2算数平方根
- 格式:doc
- 大小:127.50 KB
- 文档页数:2
第三章实数(解析板)2、算术平方根知识点梳理算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.同步练习一.选择题(共14小题)1.4的算术平方根是()A.B.±2C.2D.±【考点】算术平方根.【分析】依据算术平方根的定义解答即可.【解答】解:4的算术平方根是2.故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根.2.的算术平方根是()A.B.C.±2D.2【考点】算术平方根.【分析】直接利用算术平方根的定义得出即可.【解答】解:=2,2的算术平方根是.故选:B.【点评】此题主要考查了算术平方根的定义,利用算术平方根即为正平方根求出是解题关键.3.的算术平方根是()A.2B.4C.±2D.±4【考点】算术平方根.【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.4.下列等式正确的是()A.B.C.D.【考点】算术平方根.【分析】A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故选:D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.5.的算术平方根为()A.9B.±9C.3D.±3【考点】算术平方根.【分析】直接根据算术平方根的定义进行解答即可.【解答】解:∵=9,32=9∴的算术平方根为3.故选:C.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.6.已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【考点】算术平方根.【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选:B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.7.的算术平方根是()A.±B.C.±D.5【考点】平方根;算术平方根.【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.下列计算正确的是()A.=2B.=±2C.=2D.=±2【考点】算术平方根.【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.【点评】此题主要考查了算术平方根,关键是掌握一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.9.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选:D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.10.9的算术平方根是()A.3B.﹣3C.±3D.【考点】算术平方根.【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.11.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【考点】算术平方根.【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.12.289的平方根是±17的数学表达式是()A.=17B.=±17C.±=±17D.±=17【考点】平方根;算术平方根.【分析】根据平方根的定义求解可得.【解答】解:289的平方根是±17的数学表达式是±=±17,故选:C.【点评】此题主要考查了平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.13.16的算术平方根是()A.4B.﹣4C.±4D.8【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选:A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.14.的值等于()A.B.﹣C.±D.【考点】算术平方根.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.二.填空题(共5小题)15.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.16.的算术平方根是3.【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.【点评】本题考查了数的算术平方根,解题的关键是牢记算术平方根为非负.18.的算术平方根是.【考点】算术平方根.【分析】根据平方根、算术平方根的定义即可求解.【解答】解:∵=3,∴的算术平方根是:.故答案是:.【点评】本题考查平方根及算术平方根的知识,难度不大,关键是掌握平方根及算术平方根的定义.19.的算术平方根是.【考点】算术平方根.【分析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【解答】解:∵52=25,∴=5,∴的算术平方根是.故答案为:.【点评】本题考查了算术平方根的定义,先把化简是解题的关键.三.解答题(共8小题)20.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【考点】平方根;算术平方根.【分析】根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,然后代入代数式进行计算即可得解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.