2016年江苏省泰州市兴化市顾庄学区网上阅卷中考数学二模试卷(解析版)
- 格式:doc
- 大小:435.00 KB
- 文档页数:22
2016年江苏省泰州市靖江、兴化、泰兴三校联考中考数学二模试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)5﹣1等于()A.5B.﹣C.﹣5D.2.(3分)下列计算正确的是()A.x3•x2=2x6B.x4•x2=x8C.(﹣x2)3=﹣x6D.(x3)2=﹣x5 3.(3分)连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件4.(3分)下列几何体的三视图中,左视图是圆的是()A.①B.②C.③D.④5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)﹣3的绝对值是.8.(3分)分解因式:2a2﹣8b2=.9.(3分)八边形的内角和为.10.(3分)一组数据2,2,4,1,0中位数.11.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2016﹣a﹣b的值是.12.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为cm2.13.(3分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.14.(3分)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E 为AC的中点,连接DE,则△CDE的周长为.15.(3分)已知△ABC中,∠ABC=30°,AB=2,BC=,分别以AC、AB为边在△ABC 外作等边△ACD和等边△ABE,连接BD、CE,则BD的长为.16.(3分)将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则的值是.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:()0﹣2cos60°﹣|﹣3|(2)解方程组:.18.(8分)先化简,再求值:(a+)÷(a﹣2+),其中a满足a2﹣a﹣2=0.19.(8分)“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如图的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机家长大约有多少名?20.(8分)甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.21.(10分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.22.(10分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).23.(10分)如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求,AM,AF围成的阴影部分面积.24.(10分)如图,直线与双曲线(k>0,x>0)交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.25.(12分)如图,在矩形ABCD中,BC=1,∠CBD=60°,点E是AB边上一动点(不与点A,B重合),连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF交CD 于点G.(1)求证:△ADE∽△CDF;(2)求∠DEF的度数;(3)设BE的长为x,△BEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②当y为最大值时,连接BG,请判断此时四边形BGDE的形状,并说明理由.26.(14分)已知:关于x的二次函数y=x2+bx+c经过点(﹣1,0)和(2,6).(1)求b和c的值.(2)若点A(n,y1),B(n+1,y2),C(n+2,y3)都在这个二次函数的图象上,问是否存在整数n,使++=?若存在,请求出n;若不存在,请说明理由.(3)若点P是二次函数图象在y轴左侧部分上的一个动点,将直线y=﹣2x沿y轴向下平移,分别交x轴、y轴于C、D两点,若以CD为直角边的△PCD与△OCD相似,请求出所有符合条件点P的坐标.2016年江苏省泰州市靖江、兴化、泰兴三校联考中考数学二模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)5﹣1等于()A.5B.﹣C.﹣5D.【解答】解:原式=,故选:D.2.(3分)下列计算正确的是()A.x3•x2=2x6B.x4•x2=x8C.(﹣x2)3=﹣x6D.(x3)2=﹣x5【解答】解:A、x3•x2=x5,故本选项错误;B、x4•x2=x6,故本选项错误;C、(﹣x2)3=﹣x6,故本选项正确;D、(x3)2=x6≠x﹣5,故本选项错误;故选:C.3.(3分)连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C.4.(3分)下列几何体的三视图中,左视图是圆的是()A.①B.②C.③D.④【解答】解:①正方体的左视图是正方形;②圆锥体的左视图是等腰三角形;③球体的左视图是圆;④圆柱体的左视图是长方形;故选:C.5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.6.(3分)如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个【解答】解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)﹣3的绝对值是3.【解答】解:﹣3的绝对值是3.8.(3分)分解因式:2a2﹣8b2=2(a﹣2b)(a+2b).【解答】解:2a2﹣8b2,=2(a2﹣4b2),=2(a+2b)(a﹣2b).故答案为:2(a+2b)(a﹣2b).9.(3分)八边形的内角和为1080°.【解答】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.10.(3分)一组数据2,2,4,1,0中位数2.【解答】解:先对这组数据按从小到大的顺序重新排序:0,1,2,2,4,位于最中间的数是2,所以这组数的中位数是2.故答案为:2.11.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2016﹣a﹣b的值是2021.【解答】解:把x=1代入ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2016﹣a﹣b=2016﹣(a+b)=2016﹣(﹣5)=2021.故答案为2021.12.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为24πcm2.【解答】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=•8π•6=24π(cm2).故答案为:24π.13.(3分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,BC=1,AC=3,由勾股定理得,AB=,∠ADC=∠ABC,∴sin∠ADC=sin∠ABC===,故答案为:.14.(3分)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E 为AC的中点,连接DE,则△CDE的周长为14.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故答案为14.15.(3分)已知△ABC中,∠ABC=30°,AB=2,BC=,分别以AC、AB为边在△ABC外作等边△ACD和等边△ABE,连接BD、CE,则BD的长为3.【解答】证明:∵△ABE和△ACD是等边三角形,∴BE=AE=AB=2,AD=AC,∠ABE=∠EAB=∠DAC=60°,∴∠EAB+∠BAC=∠DAC+∠CAB,∴∠BAD=∠EAC,在△ACE和△ADB中,,∴△ACE≌△ADB(SAS),∴BD=CE,∵∠ABC=30°,∴∠CBE=∠ABE+∠ABC=90°,∴CE===3,∴BD=3;故答案为:3.16.(3分)将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则的值是.【解答】解:设正方形纸片ABCD的边长为2a,∵将正方形纸片ABCD按如图所示对折,使边AD与BC重合,∴DE=CE=CD=a,∴AE==a,∵将AE折叠到AB上,∴AG=AE=a,HG=EH,∴BG=(﹣2)a,∴CE2+CH2=BH2+BG2,即a2+(2a﹣BH)2=BH2+[(﹣2)a]2,解得:BH=(﹣1)a,∴==,故答案为:.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:()0﹣2cos60°﹣|﹣3|(2)解方程组:.【解答】解:(1)原式=1﹣2×﹣3+=﹣3;(2),①×2﹣②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为.18.(8分)先化简,再求值:(a+)÷(a﹣2+),其中a满足a2﹣a﹣2=0.【解答】解:原式=÷=•=,∵a满足a2﹣a﹣2=0,∴a1=﹣1(舍去),a2=2,∴当a=2时,原式==3.19.(8分)“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如图的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机家长大约有多少名?【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360°×=36°;(3)反对中学生带手机的大约有6500×=4550(名).20.(8分)甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.【解答】解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为;(2)解:游戏公平,理由如下:列举所有可能:由表可知甲获胜的概率=,乙获胜的概率=,所以游戏是公平的.21.(10分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.22.(10分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).【解答】解:(1)∵斜坡AB的坡比为i=1:,∴BE:EA=12:5,设BE=12x,则EA=5x,由勾股定理得,BE2+EA2=AB2,即(12x)2+(5x)2=262,解得,x=2,则BE=12x=24,AE=5x=10,答:改造前坡顶与地面的距离BE的长为24米;(2)作FH⊥AD于H,则tan∠F AH=,∴AH=≈18,∴BF=18﹣10=8,答:BF至少是8米.23.(10分)如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求,AM,AF围成的阴影部分面积.【解答】解:(1)连结OM,∵AB=AC,E是BC中点,∴BC⊥AE,∵OB=OM,∴∠OMB=∠MBO,∵∠FBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC,∴OM⊥AE,∴AM是⊙O的切线;(2)∵E是BC中点,∴BE=BC=3,∵OB:OA=1:2,OB=OM,∴OM:OA=1:2,∵OM⊥AE,∴∠MAB=30°,∠MOA=60°,OA:BA=1:3,∵OM∥BC,∴△AOM∽△ABE,∴==,∴OM=2,∴AM==2,∴S阴影=×2×2﹣=2﹣π.24.(10分)如图,直线与双曲线(k>0,x>0)交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.【解答】解:(1)∵将直线向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,∵点B在直线y=x+4上,∴B(b,b+4),∵点B在双曲线(k>0,x>0)上,∴B(b,),∴b+4=,∴k=b2+4b;(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.25.(12分)如图,在矩形ABCD中,BC=1,∠CBD=60°,点E是AB边上一动点(不与点A,B重合),连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF交CD 于点G.