ac =-C.2163b ac =D.2163b ac =-【答案解析】A;不妨设方程20ax bx c ++=的两个根为1x 、2x ,且123x x = ∴1224x x x +=,则24b x a=- ∴24b x a =-,将24b x a =-代入方程20ax bx c ++=整理,即可得A 【解析】韦达定理二、填空题(本大题共5小题).11.方程222(4)20k x x k --+-=没有实数根,那么k 的最小正整数值是【答案解析】解得92k >,∴最小正整数值是5 12.以3-和2为根,二次项系数为1的一元二次方程为____________【答案解析】(3)(2)0x x +-=,(最好让学生整理出一般形式260x x +-=)13.关于x 的方程2210x bx +-=的一个根为2-,则另一个根是 ,______b =【答案解析】设另一个根是2x ,根据题意得,22(2)2(2)1x b x +-=-⎧⎨⋅-=-⎩,解得212x =,34b =14.若方程210x px ++=的一个根为1,则它的另一根等于 ,p 等于【答案解析】设方程的另一根为2x ,根据题意得22(1(11x p x ⎧+-=-⎪⎨⋅=⎪⎩,解得21x =,p =【解析】部分学生喜欢将1x =p 的数值,然后再求方程另外一个根,此方法较慢。
人教版九年级上册《一元二次方程与二次函数》专题测试卷(附答卷)1.下列方程中,是关于x的一元二次方程的是(。
)A。
3(x+1)^2=2(x+1)B。
x^2-5x+6=0C。
ax^2+bx+c=0D。
2x^3-x^2+3x-1=02.方程x^2-2x=0的根是A。
x1=0.x2=2B。
x1=2.x2=-2C。
x1=1.x2=-1D。
x1=0.x2=23.方程x^2-x+2=0的根的情况是(。
)A。
只有一个实数根B。
有两个相等的实数根C。
有两个不相等的实数根D。
没有实数根4.若a是不等于零的实数,对于二次函数y=|a|x^2的图象有如下判断:①开口方向向上;②与函数y=x^2形状相同;③以y轴为对称轴;④以原点为顶点;⑤无论x为何实数,函数y 总是非负数.其中判断正确的有(。
)A。
1个B。
2个C。
3个D。
4个5.把抛物线y=-x^2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(。
)A。
y=-(x-1)^2-3B。
y=-(x+1)^2-3C。
y=-(x-1)^2+3D。
y=-(x+1)^2+36.关于x的方程x^2+mx-1=0的两根互为相反数,则m的值为(。
)A。
0B。
2C。
-2D。
-17.已知二次函数y=ax^2+bx+c(a≠0)的图象如图所示.则点M(b,a)在(。
)A。
第一象限B。
第二象限C。
第三象限D。
第四象限8.三角形两边的长分别是8和6,第三边的长是方程x^2-7x+10=0的一个实数根,则这个三角形的周长是(。
) A。
19B。
19或16C。
16D。
229.若二次函数y=ax^2+c(a≠0)当x分别取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为(。
)A。
a+cB。
a-cC。
-cD。
c10.某饲料厂今年一月份生产伺料500t.三月份生产伺群720t,若二月份和三月份这两个月的月平均增长率为x,则有A。
500(1+2x)=720B。
500(1+x^2)=720答案:一、选择题1.C2.A3.D4.D5.A6.C7.D8.B9.B10.A二、填空题1.m=2或-22.m=-3/4.k=1/163.若抛物线 $y=x^2-kx+k-1$ 的顶点在 $x$ 轴上,则 $k=1$。
一、选择题1.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5% 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=3.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4D .1或-4 4.方程22x x =的解是( ) A .0x =B .2x =C .10x =,22x =D .10x =,22x = 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 7.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 9.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >- 10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1 11.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 12.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.15.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 16.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.17.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________20.函数()2835m y m x -=+-是一次函数,则m =______.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?23.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市一家“大学生自主创业”的快递公司,今年7月份与9月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年10月份的快递投递任务?请说明理由.24.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩ 25.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 26.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.4.C解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根;B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 7.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 8.A解析:A【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.9.