九年级数学上册第三章概率的进一步认识2用频率估计概率练习(新版)北师大版
- 格式:doc
- 大小:950.00 KB
- 文档页数:4
北师大版九年级数学上册第三章过关检测卷(九年级上册)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.小明和同学做“抛掷硬币”的试验获得的数据如下表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20B.300C.500D.8002.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )。
A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植 100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n 棵幼树,恰好有“n棵幼树不成活”D.种植n 棵幼树,当n越来越大时,种植幼树成活的频率会越来越稳定于0.93.如图,A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.14B. 12C. 13D. 23 4.某市将垃圾分为了四类:可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,要投放正确的概率是 ( )A. 16B.18C. 112D. 1165.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一枚质地均匀的正六面体骰子,向上的面的点数是5D.抛一枚质地均匀的硬币,出现反面朝上6.有三张正面分别写有数字一2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b 的值,则点(a,b)在第一象限的概率为( )A. 16B.13C. 12D. 49 7.如图是两个可以自由转动的转盘,其中一个转盘平均分为4份,另一个转盘平均分为3份,两个转盘分别标有数字,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为5的概率是()A.12B.13C.14D.158.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )A.34个B.30个C.10个D.6个9.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小李在袋子中随机摸取一个小球,则摸到黄色小球的概率为()A.15B.25C.27D.52110.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A.16B.13C.14D.1211.如图,在水平地面上的甲、乙两个区城分别由若干个大小完全相同的黑色、白色等边三角形瓷砖组成.小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中黑色部分的概率,P(乙)表示小球停留在乙区域中黑色部分的概率.则下列说法正确的是( )A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定12.一个不透明的布袋里装有2个白球、3个黄球,它们除颜色外其他完全相同,将球摇匀后,从中随机摸出一球不放回,再随机摸出一球,则两次摸到的球颜色相同的概率是( )A.12B.25C.925D.325二、填空题(本大题共4个小题,每小题3分,共12分)13.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在 20%左右,则a的值约为。
用频率估计概率一、选择题(本大题共10小题)1。
关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D。
实验得到的频率与概率不可能相等2.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B。
频率与试验次数无关C.概率是随机的,与频率无关D。
随着试验次数的增加,频率一般会越来越接近概率3.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0。
5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B。
连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C。
抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0。
54。
随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是() A。
B. C.D。
5。
某口袋里现有6个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有25个红球,估计绿球个数为()A。
6 B.12 C.13 D。
256。
绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频率0。
9600。
9400。
9550。
9500.9480。
9560。
950则绿豆发芽的概率估计值是()A.0。
96 B。
0.95 C。
0。
94 D.0。
907.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A。
12 B.15 C。
18 D。
218。
在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0。
用频率估计概率同步测试〔典型题汇总〕90次,那么黄色乒乓球的个数估计为1.盒子中有白色乒乓球 8个和黄色乒乓球假设干个, 为求得盒中黄色乒乓球的个数,某同学 进行了如下实验:每次摸出一个乒乓球记下它的颜色, 如此重复360次,摸出白色乒乓球A. 90 个B. 24 个C. 70 个D. 32 个2.从生产的一批螺钉中抽取 1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为〔〕. 1A. ----------10001B.——2003.以下说法正确的选项是〔 〕.A .抛一枚硬币正面朝上的时机与抛一枚图钉钉尖着地的时机一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的时机是 1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占 100%,于是他得出全市拥有空调家庭的百分比为100 %的结论.4.小亮把全班 50名同学的期中数学测试成绩, 绘成如下图的条形图,其中从左起第一、二、 三、四个小长方形高的比是 1 : 3 : 5 : 1.