(1)求证:△ADE∽△CDF;(2)求∠DEF的度数;(3)设BE的长为x,△BEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②当y为最大值时,连接BG,请判断此时四边形BGDE的形状,并说明理由.【解答】解:(1)在矩形ABCD中,∵∠A=∠ADC=∠DCB=90°,∴∠A=∠DCF=90°,∵DF⊥DE,∴∠A=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE∽△CDF;(2)∵BC=1,∠DBC=60°,∴CD=,在矩形ABCD中,∵AD=BC=1.AB=CD=,∵△ADE∽△CDF,∴=,∵tan∠DEF=,∴=,∴∠DEF=60°;(3)①∵BE=x,∴AE=﹣x,∵△ADE∽△CDF,∴=,∴CF=3﹣x,∴BF=BC+CF=4﹣x,∴y=BE•BF=x(4﹣x)=﹣x2+2x,∵y=﹣x2+2x=﹣(x﹣)2+,∴当x为时,y有最大值;②y为最大值时,此时四边形BGDE是菱形,∵当x为时,y有最大值,∴BE=,CF=1,BF=2,∵CG∥BE,∴△CFG∽△BFE,∴,∴CG=,∴DG=,∴BG==,∴BE=DG=BG,∵BE∥DG,∴四边形BGDE是菱形.26.(14分)已知:关于x的二次函数y=x2+bx+c经过点(﹣1,0)和(2,6).(1)求b和c的值.(2)若点A(n,y1),B(n+1,y2),C(n+2,y3)都在这个二次函数的图象上,问是否存在整数n,使++=?若存在,请求出n;若不存在,请说明理由.(3)若点P是二次函数图象在y轴左侧部分上的一个动点,将直线y=﹣2x沿y轴向下平移,分别交x轴、y轴于C、D两点,若以CD为直角边的△PCD与△OCD相似,请求出所有符合条件点P的坐标.【解答】解:(1)把(﹣1,0)和(2,6)代入y=x2+bx+c中,得解得,∴b=1,c=0.(2)由题意y1=n2+n,y2=(n+1)2+(n+1),y3=(n+2)2+(n+2),∵++=,∴++=,∴﹣+﹣+﹣=,∴﹣=,整理得n2+3n﹣10=0,解得n=2或﹣5.经过检验n=2和﹣5是分式方程的解.(3)当D为直角顶点时,由图象可知不存在点P,使得△PCD为直角三角形,当C为直角顶点,CD为直角边时,作PE⊥OC于E.设直线y=﹣2x向下平移m个单位,则直线CD解析式为y=﹣2x﹣m,∴点D坐标(0,﹣m),点C坐标(﹣,0),∴OD=m,OC=,∴OD=20C,∵△PCD与△OCD相似,∴CD=2PC或PC=2CD,①当CD=2PC时,∵∠PCD=90°,∴∠PCE+∠DCO=90°,∠DCO+∠CDO=90°,∴∠PCE=∠CDO,∵∠PEC=∠COD=90°,∴△COD∽△PEC,∴===2,∴EC=,PE=,∴点P坐标(﹣m ,﹣),代入y=x2+x,得﹣=m2﹣m,解得m =或(0舍弃)∴点P 坐标(﹣,﹣).②PC=2CD 时,由===,∴EC=2m,PE=m,∴点P 坐标(﹣m,﹣m),代入y=x2+x,得﹣m =m2﹣m,解得m =和(0舍弃),∴点P 坐标(﹣,﹣).第21页(共21页)。
江苏省泰州市2016届九年级下学期第二次模拟(中考最后一模)考试数学试卷初三第二次模拟考试数学试题 2016.6.2(考试时间: 120分钟满分:150分)请注意:考生须将本卷所有答案填写到答题纸上,答在试卷上无效!一、选择题(每小题3分,共18分) 1.41的相反数为 A .41 B .41-C .4D .―42.如图所示的几何体是由六个小正方体组合而成的,它的左视图是A .B .C .D .3.下列计算正确的是A. (﹣a 2)2=a 4B.a 2?a 3=a 6C.(a+1)2=a 2+1D.a 2+a 2=2a 44. 如果m=11,那么m 的取值范围是A .0<m<1< p="">B .1<m<2< p="">C .2<m<3< p="">D .3<m0,b>0 B .k>0,b<0 C .k<0,b>0 D .k<0,b<0</m6. 如果圆锥的底面周长为20π,母线长为30,则该圆锥的侧面积为 A .100π B .200π C .300π D .400π 二、填空题(每小题3分,共30分)7. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为_____________. 8. 因式分解a 2﹣8a+16= . 9.则该校女子排球队队员的年龄中位数是岁第5题第13题第14题10. 已知a+3b=4,则2a+6b―4的值是________________.11. 已知两点(x 1,y 1),(x 2,y 2)在函数xy 5-=上,当x 1>x 2>0时,y 1 y 2(填>、<或=). 12. m 1,m 2为一元二次方程3m 2+6m ﹣9=0的两根,代数式m 1+m 2的值为__________.13. 如图平行四边形ABCD 对角线AC 、BD 交于点O ,点F 为BC 的中点,连接DF 交ACE DB于点E,则DE :EF=__________.14. 如图A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数是_____. 15. 如图,将矩形沿图中虚线(其中x >y)剪成四块图形,用这四块图形恰好..能拼一个正方形.若y =2,则x 的值等于 .第15题第16题16. 矩形ABCD 中,AB=6,BC=36,半径为3的⊙P 与线段BD 相切于点M ,圆心P与点C 在直线BD 的同侧,⊙P 沿线段BD 从点B 向点D 滚动.若⊙P 与矩形ABCD 的两条对角线都相切,则tan ∠PBM= .三、解答题(共10小题,共102分)17. 计算:(14分) (1) 2760sin 2211+-?--(2) 解不等式组<-≤-341112x x x ,并求出x 的整数解.18. (10分)网购成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,现在平均每人每天分拣多少件包裹?19. (10分)泰兴市济川中学就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:(1) 该校随机抽查了名学生,请将图1(2) 在图2中,“视情况而定”部分所对的圆心角是度;(3) 估计济川中学3000名学生中处理方式为“马上救助”的学生大约有多少人?20.(8分)甲、乙两人同在如图所示的地下车库等电梯,已知两人都可以在1至4层的任意一层出电梯. (1) 求甲从第3层楼出电梯的概率;(2) 用树状图或列表的方法求出甲、乙二人从同一层楼出电梯的概率.21. (8分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,∠ABC=60°,过点B 作AC 的平行线交DC 的延长线于点E. (1) 求证:四边形ABEC 为菱形;(2) 若AB=6,连接OE ,求OE 的值.22. (8分)图中是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,从侧面看,立柱DE 高1.7m ,AD 长0.3m ,踏板静止时从侧面看与AE 上点B 重合,BE 长0.2m ,当踏板旋转到C 处时,测得∠CAB=42°.求此时点C 距离地面EF 的高度.(结果精确到0.01m) 【参考数据:sin42°=0.67,c os42°=0.74,tan42°=0.90】23. (8分)作图题:(1) △ABC 在平面直角坐标系中的位置如图1所示, A(0,4),B(3,3),C(3,1),⊙D 为△ABC的外接圆,利用格点图作出圆心 D 的位置,D 的坐标为_____________.(2) 如图2,利用直尺和圆规.......在边BC 上确定一点E ,使△BAE ∽△BCA(不写作法,保留作图痕迹)图1 图224. (10分)在平面直角坐标系xOy 中,直线y=x 与双曲线ky x=(0k ≠)的一个交点为A(6,m). (1) 求k 的值;(2) 将直线y=x 向上平移1个单位长度,与x 轴、y 轴分别交于点C 、D ,与双曲线ky x=(0k ≠)在第一象限的交点记为Q.试猜想线段DQ 和CD 的数量关系,并证明你的猜想.25. (12分)如图1,平行四边形ABCD 中,AD=BD ,∠A=30°,DE=22,点E在AB 边上且∠AED=45°. (1) 求∠BDE 的度数;(2) 将图1中的△BED 绕点B 顺时针旋转α(0°<α≤360°)得到△BE′D′.①当点E′恰好落在BD 边上时,如图2所示,连接D′D 并延长交AB 于点F .求证:AF =BE′;②在△BED 旋转的过程中,当∠BAD′最大时,求线段AD′的长.26. (14分)已知二次函数21(0)y ax bx a=++≠(1) 若此二次函数图像经过点A(1,0)和B(3,0),求二次函数关系式;(2) 若a>0,二次函数图像与x 轴只有1个公共点,是否存在a,b ,使此二次函数图像与直线y=x+2有且只有1个公共点,若存在,求出a,b 的值;若不存在,请说明理由;(3) 若此二次函数的图像的顶点在第二象限,且经过点(1,0).当a―b 为整数时,求ab 的值.图2备用图初三第二次模拟考试数学试题 2016.6.2参考答案一、选择题(共6小题,每小题3分,满分18分) 1-6.BCADBC二、填空题(共10小题,每小题3分,满分30分) 7.6.75×104;8.(a-4)2; 9.13; 10.4 11.>; 12.―2; 13.2:1; 14.55°;15.15+; 16.9353或17.(14分)(1)计算:2760sin 2)21)(1(1+?---=3332+--(3分) =322+-(3分)(2) ―3<="">列方程得:xx 60050450=-(5分)解方程得x=200(3分),检验1分,答1分19.(10分) (1)200,40(4分)(2)72(2分)(3)1800(3分)答1分 20.(8分)解:(1)P=41(2分)(2)树状图或表格略(4分)P=41(2分) 21.(8分)解:(1)证明平行四边形(2分),△ABC 为等边三角形(1分)四边形ABEC 为菱形(2分)(2)63(3分)22.(8分)解:过点C 作CH ⊥AE(1分)AH=0.888m(4分)HE=0.512(2分)HE≈0.51(1分) 23.(8分)解:(1)作图略(2分),D(1,2)(2分)(2)作图略(4分)24.(10分) 解:(1)k=6(4分)(2)DQ=2CD(1分),Q(2,3)(2分)DQ=2CD(3分) 25.(12分) 解:(1)15°(4分)(2)①证明略(5分)②AD′=24(3分) 26.(14分)(1)13312+-=x x y (4分) (2)不存在(1分)b 2-4ac=0得到b 2=4a(2分), ax 2+bx+1=x+2 得到(b-1)2+4a=0(2分),2b 2-2b+1=0此方程没有实数根,因此不存在(2分) (3)依题意知0,0,10,2ba ab a<-<++= 故0,b < (1分)且1b a =--, (1)21a b a a a -=---=+,(1分)于是10,a -<< 1211a ∴-<+<(1分)又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =(1分)</m<3<></m<2<></m<1<>。