【点评】本题考查了算术平方根与平方根的定义,是基础题,熟记概念是解题的关键.21.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.【考点】平方根;算术平方根.【分析】根据平方根和算术平方根的定义列方程求出a、b的值,然后求出3a﹣4b的值,再根据平方根的定义解答.【解答】解:∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵5a+2b﹣2的算术平方根是4,∴5a+2b﹣2=16,解得b=﹣1,∴3a﹣4b=3×4﹣4×(﹣1)=12+4=16,∴3a﹣4b的平方根是±4.【点评】本题考查了平方根的定义,算术平方根的定义,是基础题,熟记概念是解题的关键.22.已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.【考点】平方根;算术平方根.【分析】根据=x,=2,z是9的算术平方根,可以求得x、y、z的值,从而可以解答本题.【解答】解:∵=x,=2,z是9的算术平方根,∴x=5,y=4,z=3,∴=,即2x+y﹣z的平方根是.【点评】本题考查算术平方根、平方根,解答本题的关键是明确它们各自的含义和计算方法.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.【考点】平方根;算术平方根.【分析】先根据2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4求出ab的值,再求出a+2b的值,由平方根的定义进行解答即可.【解答】解:∵2a﹣1的平方根为±3,∴2a﹣1=9,解得,2a=10,∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16,即15+b﹣1=16,解得b=2,∴a+2b=5+4=9,∴a+2b的平方根为:±3.【点评】本题考查的是平方根及算术平方根的定义,熟知一个数的平方根有两个,这两个数互为相反数是解答此题的关键.24.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:≈1.414,≈1.732)【考点】算术平方根.【分析】(1)求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,得出方程4a•3a=24,求出a=,求出长方形的长和宽和6比较即可.【解答】解:(1)正方形工料的边长为=6分米;(2)设长方形的长为4a分米,则宽为3a分米.则4a•3a=24,解得:a=,∴长为4a≈5.656<6,宽为3a≈4.242<6.满足要求.【点评】本题考查了算术平方根,长方形,正方形的性质的应用,用了转化思想,即把实际问题转化成数学问题.25.喜欢探索数学知识的小明遇到一个新的定义:对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”.例:1,4,9这三个数,=2,=3,=6,其结果分别为2,3,6,都是整数,所以1,4,9三个数称为“和谐组合”,其中最小算术平方根是2,最大算术平方根是6.(1)请证明2,18,8这三个数是“和谐组合”,并求出最小算术平方根和最大算术平方(2)已知9,a,25三个数是“和谐组合”,且最大算术平方根是最小算术平方根的3倍,求a的值.【考点】算术平方根.【分析】(1)对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”;(2)分三种情况讨论:①当9≤a≤25时,②当a≤9<25时,③当9<25≤a时,分别依据“和谐组合”的定义进行计算即可.【解答】解:(1)∵=6,=4,=12,∴2,18,8这三个数是“和谐组合”,∴最小算术平方根是4,最大算术平方根是12.(2)分三种情况讨论:①当9≤a≤25时,=3,解得a=0(不合题意);②当a≤9<25时,=3,解得a=(不合题意);③当9<25≤a时,=3,解得a=81,综上所述,a的值为81.【点评】本题主要考查了算术平方根,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.26.某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?【考点】算术平方根.【分析】(1)根据,其中d=8(km)是雷雨区域的直径,开平方的意义,可得答案;(2)根据,其中t=2h是雷雨区域的直径,开平方的意义,可得答案.【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.27.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.【考点】算术平方根.【分析】(1)直接利用算术平方根的定义正方形纸片的边长,进而得出答案;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【解答】解:(1)设面积为400cm2的正方形纸片的边长为a cm,∴a2=400,又∵a>0,∴a=20,又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)∵长方形纸片的长宽之比为3:2,∴设长方形纸片的长为3xcm,则宽为2xcm,∴6x2=300,∴x2=50,又∵x>0,∴x=,∴长方形纸片的长为,又∵>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片.【点评】此题主要考查了算术平方根,正确开平方是解题关键。