从中同时抽一份最低分数段和一份最高分数段的成绩的 A.C. 11 一、一10 1011 —、一 210一1 1 B.一、一10 2 1 1 D .一、一225 .某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出 100黄豆,数出其中有10粒黄豆被染色,那么这袋黄豆原来有〔〕 A. 10 粒 B. 160 粒C. 450 粒D. 500 粒6 .某校男生中,假设随机抽取假设干名同学做 是否喜欢足球〞的问卷调查,抽到喜欢足球的同3 3学的概率是3,这个3的含义是〔〕. 55A.只发出5份调查卷,其中三份是喜欢足球的答卷;B.在答卷中,喜欢足球的答卷与总问卷的比为3 : 8;C.在答卷中,喜欢足球的答卷占总答卷的-;5D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入假设干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为-,四位同学分别采用了以下装法,你认为他们中装错的是〔〕. 5A. 口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白毛1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来〔单位:元〕:2, 5, 0, 5, 2, 5, 6, 5, 0, 5, 5, 5, 2, 5, 8, 0, 5, 5, 2, 5, 5, 8, 6, 5, 2, 5, 5, 2, 5, 6, 5, 5, 0, 6, 5, 6, 5, 2, 5, 0.假设老师随机问一个同学的零用钱,老师最有可能得到的答复是〔〕.A. 2元B. 5元C. 6元D. 0元9 .同时抛掷两枚硬币,根据正面出现的次数,可以分为“2个正面〞、“1个正面〞和没有正面〞这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果A组第二组第三组第四组第五组第六组两个止面335142一个止面655557没有止面120411由上表结果,计算得出现“2个正面〞、“1个正面〞和没有正面〞这3种结果的频率分别是.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:.10 .红星养猪场400头猪的质量〔质量均为整数千克〕频率分布如下,其中数据不在分点上组别频数频率46 ~ 504051 ~ 558056 ~ 6016061 ~ 658066 ~ 703071~ 7510从中任选一头猪,质量在65kg以上的概率是 .11 .为配和新课程的实施,某市举行了应用与创新〞知识竞赛,共有1万名学生参加了这次竞赛(总分值100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了局部学生的竞赛成绩,进行统计,整理见下表:组别分组频数频率149.5 〜59.5600.12259.5 〜69.51200.24369.5 〜79.51800.36479.5 〜89.5130c589.5 〜99.5b0.02合计a 1.00表中a=,b=, c=;假设成绩在90分以上(含90分)的学生获一等奖,估计全市获一等奖的人数为 .12 .小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数20406080100120140160180200 3的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?13 .甲、乙两同学开展投球进筐〞比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②假设一次未进可再投第二次, 以此类推,但每局最多只能投8次,假设8次投球都未进,该局也结束;③计分规那么如下:a.得分为正数或0; b.假设8次都未投进,该局得分为 0; c.投球次数越多,得分越低;d.6局比赛的总得分高者获月4 .〔1〕设某局比赛第n 〔n=1,2,3,4,5,6,7,8〕次将球投进,请你按上述约定, 用公式、表格或语言叙 述等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案;〔2〕假设两人6局比赛的投球情况如下〔其中的数字表示该局比赛进球时的投球次数, "X 表示该局比赛8次投球都未进〕:A 局第二局 第三局 第四局 第五局 第六局 甲 5 X 4 8 1 3 乙82426X根据上述计分规那么和你制定的计分方案,确定两人谁在这次比赛中获胜 10. 0.1,0.2,0.4,0.2,0.075,0.025 ; 0.1 11. 50,10,0.26; 20012. ( 1) 0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 ;(2) 0.31; ( 3) 0.31 ; (4) 0.3 13.解:(1)计分方案如下表:n 〔次〕 1 2 3 4 5 6 7 8 M 〔分〕87654321〔用公式或语言表述正确,同样给分 .〕〔2〕根据以上方案计算得 6局比赛,甲共得24分,乙共得分23分,所以甲在这次比赛中获 胜.用频率估计概率同步测试〔典型题汇总〕一、选择题1.在一个不透明的袋子里装有3个黑球和假设干白球, 它们除颜色外都相同. 在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下方法:随机从中摸出一球,记下颜色后 放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸1001. D2. B3. B4. A5. C6. C7. C8. B9.3 113 10 20 20次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有〔〕A.10 个B.12 个C.15 个D.18 个答案:B解析:解答:二.小明共摸了100次,其中20次摸到黑球,・••有80次摸到白球,,摸到黑球与摸到白球的次数之比为1: 4,,口袋中黑球和白球个数之比为1: 4, 3+1=12 〔个〕.4应选B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出算式解答.2.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球, 每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中, 通过大量的重复摸球实验后发现,〕摸到红球的频率稳定在« ,因此可以推算出m的值大约是〔〕A.8B.12C.16D.20答案:C1 1解析:解答::摸到红球的频率稳定在一,,摸到红球的概率为:,而m个小球中红球只4 4有4个,,推算出m的值大约是4+ —=16.4应选C分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.3.