一、选择题(每题3分,共30分)1. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. -a < bC. a + b > 0D. a - b < 0答案:B2. 已知函数f(x) = 2x + 1,则函数f(x)的图象是()A. 上升的直线B. 下降的直线C. 抛物线D. 恒等函数答案:A3. 在等腰三角形ABC中,底边BC=8cm,腰AB=AC=10cm,则三角形ABC的面积是()A. 32cm²B. 40cm²C. 48cm²D. 64cm²答案:B4. 下列哪个数是2的因数?()A. 3B. 4C. 5D. 6答案:B5. 若x² - 5x + 6 = 0,则x的值是()A. 2B. 3C. 4D. 6答案:A6. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)答案:B7. 已知a、b、c是等差数列的连续三项,且a + b + c = 12,则b的值是()A. 3B. 4C. 5D. 6答案:B8. 下列哪个图形是轴对称图形?()A. 长方形B. 正方形C. 等腰三角形D. 平行四边形答案:C9. 若sinθ = 0.6,cosθ = 0.8,则tanθ的值是()A. 0.75B. 0.6C. 0.9D. 1.2答案:A10. 下列哪个数是2的倍数?()A. 13B. 14C. 15D. 16答案:B二、填空题(每题5分,共20分)11. 若a = -2,b = 3,则a² - b² = _________答案:-512. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB的长度是_________ cm答案:513. 已知x² + 5x + 6 = 0,则x的值是 _________ 和 _________答案:-2 和 -314. 在等腰三角形ABC中,底边BC = 6cm,腰AB = AC = 8cm,则三角形ABC的面积是_________ cm²答案:24三、解答题(每题10分,共30分)15. 解下列方程:3x - 5 = 2x + 1答案:x = 616. 已知函数f(x) = -2x + 3,求f(2)的值答案:f(2) = -117. 在直角坐标系中,点A(1, 2),点B(4, 5),求线段AB的长度答案:AB = √(3² + 3²) = 3√2四、应用题(每题10分,共20分)18. 某商店原价销售一批商品,每件商品降价10%,现售价为每件80元,求原价每件商品的价格答案:原价每件商品的价格为90元19. 小明从家到学校步行需要15分钟,他骑自行车需要10分钟,已知自行车的速度是步行的4倍,求小明从家到学校的距离答案:小明从家到学校的距离为1.25公里。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 下列各数中,无理数是()A. 0.333...B. 1.414...C. 2.718...D. 3.141...3. 下列各式中,正确的是()A. a² + b² = (a + b)²B. a² + b² = (a - b)²C. (a + b)² = a² + b² + 2abD. (a - b)² = a² + b² - 2ab4. 若a、b、c为等差数列,且a + b + c = 18,则b的值为()A. 6B. 9C. 12D. 155. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°6. 下列函数中,一次函数是()A. y = x² - 2x + 1B. y = 2x + 3C. y = 3x³ - 2x² + 4D. y = 2x - 1/x7. 下列方程中,一元二次方程是()A. x² + 3x + 2 = 0B. x³ - 3x + 2 = 0C. x² - 2x + 1 = 0D. x² + 2x - 3 = 08. 若直线y = kx + b经过点(1,2),则k和b的值分别为()A. k = 2, b = 0B. k = 2, b = 1C. k = 1, b = 2D. k = 1, b = 09. 在直角坐标系中,点A(2,3)关于原点的对称点为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)10. 下列不等式中,正确的是()A. 2x > 3B. 3x < 2C. 2x ≤ 3D. 3x ≥ 2二、填空题(每题4分,共20分)11. 若a² = 16,则a的值为______。
中考数学二模试卷一、选择题(本大题共6小题,共18.0分)1.-3的相反数是()A. 3B. -3C.D. -2.把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.已知P为线段AB的黄金分割点,且AP>PB,则()A. AP2+BP2=AB2B. BP2=AP•ABC. AP2=AB•BPD. AB2=AP•PB4.三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点5.现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A. 平均数不变,方差变大B. 平均数不变,方差不变C. 平均数不变,方差变小D. 平均数变小,方差不变6.如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=-(x<0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C. 2D. 5二、填空题(本大题共10小题,共30.0分)7.计算:|-2|=______.8.2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为______美元.9.已知k为整数,且满足<k<,则k的值是______.10.抛掷一枚质地均匀的硬币两次,出现一正一反的概率______.11.把一副三角板按如图所示方式放置,则图中钝角α是______°.12.已知二元一次方程组,则2a+3b=______.13.若正多边形的每一个内角为135°,则这个正多边形的边数是______.14.已知不等式组无解,则a的取值范围是______.15.已知:a-b=b-c=1,a2+b2+c2=2,则ab+bc+ac的值等于______.16.如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为______.三、计算题(本大题共1小题,共12.0分)17.(1)计算:+(π-1)0-6tan30°+()-2(2)解方程:+1=四、解答题(本大题共9小题,共90.0分)18.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有____人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=-2x+100,设销售这种饰品每天的利润为W (元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.已知,关于x的二次函数y=ax2-2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=-ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且-1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.答案和解析1.【答案】A【解析】【分析】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.根据相反数的意义,只有符号不同的数为相反数.【解答】解:-3的相反数是3.故选A.2.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【解析】【分析】本题考查了黄金分割的概念,熟记定义是解题的关键.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.4.【答案】A【解析】解:三角形的重心是三条中线的交点,故选:A.根据三角形的重心是三条中线的交点解答.本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.【答案】A【解析】解:原数据的平方数为=165;原数据的方差为[(165-165)2+(160-165)2+(166-165)2+(170-165)2+(164-165)2+(165-165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165-165)2+(160-165)2+(166-165)2+(170-165)2+(164-165)2]=,故平均数不变,方差变大,故选:A.根据方差和平均数的定义即可得到结论.本题考查了方差和平均数,数据定义是解题的关键.6.【答案】B【解析】解:∵C是AB的中点,∴设A(-m,-)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.根据题意A、B的横坐标化为相反数,所以设A(-m,-)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC即可求得.本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.7.【答案】2【解析】解:∵-2<0,∴|-2|=2.故答案为:2.根据绝对值定义去掉这个绝对值的符号.解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.【答案】1.3×1012【解析】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.用科学记数法表示较大的数时,一般形式为a×10-n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.9.【答案】3【解析】【分析】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键.先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.10.【答案】【解析】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.列举出所有情况,看所求的情况占总情况的多少即可得出答案.此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】105【解析】解:由三角形的内角和定理可知:α=180°-30°-45°=105°,故答案为:105.利用三角形内角和定理计算即可.本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.【答案】9【解析】解:,①-②,得:2a+3b=9,故答案为:9.将两方程相减即可得.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【答案】8【解析】【分析】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°-135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为8.14.【答案】a≤1【解析】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.根据不等式组无解,则两个不等式的解集没有公共部分解答.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.【答案】-1【解析】解:∵a-b=b-c=1,∴a-c=2,∴a2+b2+c2-ab-bc-ac=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(c-a)2]=3,∴ab+bc+ac=a2+b2+c2-3=2-3=-1;故答案为:-1.由已知得出a-c=2,求出a2+b2+c2-ab-bc-ac=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(c-a)2]=3,即可得出所求的值.本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2-ab-bc-ac=[(a-b)2+(b-c)2+(a-c)2]是解题的关键.16.【答案】【解析】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4-r,∴=,∴r=,故答案为:.设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB=5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.17.【答案】解:(1)原式=2+1-6×+9=10;(2)去分母得:3(5x-4)+3x-6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.【答案】(1)80,补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人,所以该校全体学生中喜爱“实验实践”的人数约为360人.【解析】【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80-8-8-32-16=16(人)补图如下(2)见答案(3)见答案.本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.【答案】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【解析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.【答案】(1)证明:∵△=[-(m+2)]2-4×2m=(m-2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2-2AB•AC=BC2,即(m+2)2-2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【解析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.