⼿算平⽅根的正确⽅法⼿算平⽅根的「正确」⽅法,是什么⽅法?如果你认为是⽜顿迭代法的话,你可以亲⾃试⼀下,看看效果如何:(原帖 , 鉴于百度贴吧的帖⼦是公开的,我就不打码了)其实⽜顿迭代法⾮常好,在电脑上快得飞起。
但是⼿算就不⾏了。
那么「正确」的⽅法是什么呢?是这个:(原帖同上)说得神神叨叨的,还能开⽆限⼩数,到底是什么⽅法?帖⼦⾥没说。
不过,幸运的是,我有⼀天翻的时候,碰巧翻到了这个⽅法。
本⽂将详细介绍这个⽅法。
2 的算术平⽅根是多少?是√2. 不是 1.41, 也不是 1.414213. 所以,本⽂讨论的计算,是以(⼗进制⼩数)近似值为主的。
准确地说,是不⾜近似值。
近似值,⽆论是精确到⼩数点后 1 位还是 1000 位,都是近似值。
所以,计算近似值,先得确定精度(即:你算到哪⼀位 / 数量级就满意了)。
先讨论对⼀位数开平⽅,精确到⼩数点后 1 位的情况(以计算√2 为例)。
这⼀上来就有⼀个问题:⼤家都知道√2 精确到⼀位⼩数是 1.4, 但为是么是 1.4, 不是 1.3 或 1.5?显然,1.52>2, 不是我们要的不⾜近似值。
⽽ 1.32<1.42<2 所以在不过剩的情况下,最接近的(在给定精度范围内的)数是 1.4.既然是这样的话,我们就可以把这个过程「概括」成这样⼀个问题的求解:求最⼤的⼀位数x, 使得不等式¯1.x2⩽成⽴。
求出x=4后,如果要继续提⾼精度,那么再求解这个问题:求最⼤的⼀位数y, 使得不等式\overline{1.4y}^2 \leqslant 2 成⽴。
(精度还可以继续提⾼)……这其实就是⼤家计算平⽅根最常⽤的⽅法,即「试乘」。
但是计算\overline{1.x} 的平⽅,是多位数乘多位数,不好算。
⽽且随着精度增加,越来越难算(\overline{1.414213x}^2什么的,想想就要爆炸)。
既然硬算不好算,那么就需要技巧。
什么技巧呢?我们可以把式⼦变形⼀下,来降低运算的规模:(1+\frac{x}{10})^2 \leqslant 2 (1)把完全平⽅展开,得:1+\frac{2x}{10}+\frac{x^2}{100} \leqslant 2\Leftrightarrow \frac{2x}{10}+\frac{x^2}{100} \leqslant 1\Leftrightarrow 20x+x^2 \leqslant 100\Leftrightarrow x(20+x) \leqslant 100\Leftrightarrow x\cdot \overline{2x} \leqslant 100 (2)这样,运算规模就从多位数乘多位数降低到了⼀位数乘多位数,⽴马好算了许多。
平方根口诀表:负数方根不能行,零取方根仍为零。
正数方根有两个,符号相反值相同。
2作根指可省略,其它务必要写明。
负数只有奇次根,算术方根零或正。
平方根,是指自乘结果等于的实数,表示为±(√x),读作正负根号下x或x 的平方根。
其中的非负数的平方根称为算术平方根。
正整数的平方根通常是无理数。
定义:在分数指数中,依定义,可知开平方运算对乘法满足分配律,即:注意若n是非负实数且时,因为必定是正数,但有正负两个解。
应等于±;即(见绝对值)。
扩展资料:
平方根口诀
1、11-19的平方:原数加尾数,尾平方;逢10进位。
2、41-49的平方:尾加15,10减尾再平方,占2位。
3、51-59的平方:尾加二十五,尾平方占2位。
4、91-99的平方:尾数乘2加80,10减尾数再平方,占2位。
算术平方根怎么算
1、有没有
负数没有算术平方根,0的算术平方根还是0,正数有一个算术平方根。
2、怎么求
若a>0,则a 的算术平方根为a ,如a 含有可以开方的约数应开方化简,如a 是分数或小数要有理化,根号下面不能有分母。
共有四种情况,分别举例如下:
(1)a=2,算术平方根为2=a ,已经是最简;
(2)a=4,,4是完全平方数,算术平方根为22242====a ;
(3)a=12,含有可以开方的约数4,要化简,算术平方根为323412=⨯=
=a ; (4)a=1.5,分数或小数,要有理化,算术平方根为2
6235.1==
=a 。
3、关于笔算开方 怎么求2的近似值?可以用笔算开方。
(1)小数点两边,每两位一组分组,2只有一位,自己分成一组,试商1,
(2)商乘以20,空一位作除数写在左边,被除数每次落两位即一组,
(3)试商,上面填什么,左边空位里就填什么,上4正好,
(4)重复第(2)步,商乘以20,空一位作除数写在左边,被除数每次落两位即一组,
(5)重复第(3)步,试商,上面填什么,左边空位里就填什么,上1正好,
(6)重复第(2)步,商乘以20,空一位作除数写在左边,被除数每次落两位即一组,
(7)重复第(3)步,试商,上面填什么,左边空位里就填什么,上4正好,
(8)重复(2),重复(3)......直到精确到需要的位数。
算术平⽅根及平⽅根2算术平⽅根与平⽅根知识点1:平⽅根的概念及其性质1、概念:⼀般地,如果⼀个数的平⽅等于a ,那么这个数叫做a 的平⽅根或⼆次⽅根.这就是说,如果2x =a ,那么x 叫做a 的平⽅根.2、表⽰:正数 a 的平⽅根可表⽰为⼠2a ,读作“正负根号a ”,其中“ 2 '’是根指数,当根指数是 2时可省略不写,“”读作“根号” , “a ”是被开⽅数.3、性质:(1)⼀个正数a 有两个平⽅根,其中⼀个是“a ”,另⼀个为“⼀a ”,它们互为相反数;(2)0 的平⽅根是0;(3)负数没有平⽅根.注意:1.被开⽅数 a 是⾮负数(⾮负数即指正数和零),2. 平⽅与开⽅是互逆运算关系例1.填空:1、的平⽅是64,所以64的平⽅根是;2、平⽅数是它本⾝的数是;平⽅数是它的相反数的数是;3、若x 的平⽅根是±2,则x= ;4、在下列各数中0,254, 2(5)--,222x x ++,|1|a -,||1a -数是个. 5、求下列各数的平⽅根:(1)0;(2)1;(3)1.21;(4)8;(4)(-3)2;(5)49151;(6)47 6、计算:(1)22810-;(2)9141+;(3)144251;(4)-1691。