某口袋里现有8个红球和假设干个绿球〔两种球除颜色外,其余完全相同〕,某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有20个红球,估计绿球个数为〔〕A.6B.12C.13D.25答案:B解析:解答:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.8 _ 20 解:设袋中有绿球x个,由题意得:解得x=i2.* + & 50 …应选:B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.4 .在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过屡次摸球试验后发现,摸到黄球的频率稳定在0.3左右,那么布袋中白球可能有〔〕A.15 个B.20 个C.30 个D.35 个答案:D解析:解答:设袋中有黄球x个,由题意得一=Q3, 50解得x=15,那么白球可能有50-15=35个.应选D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手,设未知数列出方程求解.5 .在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过屡次摸球试验后发现从中摸到红色球、黄色球的频率稳定在0.15和0.45之间,那么口袋中黑色球的个数可能是〔〕A.14B.20C.9D.6答案:B解析:解答:二.摸到红色球、黄色球的频率稳定在15%和45%,「•摸到黑球的频率在0.85到0.55之间,故口袋中黑色球的个数可能是30X 0.55=16.5至IJ 30X 0.85=25.5 ,满足题意的只有B选项.应选B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手求解.6 .在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球, 每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中, 通过大量的重复摸球实验后发现,工摸到红球的频率稳定在 4 ,因此可以推算出m的值大约是〔〕A.8B.12C.16D.20答案:C解析:解答:二.摸到红球的频率稳定在-,4,摸到红球的概率为—,而m个小球中红球只有4个,4,推算出m的值大约是4+1=16.应选C.4分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,所以可以从比例关系入手求解.7 . 一个盒子里装有假设干个红球和白球,每个球除颜色以外都相同. 5位同学进行摸球游戏,每位同学摸10次〔摸出1球后放回,摇匀后再继续摸〕,其中摸到红球数依次为8, 5, 9, 7, 6,那么估计盒中红球和白球的个数是〔〕A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计答案:A解析:解答:.「5位同学摸到红球的频率的平均数为---------- ------ =7 ,・•・红球比白球多.应选A.分析:计算出摸出红球的平均数后分析,假设得到到的平均数大于5,那么说明红球比白球多,反之那么不是.8 .在做“抛掷两枚硬币实验〞时,有局部同学没有硬币, 因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较适宜的是〔〕A.两张扑克牌,一张是红桃,另一张是黑桃B.两个乒乓球,一个是黄色,另一个是白色C.两个相同的矿泉水瓶盖D.四张扑克牌,两张是红桃,另两张是黑桃答案:D解析:解答:•.•硬币有正反两面,应该选两种既能区分其两面又能反映是两枚的实物代替较适宜. 选四张扑克牌,两张是红桃,另两张是黑桃,分别表示出两枚硬币及正反两面较适宜.应选D分析:应该选两种既能区分其两面又能反映是两枚的实物代替较适宜.9 .在一个不透明白^盒子里有n个除颜色外其它均相同的小球, 其中有8个黄球,采用有放回的方式摸球,结果发现摸到黄球的频率稳定在40%,那么可以推算出n大约是〔〕A.8B.20C.32D.40答案:B解析:解答:二.摸到黄球的频率稳定在40%,,估计摸到黄球的概率为0.4,••・2 = 0.4,:. n=20.应选B .分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手,设未知数列出方程求解.10 .做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上〞的频率约为0.44,那么可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上〞的概率约为〔〕A.0.22B.0.44C.0.50D.0.56答案:D解析:解答:瓶盖只有两面,“凸面向上〞的频率约为0.44,那么可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上〞的概率约为1-0.44=0.56.应选D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手求解.11 .在大量重复试验中,关于随机事件发生的频率与概率,以下说法正确的选项是〔〕A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率答案:D解析:解答:二.大量重复试验事件发生的频率逐渐稳定到某个常数附近, 可以用这个常数估计这个事件发生的概率,••.D选项说法正确.应选:D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率.12 .一个口袋中有8个黑球和假设干个白球, 从口袋中随机摸出一球, 记下颜色,再放回口袋,不断重复上述过程,共做了200次,其中有50次摸到黑球,因此估计袋中白球有〔〕A.23 个B.24 个C.25 个 D.26 个答案:B工50解析:解答:设白球有x个,那么------- = ------ ,解之得x=24工 + 8 200应选B.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频度率=概率,可以从比例关系入手,设未知数列出方程求解.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,可以从比例关系入手,设未知数列出方程求解.13 .在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为〔单位:G〕: 492, 496, 494, 495, 498, 497, 501, 502, 504, 496497, 503, 506, 508, 507, 492, 496, 500, 501, 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 g〜501.5 g之间的概率为〔〕113 7 A: B C - D. -1-'答案:B解析:解答:位于497.5〜501.5g之间的数据有:498, 501, 500, 501 , 499,共5个,5 1位于497.5〜501.5g之间的数据的概率为——=一.