【答案】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r-2,∵CE2+OE2=OC2,∴32+(r-2)2=r2,解得r=,∴AD=,∵AE=AD-DE,∴AE=-2=.【解析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)根据题意,得:W=(-2x+100)(x-10)整理得W=-2x2+120x-1000∴W与x之间的函数关系式为:W=-2x2+120x-1000(2)∵每天销售利润W为750元,∴W=-2x2+120x-1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【解析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价-进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价-进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.【答案】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG-∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【解析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.【答案】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB-BM=1,∴AE==.【解析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB-BM=1,然后利用勾股定理计算AE的长.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.【答案】解:(1)∵二次函数y=ax2-2ax=a(x-1)2-a,∴顶点C(1,-a),∵当x=1时,一次函数值y=-a∴点C在一次函数y=-ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2-2ak,y2=a(k+2)2-2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2-2an),∵EF∥y轴,F在一次函数图象上,∴F(n,-an).①当-1≤n≤0时,EF=y E-y F=an2-2an-(-an)=a(n-)2-a,∵a>0,∴当n=-1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F-y E=-an-(an2-2an)=-a(n-)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【解析】(1)先求出二次函数y=ax2-2ax=a(x-1)2-a顶点C(1,-a),当x=1时,一次函数值y=-a所以点C在一次函数y=-ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2-2ak,y2=a(k+2)2-2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k 的值为±4;(3)分两种情况讨论:①当-1≤n≤0时,EF=y E-y F=an2-2an-(-an)=a(n-)2-a,②当0<n≤1时,EF=y F-y E=-an-(an2-2an)=-a(n-)2+a.本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。
2016年中考第二次模拟考试数学参考答案1 2 3 4 5 6 7 8 9 10 A C C C CC CD BB(每小题3分, 满分24分)11.8.05×10﹣812. 6 13. 答案不唯一.如∠A=∠C 或∠B=∠D 等 14. (4,4) 15. 200π 16.3217. > 18. 答案不唯一,只要答案比 小就可以.如0,-1 三、解答题(每小题6分,满分12分)19.解:原式=2+4×21﹣3+3=4.(6分)20. 解:原式=÷=﹣•=﹣x+2 (4分)当x=2﹣时,原式=﹣2++2=. (2分)四、解答题(每小题8分,满分16分)21.(1)被调查的学生人数为10÷25%=40人; (2分) (2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,条形统计图补充如右图: (4分) (3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×=90人 (2分)22. 解:(1)根据题意及图知: ∠ACT=31°,∠ABT=22° ∵AT ⊥MN ∴∠A TC=90° 在Rt △ACT 中,∠ACT=31°∴tan31°=( 2分)可设AT=3x ,则CT=5x在Rt △ABT 中,∠ABT=22° ∴tan22°=(2分) 即:解得:∴,∴BT=BC+CT=m 253565=+ (2分) (2),,∴该车大灯的设计不能满足最小安全距离的要求. (2分) 五、解答题(每小题9分,满分18分)23.(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得(3分)解得:. 答:略 (3分)(2)300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:略 (3分) 24.证明:(1)∵DE ⊥AB ,BF ⊥CD ,∴∠AED=∠CFB=90°, ∵四边形ABCD 为平行四边形,∴AD=BC ,∠A=∠C ,(3分) 在△ADE 和△CBF 中,,∴△ADE ≌△CBF (AAS ); (2分)(2)∵四边形ABCD 为平行四边形,∴CD ∥AB ,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°, (2分) ∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE 为矩形. (2分) (方法不唯一,其他方法仿照记分)六、综合探究题 (每小题10分,满分20分)25.(1)证明:由折叠性质知GH=CH; 又∵∠BGH=∠BCH=90°, ∴∠DGH=90°, ∵∠DGE=∠DBC=∠45°, ∴GD=GH, ∴CH=GH=GD (3分) (2) ∵BG=BC=1,BD=2, ∴CH=GD=BD-BG=12-, ∴12tan -==∠BCCHHBC (3分)(3)∵BC=1,EC=BF=,∴BE==.由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF 是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN 是矩形,∠BNM=∠F=90°,∴MN ∥EF , ∴=,即BP•BF=BE•BN , (2分) ∴1×=BN ,∴BN=,∴BC :BN=1:=:1,∴四边形BCMN 是的矩形; (2分)26.解:(1)如图12(1),连接AE ,由已知得:AE=CE=5,OE=3,在Rt △AOE 中,由勾股定理得,OA===4,∵OC ⊥AB , ∴由垂径定理得,OB=OA=4,OC=OE+CE=3+5=8, ∴A (0,4),B (0,﹣4),C (8,0).∵抛物线的顶点为C ,∴设抛物线的解析式为y=a (x ﹣8)2, 将点B 的坐标代入上解析的式,得64a=﹣4,故a=﹣,∴y=﹣(x ﹣8)2. (3分)(2)在直线l 的解析式y=x+4中,令y=0,得x+4=0,解得x=﹣,∴点D 的坐标为(﹣,0),当x=0时,y=4,∴点A 在直线l 上,在Rt △AOE 和Rt △DOA 中,∵=,=, ∴=,∵∠AOE=∠DOA=90°,∴△AOE ∽△DOA ,∴∠AEO=∠DAO ,∵∠AEO+∠EAO=90°,∴∠DAO+∠EAO=90°,即∠DAE=90°,因此,直线l 与⊙E 相切与A . (3分) (3)如图2,过点P 作直线l 的垂线段PQ ,垂足为Q ,过点P 作直线PM 垂直于x 轴,交直线l 于点M .设M (m ,m+4),P (m ,﹣m 2+m ﹣4),则PM=m+4﹣(﹣m 2+m ﹣4)=m 2﹣m+8=(m ﹣2)2+,当m=2时,PM 取得最小值,此时,P (2,﹣), (2分)对于△PQM ,∵PM ⊥x 轴,∴∠QMP=∠DAO=∠AEO , 又∠PQM=90°,∴△PQM 的三个内角固定不变,∴在动点P 运动的过程中,△PQM 的三边的比例关系不变,∴当PM 取得最小值时,PQ 也取得最小值,PQ 最小=PM 最小•sin ∠QMP=PM 最小•sin ∠AEO=×=,∴当抛物线上的动点P 的坐标为(2,﹣)时,点P 到直线l 的距离最小 ,其最小距离为. (2分)。
2016年江苏省泰州市中考数学试卷一、选择题:本大题共有6小题,每小题3分,共18分1.4的平方根是()A.±2B.﹣2 C.2 D.2.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣73.下列图案中,既是轴对称图形又是中心对称图形的是()A.B. C.D.4.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.56.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣二、填空题:本大题共10小题,每小题3分,共30分7.(﹣)0等于.8.函数中,自变量x的取值范围是.9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.10.五边形的内角和是°.11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.12.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.14.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.16.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.三、解答题17.计算或化简:(1)﹣(3+);(2)(﹣)÷.18.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?19.一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.20.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.21.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.24.如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.25.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.2016年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共有6小题,每小题3分,共18分1.4的平方根是()A.±2B.﹣2 C.2 D.【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.2.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:C.3.下列图案中,既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故错误;B、是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形.不是中心对称图形,故错误.故选B.4.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.【考点】简单组合体的三视图.【分析】该几何体的左视图为一个矩形,俯视图为矩形.【解答】解:该几何体的左视图是边长分别为圆的半径和厚的矩形,俯视图是边长分别为圆的直径和厚的矩形,故选D.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是: [(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.6.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得, +(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.二、填空题:本大题共10小题,每小题3分,共30分7.(﹣)0等于 1 .