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x的方程()32a x4x10---=有两个不相等的实数根∴a-3≠0,且2=(4)4(3)(1)440a a∆--⨯-⨯-=+>解得:1a≥-且a≠3故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.10.C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a、b看作方程x2+(m+n)x+mn﹣2=0的两个实数根,∴ab=mn﹣2,∴ab﹣mn=﹣2.故选:C.【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a、b看作方程x2+(m+n)x+mn﹣2=0的两实数根”是解题关键.11.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k⎛⎫=-+⎪⎝⎭>0,由此即可得出:无论k(k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 12.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 15.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案.【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根, ∴()2140k k =-+=, 解得:k 1=k 2=-1,故答案为:-1.【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.16.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0∴(x﹣5)(x﹣7)=0则x﹣5=0或x﹣7=0解得x1=5x2=7故答解析:x1=5,x2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.17.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn是一元二次方程x2+2x﹣7=0的两个根∴m+n=﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.【分析】直接根据根与系数的关系求解,即bm na +=-.【详解】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.18.10【分析】设这个百分率为x然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x由题意得:300(1-x)2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.相等【分析】由t 是一元二次方程()的根利用公式法解一元二次方程即可得出t 的值将其代入完全平方式中即可得出M 的值由此即可得出结论【详解】∵t 是一元二次方程()的根∴或当时则;当时则;∴故答案为:相等【解析:相等【分析】由t 是一元二次方程20ax bx c ++=(0a ≠)的根利用公式法解一元二次方程即可得出t 的值,将其代入完全平方式()22M at b =+中即可得出M 的值,由此即可得出结论.【详解】∵t 是一元二次方程20ax bx c ++=(0a ≠)的根,∴t =t =当t =()224M b b b ac =-=-;当t =时,则()224M b b b ac =-=-; ∴24b ac M =-=.故答案为:相等.【点睛】本题考查了根的判别式、完全平方式以及利用公式法解一元二次方程,利用公式法解一元二次方程求出t 值是解题的关键.20.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m +3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键三、解答题21.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC S cm =.(2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.(1)该快递公司投递总件数的月平均增长率为10%;(2)不能,理由见解析【分析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年7月份与9月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年10月份的快递投递任务,再求出22名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年10月份的快递投递任务.【详解】解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得:210(1)12.1x +=,解得:10.1x =,2 2.1x =-(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年10月份的快递投递任务是12.1(110%)13.31⨯+=(万件).平均每人每月最多可投递0.6万件, 22∴名快递投递员能完成的快递投递任务是:0.62213.213.31⨯=<,∴该公司现有的22名快递投递业务员不能完成今年10月份的快递投递任务.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题. 24.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.25.m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-6x +m +1=0的两根,∴x 1+x 2=6,x 1x 2=m +1,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=24,∴62-2(m +1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.26.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y ,根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。
x
《一元二次方程及其解法》测试卷 A
一、精心选一选(每小题3分,共30分) 1•下列方程中是一元二次方程的是 ( ).
A.xy + 2= 1
B. x 2
1
9 0 2x
C.
x 2=0 D. ax 2 bx c 0
2. (2008山西省)
2
一兀二次方程 x
3x 0的解是
A . x 3
,.x 1 0, x 2 3 C . x-i
0, x 2 3 D . x 3解方程
3.(2008 山东
2
聊城)已知x 1是方程x ax 2
0的一个根,则方程的另一个根为
( )
A .
2
B .