应选B.20 4分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率.14 .在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过屡次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,那么口袋中红色球可能有〔〕A.5 个 B.10 个 C.15 个D.45 个答案:C解析:解答:二.摸到红色球的频率稳定在25%左右,,口袋中红色球的频率为25%,故红球的个数为60X 25%=15 〔个〕.应选:C.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率.15 .小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是〔〕A.40 只B.25 只C.15 只D.3 只答案:D解析:解答:小鸡孵化场孵化出1000只小鸡,在60只上做记号,那么做记号的小鸡概率为不立二,再任意抓出50只,其中做有记号的大约是上父50 = 3只.1000 50 50应选D.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,这样先求出概率,再乘以50即可得到答案..填空题16 .某玩具店进了一排黑白塑料球,共5箱,每箱的规格、数量都相同,其中每箱中装有黑白两种颜色的塑料球共3000个,为了估计每箱中两种颜色球的个数,随机抽查了一箱,将箱子里面的球搅匀后从中随机摸出一个球记下颜色, 再把它放回箱子中, 屡次重复上述过程后,发现摸到黑球的概率在0.8附近波动,那么此可以估计这批塑料球中黑球的总个数,请将黑球总个数用科学记数法表示约为________ 个.答案:1.2 X104解析解答:设黑球的个数为x,•••黑球的频率在0.8附近波动,••・摸出黑球的概率为0.8,即------ =0.8,3000解得x=2400.所以可以估计黑球的个数为2400 X 5=12000=1.2 X 104个,故答案为:1.2 X 104.分析:由于摸到黑球的频率在 0.8附近波动,所以摸出黑球的概率为 0.8,再设出黑球的个数,根据概率公式列方程解答即可.17 .在一次摸球实验中,一个袋子中有黑色和红色和白色三种颜色除外,其他都相同.假设从 中任意摸出一球,记下颜色后再放回去,再摸,假设重复这样的实验 球,那么我们可以估计从口袋中随机摸出一球它为黄球的概率是 〔〕.……,,…………………98 49 解析:解答:从口袋中随机摸出一球它为黄球的概率是 ——=——400Z00分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频 率=概率即可求得答案.18 .在一块试验田抽取1000个麦穗考察它的长度〔单位:cm 〕对数据适当分组后看到落在 19 75〜6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75〜6.05cm 之间的麦穗约占%. 答案:36解析:解答:•.・抽取 1000个麦穗考查它白^长度落在 5.75〜6.05之间的频率为0.36, ,这块田里长度为 5.75〜6.05cm 之间的麦约占36%. 故此题答案为:36%分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频 率=概率,概率在同一个问题当中是不变的.19.一水塘里有鲤鱼、鲫鱼、鲤鱼共 10 000尾,一渔民通过屡次捕捞实验后发现,鲤鱼、鲫 鱼出现的频率分别是 31%和42%,那么这个水塘里大约有鲤鱼 尾. .答案:2700解析:解答:根据题意可得这个水塘里有鲤鱼 10000X 31%=3100尾,鲫鱼 10000 X42%=4200 尾,鲤鱼 10000-3100-4200=2700 尾.分析:首先明确在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近 即此时频率=概率,这样先求出概率,再乘以总尾数即可得到答案 .. 20.在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共200个,墨墨通过多400次,98次摸出了黄答案:492CC次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和55%,那么口袋中可能有黄球_____ 个.答案:40解析:解答:根据频率估计概率得到摸到红色球和蓝色球的概率分别为25麻口55%,那么摸到黄色球的概率=1-25%-55%=20% ,所以口袋中黄球的个数=200X20%=40 .答:口袋中可能有黄球40个.故答案为40.分析:首先明确在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,这样先求出概率,再乘200即可得到答案..解做题21.袋中有红球、黄球、蓝球、白球假设干个,小刚又放入5个黑球后,小颖通过屡次摸球试验后,发现摸到红球、黄球、蓝球、白球及黑球的频率依次为25%, 30%, 30%, 10%, 5%,试估计袋中红球、黄球、蓝球及白球各有多少个?答案:解:小刚放入5个黑球后,发现摸到黑球的频率为5%,— = 100那么可以由此估计袋中共有球5% 〔个〕,说明此时袋中可能有100个球〔包括5个黑球〕,那么有红球100X 25%=25 〔个〕,黄球100X30%=30 〔个〕,篮球100X 30%=30 〔个〕,白球100X 10%=10 〔个〕.解析:分析:先根据频率公式利用黑球的个数求出小球的总个数,再根据各个的频率,分别求出每个小球的个数,问题即可得到解决.22.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:“取台数501002003005001000合格品数〔台〕4092192285478954“率答案:解:由表可得:%-相应合格品的概率分别为: 50192——=0.96 200954——=0.954 100解析:分析:.首先明确在同样条件下, 大量反复试验时,随机事件发生的频率逐渐稳定在概率附近 即此时频率=概率,这样先求出正品的概率 ,再求次品的概率即可得到答案将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的实验,...... ........... (1)得到取出红球的频率是-,求:4〔1〕取出白球的概率是多少?答案:.〔2〕如果袋中的白球有18只,那么袋中的红球有多少只? 答案:6.