【考点】零指数幂.【分析】依据零指数幂的性质求解即可.【解答】解:由零指数幂的性质可知:(﹣)0=1.故答案为:1.8.函数中,自变量x的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】根据分式有意义的条件是分母不为0;令分母为0,可得到答案.【解答】解:根据题意得2x﹣3≠0,解可得x≠,故答案为x≠.9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.【考点】概率公式.【分析】根据概率公式知,6个数中有3个偶数,故掷一次骰子,向上一面的点数为偶数的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数为偶数,故其概率是=.故答案为:.10.五边形的内角和是540 °.【考点】多边形内角与外角.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为1:9 .【考点】相似三角形的判定与性质.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC 相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=1:9,故答案为:1:9.12.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△A BC平移的距离为 2.5 cm.【考点】平移的性质.【分析】根据平移的性质:对应线段平行,以及三角形中位线定理可得B′是BC的中点,求出BB′即为所求.【解答】解:∵将△ABC沿BC方向平移至△A′B′C′的对应位置,∴A′B′∥AB,∵O是AC的中点,∴B′是BC的中点,∴BB′=5÷2=2.5(cm).故△ABC平移的距离为2.5cm.故答案为:2.5.14.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3 .【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为π.【考点】扇形面积的计算.【分析】通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC,套入扇形的面积公式即可得出结论.【解答】解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,∴OB==,sin∠AOB==,∠AOB=30°.同理,可得出:OD=1,∠COD=60°.∴∠AOC=∠AOB+=30°+180°﹣60°=150°.在△AOB和△OCD中,有,∴△AOB≌△OCD(SSS).∴S阴影=S扇形OAC.∴S扇形OAC=πR2=π×22=π.故答案为:π.16.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1﹣,﹣3).【考点】二次函数的性质.【分析】△ABC是等边三角形,且边长为2,所以该等边三角形的高为3,又点C在二次函数上,所以令y=±3代入解析式中,分别求出x的值.由因为使点C落在该函数y轴右侧的图象上,所以x<0.【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x<0,∴x=1﹣,∴C(1﹣,﹣3).故答案为:(1﹣,﹣3)三、解答题17.计算或化简:(1)﹣(3+);(2)(﹣)÷.【考点】二次根式的加减法;分式的混合运算.【分析】(1)先化成最简二次根式,再去括号、合并同类二次根式即可;(2)先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;(2)(﹣)÷=(﹣)•=•=.18.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)首先根据围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;(2)用50乘以0.20求出b的值,即可解答;(4)用总人数1500乘以喜爱围棋的学生频率即可求解.【解答】解:(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,如图,(3)1500×0.28=428(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有428人.19.一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、以两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据列表,可得答案;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等.由表可知甲获胜的概率=,乙获胜的概率=,乙获胜的可能性大,所以游戏是公平的.20.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均增长率为x,根据“从2013年的200万元增长到2015年的392万元”,即可得出方程.【解答】解:设该购物网站平均每年销售额增长的百分率为x,根据题意,得:200(1+x)2=392,解得:x1=0.4,x2=﹣2.4(不符合题意,舍去).答:该购物网站平均每年销售额增长的百分率为40%.21.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.【考点】相似三角形的判定与性质;角平分线的定义.【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD平分∠CAE,∴∠DAG=∠CAG,∵AB=AC,∴∠B=∠ACB,∵∠CAG=∠B+∠ACB,∴∠B=∠CAG,∴∠B=∠CAG,∴AD∥BC;(2)解:∵CG⊥AD,∴∠AFC=∠AFG=90°,在△AFC和△AFG中,,∴△AFC≌△AFG(ASA),∴CF=GF,∵AD∥BC,∴△AGF∽△BGC,∴GF:GC=AF:BC=1:2,∴BC=2AF=2×4=8.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)【考点】解直角三角形的应用.【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+.23.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.【考点】直线与圆的位置关系.【分析】(1)结论:AB是⊙O切线,连接DE,CF,由∠FCD+∠CDF=90°,只要证明∠ADF=∠DCF即可解决问题.(2)只要证明△PCF∽△PAC,得=,设PF=a.则PC=2a,列出方程即可解决问题.【解答】解:(1)AB是⊙O切线.理由:连接DE、CF.∵CD是直径,∴∠DEC=∠DFC=90°,∵∠ACB=90°,∴∠DEC+∠ACE=180°,∴DE∥AC,∴∠DEA=∠EAC=∠DCF,∵∠DFC=90°,∴∠FCD+∠CDF=90°,∵∠ADF=∠EAC=∠DCF,∴∠ADF+∠CDF=90°,∴∠ADC=90°,∴CD⊥AD,∴AB是⊙O切线.(2)∵∠CPF=∠CPA,PCF=∠PA C,∴△PCF∽△PAC,∴=,∴PC2=PF•PA,设PF=a.则PC=2a,∴4a2=a(a+5),∴a=,∴PC=2a=.24.如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A点坐标代入y=求出k的值得到反比例函数解析式为y=,然后把B(﹣4,n)代入y=可求出n的值;(2)利用反比例函数图象上点的坐标特征得到4m=k,﹣4n=k,然后把两式相减消去k即可得到m+n的值;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,利用正切的定义得到tan∠AOE==,tan∠BOF==,则+=1,加上m+n=0,于是可解得m=2,n=﹣2,从而得到A(2,4),B(﹣4,﹣2),然后利用待定系数法求直线AB的解析式.【解答】解:(1)当m=2,则A(2,4),把A(2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B(﹣4,n)代入y=得﹣4n=8,解得n=﹣2;(2)因为点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,所以4m=k,﹣4n=k,所以4m+4n=0,即m+n=0;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,在Rt△AOE中,tan∠AOE==,在Rt△BOF中,tan∠BOF==,而tan∠AOD+tan∠BOC=1,所以+=1,而m+n=0,解得m=2,n=﹣2,则A(2,4),B(﹣4,﹣2),设直线AB的解析式为y=px+q,把A(2,4),B(﹣4,﹣2)代入得,解得,所以直线AB的解析式为y=x+2.25.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【考点】四边形综合题.【分析】(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;(2)①根据正方形的性质、等腰直角三角形的性质解答;②根据PE∥CF,得到=,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作G H⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.。
2016-2017学年江苏省泰州市兴化市顾庄学区九年级(下)第二次月考数学试卷一.单选题(共10题;共30分)1.(3分)二次函数y=ax2+bx+c(a≠0)是偶函数,则实数b等于()A.1B.0C.﹣1D.22.(3分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b 3.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sin B的值是()A.B.C.D.4.(3分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧5.(3分)对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对6.(3分)在△ABC中,∠A,∠B均为锐角,且sin A=,cos B=,AC=40,则△ABC的面积是()A.800B.C.400D.7.(3分)如图,已知AE与BF相交于点D,AB⊥AE,垂足为点A,EF⊥AE,垂足为点E,点C在AD上,连接BC,要计算A、B两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,各组分别得到以下数据:甲:AC、∠ACB;乙:EF、DE、AD;丙:AD、DE和∠DCB;丁:CD、∠ABC、∠ADB.其中能求得A、B两地距离的数据有()A.甲、乙两组B.丙、丁两组C.甲、乙、丙三组D.甲、乙、丁三组8.(3分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:由表可知,抛物线与x轴的一个交点是(1,0),则另一个交点的坐标为()A.(0,5)B.(﹣2,9)C.(﹣5,0)D.(2,0)9.(3分)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1B.C.D.10.(3分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个二.填空题(共8题;共24分)11.(3分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).12.(3分)用科学记算器计算:2×sin15°×cos15°=.13.(3分)心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需分钟.14.(3分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=.15.(3分)设计一个摸球游戏,在一个袋子里装有一些颜色的球,使得摸到红球的机会为0.4,摸到黄球的机会为0.2,摸到白球的机会为0.4,则至少要有个黄球.16.(3分)已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x﹣3的图象的有(填写所有正确选项的序号).17.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b =0;③a+b+c>0;④4a﹣2b+c>0,其中正确的个数为.18.