变式练习:1、若a x =2,则() A 、x>0 B 、x≥0 C、a>0 D 、a≥02、⼀个数若有两个不同的平⽅根,则这两个平⽅根的和为()A 、⼤于0B 、等于0C 、⼩于0D 、不能确定3、下列说法正确的是()A .1的平⽅根是1±;B .24±=C 、81的平⽅根是3±;D 、0没有平⽅根;4的平⽅根是,35±是的平⽅根.知识点2:算术平⽅根的概念及表⽰⽅法。
1、概念:⼀般地,如果⼀个正数 x 的平⽅等于 a ,即2x = a ,那么这个正数x 叫做 a 的算术平⽅根.a 的算术平⽅根记为a ,读作“根号 a ”, a叫做被开⽅数.2、表⽰⽅法:⾮负数a 的算术平⽅根表⽰为a ,读作“根号a ”.例如: 24=16 , 16 的算术平⽅根是 4 ,表⽰为了丽16=4 .3、性质:(1)正数 a 的算术平⽅根为a ;(2) 0 的算术平⽅根是 o ,即0=0;(3)负数没有算术平⽅根。
平方根和算术平方根1、什么叫做平方根如果一个数的平方等于9,这个数是几 ±3是9的平方根;9的平方根是±3。
一般地,如果一个数的平方等于a ,那么这个数叫做的a 平方根,也称为二次方根。
数学语言:如果a x =2,那么x 就叫做a 的平方根。
4的平方根是 ;149的平方根是 。
的平方根是。
如果225x =,那么x = 。
2的平方根是 2、平方根的表示方法:一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”。
:这两个平方根合起来记作“a ±”,读作“正,负根号a ”.表示 ,= 。
2的平方根是 ;如果22x =,那么x = 。
3、平方根的性质:一个正数的平方根有2个,它们互为相反数; 0只有1个平方根,它是0本身; 负数没有平方根。
求一个数的平方根的运算叫做开平方。
4、算术平方根:正数有两个平方根,其中正数的正的平方根,叫的算术平方根.例如,4的平方根是2±,2叫做4的算术平方根,记作4=2;》2的平方根是2±,2叫做2的算术平方根,记作22=。
5、算术平方根的性质:(双重非负性)⑴0≥0a ≥。
⑵),0(2≥=a a a )0(2≤-=a a a , )0()(2≥=a a a二、【题型分类讲解】 题型一、求平方根1、36的平方根是 ;2、的算术平方根是 ;3、下列计算正确的是( ):A .4=±2 B.2(9)81-==9 C.636=± D.992-=-4、下列说法中正确的有 。
①只有正数才有平方根; ②-2是4的平方根; ③的平方根是; ④的算术平方根是;⑤的平方根是-6 ⑥5、如果a 是b 的一个平方根,则b 的算术平方根是 ; 616平方根是 ; 25 的平方根是___,4的算术平方根是_____,7、2)8(-= ;2)8(= ;若72=x ,则=x _____。
8、22)4(+x 的算术平方根是( )A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x9、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) "A .()1+aB .()1+±aC .12+aD .12+±a 10、若9,422==b a ,且0<ab ,则b a -的值为 ( )A. 2-B.5±C. 5D. 5-题型二、运用算术平方根进行运算计算下列各式的值1、811441691+-;2、()3616512522⨯--⎪⎭⎫ ⎝⎛-⨯题型三、平方根性质的运用《1、一个正数x 的平方根分别是a+1和a-3,则a= ;x= 。
§12.1算数平方根
使用人:
一【学习目标】
1、了解算术平方根的概念、会用根号表示一个数的平方根与算术平 方根。
2、进一步明确平方与开平方是互为逆运算,
3、会利用开方运算求某些非负数的平方根与算术平方根。
二【学习重、难点】
重点:会利用开方运算求某些非负数的平方根与算术平方根。
难点:如何理解a 是非负数及被开方数是非负数。
1的平方根是 4的正的平方根是 29
5
平方根是 1.96的正的平方根是 1.算数平方根的定义:
算数平方根: 非负数a 的算数平方根记为a ,它是一个非负数,即a 0≥ (A)例1:求下列各数的算数平方根。
(1)1 (2)0 (3)121 (4)9- (5)2)31(- (6)16
9
1
(7)0.0049 (8))0(2≥a a
注意:算数平方根等于本身的数是0和1。
2.开平方的定义:
开平方: 注意:(1)平方根是开平方运算的结果。
(2)开平方与平方互为逆运算。
(A )例2:将下列各数开平方。
(!)2.56 (2)25681 (3)49
15
1 (4)0.0324
练习:(A )将下列各数凯平方
(1)0.64 (2)917 (3)2.25 (4)24
π
编号 2
师生札记
预习案
例3:化简:
(1)16.0± (2)2)6(-± (3)25 (4)25
111
练习:(B )求2222)2
1
(,)21(,)2(,2--的值。
总结:当a>0时,a a =2
,当a<0时,a a -=2
,当a=0时,02
=a
即
)
0()0(2{≥≤-a a a a a
(B )例4:化简a a -+-2)3(2 (a>5)
例5:化简:
(1)2)9( (2)2
)4
1( (3)2)3( (4))0()(2≥m m
总结:当0≥a 时,a a =2)(
练习:
(A )1.9的平方根是 ,算数平方根是 (B )2.算数平方根等于本身的数是: (A )3.如果a 的平方根是3±,那么a =
(A )4.=-2
)3(π =
(A )5.25.0-的算数平方根是 (A )6.下列式子正确的是( )
A.55-=-
B.6.06.3-=-
C.5)5(2
=- D.525±=
展示案 巩固案。