解析:解答:〔1〕取出白球与取出红球为对立事件,概率之和为 故P 〔取出白球〕 =1-P〔取出红球〕(2)设袋中的红球有 x 只,那么有,X _ 1Z + 1S~ 4 解得x=6. 所以袋中的红球有 6只.由数据可以估出该厂生产的电视机次品的概率为:1-0.95=0.05 .23.一直不透明的口袋中放有假设干只红球和白球, 这两种球除了颜色以外没有任何其他区别,分拣:(1)根据概率之和为1,求出白球的概率;(2)明确在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近即此时频率=概率,根据概率公式设未知数列方程即可得到答案..24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色, 再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000651241783024815991803摸到白球的次数mm—0.650.620.5930.6040.6010.5990.601摸到白球的频率=■■(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)答案:0.6;(2)假设你摸一次,你摸到白球的概率P(白球尸;答案:0.6;(3)试估算盒子里黑、白两种颜色的球各有多少只?答案:24.解析:解答:(1)二•摸到白球的频率为( 0.65+0.62+0.593+0.604+0.601+0.599+0.601 ) +7 = 0.6,・•・当n很大时,摸到白球的频率将会接近0.6 .(2)二,摸到白球的频率为0.6,,假设你摸一次,你摸到白球的概率P (白球)=0.6.(3)盒子里黑、白两种颜色的球各有40-24=16, 40X0.6=24.分析:(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数x得到的白球的概率,让球的总数减去白球的个数即为黑球的个25. 一个口袋中放有20个球,其中红球6个,白球和黑球各假设干个,每个球除了颜色以外没有任何区别.(1)小王通过大量反复的实验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的频率稳定在1左右,请你估计袋中黑球的个数;4答案:5个;(2)假设小王取出的第一个球是白色,将它放在桌上,闭上眼睛从袋中余下的球中再任意取出一个球,取出红球的概率是多少?“9答案:解析:解答:解:(1)取出黑球的频率稳定在工左右,即可估计取出黑球的概率稳定为4袋中黑球的个数为-X 20=5个;4(2)由于白球的数目减少了1个,故总数减小为19,所以取出红球的概率增加了, 变为2 2分析:(1)取出黑球的频率稳定在a左右,即可估计取出黑球的概率稳定为4,乘以球的总数即为所求的球的数目;(2)让红球的个数除以剩余球的总数,即为所求的概率.。
用频率估计概率同步测试(典型题汇总)◆随堂检测1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.12B.36π C.39π D.33π3.某同学抛掷两枚硬币,分10组实验,每组20次,下面是共计200次实验中记录下的结果.根据下列表格内容填空:实验组别两个正面一个正面没有正面第1组 6 11 3第2组 2 10 8第3组 6 12 2第4组7 10 3第5组 6 10 4第6组7 12 1第7组9 10 1第8组 5 6 9第9组 1 9 10第10组 4 14 2①在他的10组实验中,抛出“两个正面”频数最少的是他的第_____组实验.②在他的第1组实验中抛出“两个正面”的频数是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的频数是_____.③在他的10组实验中,抛出“两个正面”的频率是_____,抛出“一个正面”的频率是_____,“没有正面”的频率是_____,这三个频率之和是_____.④根据该实验结果估计抛掷两枚硬币,抛出“两个正面”的概率是____.◆典例分析小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率. 解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=. (2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次. ◆课下作业 ●拓展提高1.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A .161 B .41 C .16π D .4π2.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有_____个.4.某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m6 897 12 7朝上的点数 1 2 3 4 56 出现的次数796820 10进球频率m n(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?5.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?●体验中考1.(湖南长沙)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 398 652 793 1 604 4 005 发芽频率0.8500.7450.8510.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 2.(邵阳市)小芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______.3.(江西)某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少? 参考答案: ◆随堂检测 1.A. 2.C .3.解:①9;②6,8;③0.2,0.7,0.1,1;④约0.265. ◆课下作业 ●拓展提高 1.C. 2.21. 3.6.4.解:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75. 5.根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻. ●体验中考 1.0.8. 2.12. 3.解:(1)方法一:列表格如下:D E F A (A ,D ) (A ,E ) (A ,F ) B (B ,D ) (B ,E ) (B ,F ) C(C ,D )(C ,E )(C ,F )方法二:画树状图如下:所有可能出现的结果AD 、AE 、AF 、BD 、BE 、BF 、CD 、CE 、CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次,所以P (M )=19. 