(3分)已知抛物线y=ax2+2ax+3与x轴的两交点之间的距离为4,则a=.三.解答题(共6题;共36分)19.(6分)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)20.(6分)如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A 的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).21.(6分)对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:①不论m为何值,函数图象一定过定点(﹣1,﹣3);②当m=﹣1时,函数图象与坐标轴有3个交点;③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.22.(6分)写出下列函数的关系式:有一个角是60°的直角三角形的面积S与斜边x的之间的函数关系式.23.(6分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)24.(6分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,根据下列条件:c=8,∠A=60°,求出直角三角形的其他元素.四.综合题(10分)25.(10分)已知:抛物线y=(x﹣1)2﹣3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.2016-2017学年江苏省泰州市兴化市顾庄学区九年级(下)第二次月考数学试卷参考答案与试题解析一.单选题(共10题;共30分)1.(3分)二次函数y=ax2+bx+c(a≠0)是偶函数,则实数b等于()A.1B.0C.﹣1D.2【解答】解:∵二次函数y=ax2+bx+c(a≠0)是偶函数,∴对称轴是y轴,∴﹣=0,∴b=0,故选:B.2.(3分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b【解答】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a <b),∴二次函数y=x2+mx+n与x轴的交点坐标分别是(a,0)、(b,0)(a<b),且抛物线的开口方向向上,∴该二次函数的图象如图所示:根据图示知,符合条件的x的取值范围是:a<x<b;故选:C.3.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sin B的值是()A.B.C.D.【解答】解:∵在△ABC中,∠C=90°,AC=4,AB=5,∴sin∠B==,故选:D.4.(3分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧【解答】解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.5.(3分)对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对【解答】解:A、当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B、当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C、当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D、以上说法都不对,故此选项正确;故选:D.6.(3分)在△ABC中,∠A,∠B均为锐角,且sin A=,cos B=,AC=40,则△ABC 的面积是()A.800B.C.400D.【解答】解:如图所示,过C作CD⊥AB,∵在△ABC中,∠A,∠B均为锐角,且sin A=,cos B=,∴∠A=∠B=30°,∴BC=AC,∴D为AB中点,在Rt△ACD中,AC=40,∴CD=AC=20,根据勾股定理得:AD==20,∴AB=2AD=40,则△ABC的面积是AB•CD=400,故选:D.7.(3分)如图,已知AE与BF相交于点D,AB⊥AE,垂足为点A,EF⊥AE,垂足为点E,点C在AD上,连接BC,要计算A、B两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,各组分别得到以下数据:甲:AC、∠ACB;乙:EF、DE、AD;丙:AD、DE和∠DCB;丁:CD、∠ABC、∠ADB.其中能求得A、B两地距离的数据有()A.甲、乙两组B.丙、丁两组C.甲、乙、丙三组D.甲、乙、丁三组【解答】解:甲:∵已知AC、∠ACB,∴AB=AC•tan∠ACB,∴甲组符合题意;乙:∵AB⊥AE,EF⊥AE,∴AE∥EF,∴∠A=∠E=90°,∵∠ADB=∠EDF,∴△DEF∽△DAB,∴=,∴AB=,∴乙组符合题意;丙:知道AD、DE的长,能求出AE,再知道∠DCB的度数,不能求出AB的值,则丙不符合题意;丁:设AC=x,∵AB=(x+CD)•tan∠ADB=x•∠ACB,∴能求出AC的长,∴AB=AC•tan∠ACB,∴丁组符合题意;∴符合题意的是甲、乙、丁组;故选:D.8.(3分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:由表可知,抛物线与x轴的一个交点是(1,0),则另一个交点的坐标为()A.(0,5)B.(﹣2,9)C.(﹣5,0)D.(2,0)【解答】解:由表中数据得抛物线经过点(﹣3,8),(﹣1,8),所以抛物线的对称轴为直线x=﹣2,而点(1,0)关于直线x=﹣2的对称点为(﹣5,0),所以抛物线与x轴的另一个交点的坐标为(﹣5,0).故选:C.9.(3分)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1B.C.D.【解答】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.故选:D.10.(3分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个【解答】解:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,4÷=12(个).故选:A.二.填空题(共8题;共24分)11.(3分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.12.(3分)用科学记算器计算:2×sin15°×cos15°=0.5.【解答】解:用计算器按MODE,有DEG后,按2×sin15×cos15=显示结果为0.5.故答案为0.5.13.(3分)心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需13分钟.【解答】解:把y=59.9代入y=﹣0.1x2+2.6x+43中得:x1=x2=13分钟,即学生对概念的接受能力达到59.9需要13分钟.14.(3分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=2.【解答】解:如图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=6,AC=2,∴BC===4,又∵∠D=∠A,∴tan D=tan A===2.故答案为:2.15.(3分)设计一个摸球游戏,在一个袋子里装有一些颜色的球,使得摸到红球的机会为0.4,摸到黄球的机会为0.2,摸到白球的机会为0.4,则至少要有1个黄球.【解答】解:∵摸到红球的机会为0.4即,摸到黄球的机会为0.2即,摸到白球的机会为0.4即,则三种球的比是2:1:2.∴至少要有1个黄球.16.(3分)已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x﹣3的图象的有①③(填写所有正确选项的序号).【解答】解:原式可化为:y=(x+1)2﹣4,由函数图象平移的法则可知,将函数y=x2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2﹣4,的图象,故①正确;函数y=(x+1)2﹣4的图象开口向上,函数y=﹣x2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x﹣1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2﹣4的图象,故③正确.故答案为:①③.17.(3分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b =0;③a+b+c>0;④4a﹣2b+c>0,其中正确的个数为2.【解答】解:①∵抛物线的开口向下,∴a<0,故①错误;②∵二次函数与x轴的交点的坐标为(﹣1,0),(3,0),∴对称轴为x═1,即﹣=1,∴b=﹣2a,即2a+b=0,故②正确;③当x=1时,y=a+b+c>0,故③正确;④当x=﹣2时y=4a﹣2b+c<0,故④错误.故答案是:2.18.(3分)已知抛物线y=ax2+2ax+3与x轴的两交点之间的距离为4,则a=﹣1.【解答】解:设抛物线y=ax2+2ax+3与x轴的两交点坐标分别是(m,0),(n,0),则m、n是一元二次方程ax2+2ax+3=0的两个根,所以m+n=﹣2,mn=.∵抛物线y=ax2+2ax+3与x轴的两交点之间的距离为4,∴(m﹣n)2=16,∴(m+n)2=﹣4mn=16,∴4﹣=16,∴a=﹣1.故答案为﹣1.三.解答题(共6题;共36分)19.(6分)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)【解答】解:过C作CD⊥AB,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,.答:命所在点C与探测面的距离2.73米.20.(6分)如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A 的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).【解答】解:过点A作AP⊥BC,垂足为P,设AP=x海里.在Rt△APC中,∵∠APC=90°,∠P AC=30°,∴tan∠P AC=,∴CP=AP•tan∠P AC=x.在Rt△APB中,∵∠APB=90°,∠P AB=45°,∴BP=AP=x.∵PC+BP=BC=30×,∴x+x=15,解得x=,∴PB=x=,∴航行时间:÷30=(小时).答:该渔船从B处开始航行小时,离观测点A的距离最近.21.(6分)对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:①不论m为何值,函数图象一定过定点(﹣1,﹣3);②当m=﹣1时,函数图象与坐标轴有3个交点;③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.【解答】解:①是真命题,理由:∵y=mx2+(5m+3)x+4m=(x2+5x+4)m+3x,∴当x2+5x+4=0时,得x=﹣4或x=﹣1,∴x=﹣1时,y=﹣3;x=﹣4时,y=﹣12;∴二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)的图象一定过定点(﹣1,﹣3),故①是真命题;②是假命题,理由:当m=﹣1时,则函数为y=﹣x2﹣2x﹣4,∵当y=0时,﹣x2﹣2x﹣4=0,△=(﹣2)2﹣4×(﹣1)×(﹣4)=﹣12<0;当x=0时,y=﹣4;∴抛物线与x轴无交点,与y轴一个交点,故②是假命题;③是假命题,理由:∵y=mx2+(5m+3)x+4m,∴对称轴x=﹣=﹣=﹣﹣,∵m<0,x≥﹣时,函数y随x的增大而减小,∴,得m=,∵m<0与m=矛盾,故③为假命题;22.(6分)写出下列函数的关系式:有一个角是60°的直角三角形的面积S与斜边x的之间的函数关系式.【解答】解:如图,∵∠B=60°,∠C=90°,∴∠A=30°,∴BC=AB=x,由勾股定理得:AC===x,∴S=AC•BC=•x=.23.(6分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.336m,∴FG=FC+CG≈1.1m.故跑步机手柄的一端A的高度约为1.1m.24.(6分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,根据下列条件:c=8,∠A=60°,求出直角三角形的其他元素.【解答】解:∵∠C=90°,c=8,∠A=60°,∴∠B=90°﹣60°=30°∵c=8,∴b=c=×8=4,∴a===12.四.综合题(10分)25.(10分)已知:抛物线y=(x﹣1)2﹣3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.【解答】解:(1)抛物线y=(x﹣1)2﹣3,∵a=>0,∴抛物线的开口向上,对称轴为直线x=1;(2)∵a=>0,∴函数y有最小值,最小值为﹣3;(3)令x=0,则y=(0﹣1)2﹣3=﹣,所以,点P的坐标为(0,﹣),令y=0,则(x﹣1)2﹣3=0,解得x1=﹣1,x2=3,所以,点Q的坐标为(﹣1,0)或(3,0),当点P(0,﹣),Q(﹣1,0)时,设直线PQ的解析式为y=kx+b(k≠0),则,解得,所以直线PQ的解析式为y=﹣x﹣,当P(0,﹣),Q(3,0)时,设直线PQ的解析式为y=mx+n,则,解得,所以,直线PQ的解析式为y=x﹣,综上所述,直线PQ的解析式为y=﹣x﹣或y=x﹣.。