2 C .
3 D . 3
2 (x)
6x 7
A
-1^ 八
4.右
的值等于零,则x 的值是(
)
x 1
A 7 或-1
B -7
或 1 C 7 D -1
5. 已知4是关于x 的方程3x 2 4a 0的一个解,那么2a 19的值是( )
A . 3
B . 4
C . 5
D . 6
2
6. 等腰三角形的底和腰是方程 x 6x 8 0的两个根,则这个三角形的周长是(
) 则这个航空公司共有飞机场( ) A . 4个 B . 5个 C . 6个 D . 7个
10.下面是某同学在一次数学测验中解答的填空题,其中答对的是(
)
2 2
A .若 x =4,则 x=2
B 若 3x =6x ,则 x=2
2
C . x x k 0的一个根是1,则k=2 x x 2
D .若分式 的值为零,则x=2或0
、耐心填一填(每小题 3分,共30
A . 8
B . 10
7. 用因式分解法解方程, A.(2 x — 2)(3 x — 4)=0 C.(x — 2)( x — 3)=2 X 3
(
C . 8或 10
下列方法中正确的是(
••• 2— 2x =0 或 3x — 4=0 ••• x — 2=2 或 x — D . 不能确定
)
B.( x +3)( x — 1)=1
D. • x +3=0 或 x — 1=1 x (x +2)=0 • x +2=0 4x 3m 1 0是关于x 的一元二次方程,则 A. m= ± 2
B. m=2
C. m= -2
9.白云航空公司有若干个飞机场, 每两个飞机场之间都开辟一条航线,
( )
一共开辟了 10条航线,
2. _____________________________________________ 如果2x 2
+1与4X 2-2X -5互为相反数,贝収
的值为 ______________________________________________
2 2
3.已知代数式x 3x 5的值是7,则代数式3x 9x 2的值是_____________________
6•下图是一个正方体的展开图,标注了字母 A 的面是正方体的正面。
如果正方体的左面与右
面所标注的代数式相等,那么
x 的值为。
7.关于x 的方程 m 1 x 2 2mx m 3 0有两个相同的实数根,则m。
8.已知一元二次方程
2
ax bx c
0 若 a b c 0,则该方程一定有一个根
为
9.阅读材料:设
元— -次方程 2
ax bx c 0的两根为 捲,X 2,则两根与方程系数之间有
如下关系:x 1
X 2
b x 1 x 2
c 根据该材料填空:已知x 1, x 2是方程x 2 6x 3
a
a
的两实数根,则 电
的值为
X 1 x
10.若 x 2
y 2
2
5x 2 y 2 6 0,
则 2 2
x y 。
三、解答题洪40) 1.解下列方程(9分) (1 ) 3m 2 7m 4
0 (配方法) (2) x 2 2(. 2 1)x 3 2 2
0 ⑶
2 2
(2x 5) (x 4)
o
2.(6分)已知关于x 的一元二次方程 x mx n
2
是方程x 4
52 3x 的解,你能求出m 和n 的值吗?
1.
方程 于 3x
5
化为一元二次方程的一般形式是
________ ,它的一次项系数是
2
3
3 1
4.方程x
x
x
0的较小根是 。
4
4 2
5.方 程 x 2 kx 7 0的 一个根是-1 ,则k=
,另一根
0的一个解是2,另一个解是正数
而且也
为
3. (6分)(原创题)自习课上,妍朝与梦飞做有关解方程的练习。
她们用不同的方法完成方
程x 2 x 2 2 x的解答如下:
3
2
梦飞:x x 2 2 x 两边同时除以x 2
3
得x2 1 所以方程的解为x1
33
妍朝:整理方程得:
2 5 2 0
x 0
3 3
2
‘. 5521
a 1
b
c b24ac 4 1
3333_9
______ 5 i7
所以x亠b24证旦'9=5 1
2a 2 6 6
即x i 1,x2
请你帮助分析她们的解答有没有错促,如果有,请你指出错误的地方,并写出正确的结果。
4. (改编)(6分)试证明:不论m为何值试证明:不论m为何值,方程
丄乂2. 2 (m 1)x m 0总有两个不相等的实数根。
4
2
5. (6分)阅读下面的例题,解方程x 1 5x 1 6 0
2
解方程x x 2 0 ;
解:原方程化为x x20。
令y x,原方程化成y2y 2 0
解得: y12y2 1
当:x 2,x 2 ;当. x1时(不合题意,舍去)
•••原方程的
解是x-i 2x22
6.(改编题)(7分)现定义一种新运算:"※”,使得玄※b=4a b (1)求4探7的值
(2)求乂※x+2探x-2探4=0中x的值。
(3)不论x是什么数,总有玄※x=x,求a的值。