用频率估计概率同步测试 (典型题汇总)知识点 1 频率与概率的关系1.关于频率与概率的关系,下列说法正确的是( ) A .频率等于概率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相等2.在一个不透明的布袋中,红球、黑球、白球共有若干个,它们除颜色不同外,其余均相同,小新从布袋中随机摸出一球,记下颜色后放回,摇匀……如此大量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A .①②③B .①②C .①③D .②③ 知识点 2 用频率估计概率3.2017·贵阳期末在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某AD E F B D E FCDEF 化学 实验物理 实 验小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,A.0.4 B.0.5 C.0.6 D.0.74.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色不同外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下颜色,把它放回纸箱中……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数是________.5.教材随堂练习第1题变式题调查你家附近的20个人,其中至少有两人生肖相同的概率为( )A.14B.12C.13D.1图3-2-16.2017·宿迁如图3-2-1,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________m2.7.2017·贵阳模拟一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球的球面上分别标有3,4,5,x,甲、乙两人每次同时从袋中各随机摸出一个小球,并计算摸出的这两个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是__________(精确到0.01).(2)如果摸出的这两个小球上的数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.1.B [解析] 当试验次数很大时,频率稳定在概率附近.故选B.2.B [解析] ∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球试验,摸出白球的频率稳定于1-20%-50%=30%,故此项正确;∵摸出黑球的频率稳定于50%,大于摸出其他颜色球的频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此项正确;③若再摸球100次,不一定有20次摸出的是红球,故此项错误.故正确的有①②.3.C [解析] 观察表格得:通过多次摸球试验后发现其中摸到白球的频率稳定在0.6左右,则P (摸到白球)≈0.6.故选C.4.2005.D [解析] 共有12个生肖,而有20个人,每人都有生肖,故一定有两个人的生肖是相同的,即至少有两人生肖相同的概率为1.6.1 [解析] ∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,∴小石子落在不规则区域的概率为0.25.∵正方形的边长为2 m ,∴面积为4 m 2.设不规则区域的面积为S ,则S4=0.25,解得S =1. 7.解:(1)0.33 (2)不可以取7.理由:当x =7时,列表如下:两个小球上的数字之和为9的概率是212=16≠13,故x 的值不可以取7.当x =5时,摸出的这两个小球上的数字之和为9的概率是13.(答案不唯一,x 的值也可以是4,6).。
北师大版九年级上册第三章概率的进一步认识3.2用频率估计概率同步练习题1.下列说法正确的是<>A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报"明天降水概率10%",是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,则,买这种彩票1 000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次、200次,其中实验相对科学的是<>A.甲组B.乙组C.丙组D.丁组3.某人在做掷硬币试验时,投掷m次,正面朝上有n次<即正面朝上的频率是P=错误!>,则下列说法中正确的是<>A.P一定等于错误!B.P一定不等于错误!C.多投一次,P更接近错误!D.投掷次数逐渐增加,P稳定在错误!附近4.做抛掷同一枚啤酒瓶盖的重复试验,经过统计得"凸面朝上"的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现"凸面朝上"的概率约为<>A.22% B.44% C.50% D.56%5.绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是<>A.0.960 B.0.950 C.0.940 D.0.9006.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为________.7.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球________个.8.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计口袋中的黄球有________个.9.小颖和小红两位同学在学习"概率"时,做投掷骰子<质地均匀的正方体>试验,他们共做了60朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10<2>小颖说:"根据试验,一次试验中出现5点朝上的概率最大";小红说:"如果投掷600次,则出现6点朝上的次数正好是100次."小颖和小红的说法正确吗?为什么?10.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是<>A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率11.下列说法中正确的个数是<>①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的"记录结果"这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.412.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒里,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球的个数是________.13.