2016年江苏省泰州市中考数学试卷一、选择题:本大题共有6小题,每小题3分,共18分1.(3分)4的平方根是()A.±2 B.﹣2 C.2 D.2.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣73.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.5.(3分)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.56.(3分)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣二、填空题:本大题共10小题,每小题3分,共30分7.(3分)(﹣)0等于.8.(3分)函数中,自变量x的取值范围是.9.(3分)抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.10.(3分)五边形的内角和是°.11.(3分)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.12.(3分)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.13.(3分)如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.14.(3分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.15.(3分)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.16.(3分)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB 为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.三、解答题17.(12分)计算或化简:(1)﹣(3+);(2)(﹣)÷.18.(8分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?19.(8分)一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、乙两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.20.(8分)随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.21.(10分)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.22.(10分)如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)23.(10分)如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O 交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.24.(10分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.25.(12分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26.(14分)已知两个二次函数y1=x2+bx+c和y2=x2+m.对于函数y1,当x=2时,该函数取最小值.(1)求b的值;(2)若函数y1的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3)若函数y1、y2的图象都经过点(1,﹣2),过点(0,a﹣3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4﹣x3+x2﹣x1的最大值.2016年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共有6小题,每小题3分,共18分1.(3分)4的平方根是()A.±2 B.﹣2 C.2 D.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.2.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故错误;B、是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形.不是中心对称图形,故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.【分析】该几何体的左视图为一个矩形,俯视图为矩形.【解答】解:该几何体的左视图是边长分别为圆的半径和厚的矩形,俯视图是边长分别为圆的直径和厚的矩形,故选D.【点评】本题考查了简单几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.5.(3分)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是:[(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题:本大题共10小题,每小题3分,共30分7.(3分)(﹣)0等于1.【分析】依据零指数幂的性质求解即可.【解答】解:由零指数幂的性质可知:(﹣)0=1.故答案为:1.【点评】本题主要考查的是零指数幂的性质,掌握零指数幂的性质是解题的关键.8.(3分)函数中,自变量x的取值范围是.【分析】根据分式有意义的条件是分母不为0;令分母为0,可得到答案.【解答】解:根据题意得2x﹣3≠0,解可得x≠,故答案为x≠.【点评】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.9.(3分)抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.【分析】根据概率公式知,6个数中有3个偶数,故掷一次骰子,向上一面的点数为偶数的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数为偶数,故其概率是=.故答案为:.【点评】本题主要考查了概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.10.(3分)五边形的内角和是540°.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.11.(3分)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为1:9.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE :S△ABC=(AD:AB)2=1:9,故答案为:1:9.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.12.(3分)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.13.(3分)如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为 2.5cm.【分析】根据平移的性质:对应线段平行,以及三角形中位线定理可得B′是BC 的中点,求出BB′即为所求.【解答】解:∵将△ABC沿BC方向平移至△A′B′C′的对应位置,∴A′B′∥AB,∵O是AC的中点,∴B′是BC的中点,∴BB′=5÷2=2.5(cm).故△ABC平移的距离为2.5cm.故答案为:2.5.【点评】考查了平移的性质,平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.(3分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.15.(3分)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为π.【分析】通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC,套入扇形的面积公式即可得出结论.【解答】解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,∴OB==,sin∠AOB==,∠AOB=30°.同理,可得出:OD=1,∠COD=60°.∴∠AOC=∠AOB+(180°﹣∠COD)=30°+180°﹣60°=150°.在△AOB和△OCD中,有,∴△AOB≌△OCD(SSS).∴S阴影=S扇形OAC.∴S扇形OAC=πR2=π×22=π.故答案为:π.【点评】本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出S阴影=S扇形OAC.本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.16.(3分)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB 为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1+,3)或(2,﹣3).【分析】△ABC是等边三角形,且边长为2,所以该等边三角形的高为3,又点C在二次函数上,所以令y=±3代入解析式中,分别求出x的值.由因为使点C落在该函数y轴右侧的图象上,所以x>0.【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的纵坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x>0,∴x=1+或x=2∴C(1+,3)或(2,﹣3)故答案为:(1+,3)或(2,﹣3)【点评】本题考查二次函数的图象性质,涉及等边三角形的性质,分类讨论的思想等知识,题目比较综合,解决问题的关键是根据题意得出C的纵坐标为±3.三、解答题17.(12分)计算或化简:(1)﹣(3+);(2)(﹣)÷.【分析】(1)先化成最简二次根式,再去括号、合并同类二次根式即可;(2)先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;(2)(﹣)÷=(﹣)•=•=.【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.18.(8分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【分析】(1)首先根据围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;(2)用50乘以0.20求出b的值,即可解答;(4)用总人数1500乘以喜爱围棋的学生频率即可求解.【解答】解:(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,如图,(3)1500×0.28=420(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有420人.【点评】本题考查了频数分布表及频数分布直方图,用到的知识点是:频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.19.(8分)一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同,甲、乙两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.【分析】(1)根据列表,可得答案;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等.【解答】解:列举所有可能:甲012乙100221(2)游戏不公平,理由如下:由表可知甲获胜的概率=,乙获胜的概率=,乙获胜的可能性大,所以游戏是不公平的.