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件<分别记为A,B>,曾老师对他任教的学生做了一个调查,统计结果如下表所示:2012届2013届2014届2015届2016届参与人数106 110 98 104 112B54 57 49 51 56频率0.509 0.518 0.500 0.490 0.500若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.14.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.15.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:<1>请估计:当n很大时,摸到白球的概率约为______;<精确到0.1><2>估算盒子里有白球________个;<3>若向盒子里再放入x个除颜色以外其他完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请推测x的值最有可能是多少.16.某小组做"用频率估计概率"的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是<>A.在"石头、剪刀、布"的游戏中,小明随机出的是"剪刀"B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是417.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球试验可推算:<1>盒中红球、黄球各占总球数的百分比分别是多少?<2>盒中有红球多少个?答案:1---5 DDDBB6. 157. 208. 159. <1>"3点朝上"出现的频率是错误!=错误!,"5点朝上"出现的频率是错误!=错误!.<2>小颖的说法是错误的.这是因为"5点朝上"的频率最大并不能说明"5点朝上"这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才会稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故"6点朝上"的次数不一定是100次.10. D11 C12. 2813. 100014. 1000015. <1> 0.6<2> 24<3>根据<2>,得错误!=50%,解得x=10,∴可以推测出x的值最有可能是10.16. D17. <1>由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%.<2>由题意可知,50次摸球试验活动中,出现有记号的球4次,∴总球数为8÷错误!=100,∴红球数为100×40%=40.答:盒中有红球40个.。
用频率估计概率基础导练1.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为的概率最大,抽到和大于8的概率为.2.某口袋中有红球、黄球、蓝球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%.25%和40%,估计口袋中黄球有个.3.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为()A.32B.21C.41D.31能力提升4.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是()A.21B.31C.41D.515.王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错;(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.参考答案1.6 325 2.18 3.D 4.B5.(1)点数为3的频率是554,点数为5的频率是827.(2)他们的说法均错.(3)点数之和为3的倍数的概率为1 3.。
第三章 概率的进一步认识
3.2 用频率估计概率
1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 100 200 300 500 800 1 000 2 000 频率
0.365
0.328
0.330
0.334
0.336
0.332
0.333
A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C .抛一个质地均匀的正六面体骰子,向上的面点数是5
D .抛一枚硬币,出现反面的概率
2.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为( )
A .2
B .3
C .4
D .5
3.某商场购进一批某名牌衬衫,要求一等品的件数为12 850件左右,请问该商场应购进多少这样的衬衫?下面是该部门经理随机抽查一些衬衫后,统计得到的一等品的变化表:
抽查数n 100 200 1 500 2 000 2 500 一等品数m 94
1 430 1 902
一等品频率m
n
0.97
0.95
(1)把表补充完整(结果保留两位小数).
(2)任意抽取1件衬衫,抽得一等品的概率约为多少? (3)你能求得商场应购进多少这样的衬衫吗?
4.某商场为了吸引顾客,设立了可以自由转动的转盘如图所示,并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物;如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
5.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图,如图所示.请根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了________名学生;
(2)将条形统计图补充完整;
(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
参考答案
【分层作业】
1. B 2. B
3. (1)194 2375 0.94 0.95 0.95
解:(2)根据表格,可得任意抽取1件衬衫,抽得一等品的概率约为0.95.
(3)12 850÷0.95≈13 526(件).
即商场应购进约13 526件这样的衬衫.
4. 解:(1)P (转动一次转盘获得购物券)=1020=1
2.
(2)200×120+100×320+50×6
20=40(元),
∵40元>30元,
∴选择转转盘对顾客更合算.
5. (1) 20
解:(2)C 类女生有20×25%-2=3(人),
D 类男生有20×(1-15%-25%-50%)-1=1(人),补充完整条形统计图略.
(3)列表略,共有6种等可能的结果,其中,一男一女的有3种, ∴所选两位同学恰好是一位男生和一位女生的概率为36=1
2.。