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比20.(8分)随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均增长率为x,根据“从2013年的200万元增长到2015年的392万元”,即可得出方程.【解答】解:设该购物网站平均每年销售额增长的百分率为x,根据题意,得:200(1+x)2=392,解得:x1=0.4,x2=﹣2.4(不符合题意,舍去).答:该购物网站平均每年销售额增长的百分率为40%.【点评】本题考查一元二次方程的应用.关于平均增长率问题,可设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21.(10分)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD平分∠CAE,∴∠DAG=∠CAG,∵AB=AC,∴∠B=∠ACB,∵∠CAG=∠B+∠ACB,∴∠B=∠CAG,∴∠B=∠DAG,∴AD∥BC;(2)解:方法一:过点A作AH⊥BC于点H,∵AD平分∠CAE,∴∠CAF=∠GAF,∵AB=AC,AH⊥BC,∴∠BAH=∠HAC,BH=HC,∴∠HAC+∠CAF=×180°=90°,又∵∠AFC=∠AHC=90°∴四边形CHAD是矩形,∴AF=HC=4,∴BC=2HC=8.方法二:∵CG⊥AD,∴∠AFC=∠AFG=90°,在△AFC和△AFG中,,∴△AFC≌△AFG(ASA),∴CF=GF,∵AD∥BC,∴△AGF∽△BGC,∴GF:GC=AF:BC=1:2,∴BC=2AF=2×4=8.【点评】此题考查了等腰三角形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意证得△AGF∽△BGC是关键.22.(10分)如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+≈2.7千米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(10分)如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O 交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.【分析】(1)结论:AB是⊙O切线,连接DE,CF,由∠FCD+∠CDF=90°,只要证明∠ADF=∠DCF即可解决问题.(2)只要证明△PCF∽△PAC,得=,设PF=a.则PC=2a,列出方程即可解决问题.【解答】解:(1)AB是⊙O切线.理由:连接DE、CF.∵CD是直径,∴∠DEC=∠DFC=90°,∵∠ACB=90°,∴∠DEC+∠ACE=180°,∴DE∥AC,∴∠DEA=∠EAC=∠DCF,∵∠DFC=90°,∴∠FCD+∠CDF=90°,∵∠ADF=∠EAC=∠DCF,∴∠ADF+∠CDF=90°,∴∠ADC=90°,∴CD⊥AD,∴AB是⊙O切线.(2)∵∠CPF=∠CPA,∠PCF=∠PAC,∴△PCF∽△PAC,∴=,∴PC2=PF•PA,设PF=a.则PC=2a,∴4a2=a(a+5),∴a=,∴PC=2a=.【点评】本题考查切线的判定、相似三角形的判定和性质、圆的有关性质等知识,解题的关键是添加辅助线,记住直径所对的圆周角是直角,学会用方程的思想解决问题,属于中考常考题型.24.(10分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.【分析】(1)先把A点坐标代入y=求出k的值得到反比例函数解析式为y=,然后把B(﹣4,n)代入y=可求出n的值;(2)利用反比例函数图象上点的坐标特征得到4m=k,﹣4n=k,然后把两式相减消去k即可得到m+n的值;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,利用正切的定义得到tan∠AOE==,tan∠BOF==,则+=1,加上m+n=0,于是可解得m=2,n=﹣2,从而得到A(2,4),B(﹣4,﹣2),然后利用待定系数法求直线AB的解析式.【解答】解:(1)当m=2,则A(2,4),把A(2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B(﹣4,n)代入y=得﹣4n=8,解得n=﹣2;(2)因为点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,所以4m=k,﹣4n=k,所以4m+4n=0,即m+n=0;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,在Rt△AOE中,tan∠AOE==,在Rt△BOF中,tan∠BOF==,而tan∠AOD+tan∠BOC=1,所以+=1,而m+n=0,解得m=2,n=﹣2,则A(2,4),B(﹣4,﹣2),设直线AB的解析式为y=px+q,把A(2,4),B(﹣4,﹣2)代入得,解得,所以直线AB的解析式为y=x+2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(12分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【分析】(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;(2)①根据正方形的性质、等腰直角三角形的性质解答;②根据PE∥CF,得到=,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.【点评】本题考查的是正方形的性质、直角三角形的判定、相似三角形的判定和性质以及等腰直角三角形的性质,掌握相关的性质定理和判定定理、正确作出辅助性是解题的关键.26.(14分)已知两个二次函数y1=x2+bx+c和y2=x2+m.对于函数y1,当x=2时,该函数取最小值.(1)求b的值;(2)若函数y1的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3)若函数y1、y2的图象都经过点(1,﹣2),过点(0,a﹣3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4﹣x3+x2﹣x1的最大值.【分析】(1)由于题意知x=2时,该函数取得最小值,所以x=2时该函数y1的对称轴;(2)若函数y1的图象与坐标轴只有2个不同的公共点,则分为两种情况讨论,一种是抛物线与x轴有两个交点时,另一种是抛物线与x轴有1个交点,然后分别求出C的值即可;(3)函数y1与y2经过(1,﹣2),所以可求出c与m的值,根据函数解析式画出图象可知,若过点(0,a﹣3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点时,则﹣3<a﹣3<﹣2或a﹣3>﹣2.【解答】解:(1)由题意知:函数y1的对称轴为x=2,∴﹣=2,∴b=﹣4,(2)由题意知:△=b2﹣4c=16﹣4c,当△>0时,∴c<4,此时函数y1与x轴有两个不同的交点,由于若函数y1的图象与坐标轴只有2个不同的公共点,∴c=0,∴y1=x2﹣4x,令y1=0,∴x=0或x=4,∴两个公共点间的距离为4,当△=0时,∴c=4,此时抛物线与x轴只有一个交点,与y轴只有一个交点,∴两个公共点间的距离,由勾股定理可求得:=2,(3)∵函数y1、y2的图象都经过点(1,﹣2),∴将(1,﹣2)代入函数y1和函数y2,∴﹣2=1﹣4+c,﹣2=1+m,∴c=1,m=﹣3,∴函数y1=x2﹣4x+1,函数y2=x2﹣3,联立解得:x=1,y=﹣2,∵过点(0,a﹣3)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点,∴﹣3<a﹣3<﹣2或a﹣3>﹣2当﹣3<a﹣3<﹣2时,如图1,即0<a<1,令y=a﹣3代入y1,∴x2﹣4x+4﹣a=0,∴x3=2﹣,x4=2+,令y=a﹣3代入y2,a﹣3=x2﹣3,∴x1=﹣,x2=,∴x4﹣x3+x2﹣x1=4,∵0<a<1,∴0<4<4,当a﹣3>﹣2,如图2,即a>1,令y=a﹣3代入y1,∴x2﹣4x+4﹣a=0,∴x2=2﹣,x4=2+,令y=a﹣3代入y2,a﹣3=x2﹣3,∴x1=﹣,x3=,∴x4﹣x3+x2﹣x1=4,综上所述,过点(0,a﹣3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点时,x4﹣x3+x2﹣x1的最大值为4.【点评】本题考查函数的综合问题,涉及待定系数法求解析式,二次函数图象的性质,一元二次方程的解法和数形结合的思想,综合程度较高,需要学生利用数形结合的思想解决问题.。
2016年江苏省泰州市兴化市顾庄学区网上阅卷中考数学二模试卷一、选择题:本大题共6小题,每小题3分,共18分1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.2.下列运算结果为a6的是()A.a2+a3B.a2•a3 C.(﹣a2)3D.a8÷a23.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大 D.甲、乙的众数相同4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.55.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>26.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,2)B.(3,3)C.(4,3)D.(3,2)二、填空题:本大题共10小题,每小题3分,共30分7.4是______的算术平方根.8.用科学记数法表示260000000000为______.9.因式分解:﹣2x2y+12xy﹣18y=______.10.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______度.11.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是______.12.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是______.13.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为______.14.如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于______.15.如图,半径为4的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于______.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是______.三、解答题:本大题共10小题,共102分17.计算或化简:(1)+(π﹣2016)0+()﹣1﹣6tan60°(2)÷(a+2﹣)18.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.19.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?20.从甲、乙、丙、丁4名选手中随机抽取两名选手参加乒乓球比赛,请用画树状图或列表的方法列出所有可能的结果,并求甲、乙两名选手恰好被抽到的概率.21.为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?22.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B 的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)24.如图,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD ∥AB交⊙A于点D(点D在点C右侧),连结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围.25.如图,二次函数y=﹣x2﹣x+3的图象与x轴交于A、B两点,与C轴交于点C.(1)求点A、B、C的坐标;(2)在线段AB上是否存在点P,使得∠PCB=∠BAC?如果存在,求出P点的坐标;如果不存在,说明理由;(3)设点G、H是二次函数图象在x轴上方的两个动点,试猜想:是否存在这样的点G、H,使△AGH≌△ABH?如果存在,请举例验证你的猜想?如果不存在,请说明理由.26.在平面直角坐标系xOy中,已知点A的坐标为(0,﹣1),点C(m,0)是x轴上的一个动点.(1)如图1,△AOB和△BCD都是等边三角形,当点C在x轴上运动到如图所示位置时,连接AD,请证明△ABD≌△OBC;(2)如图2,△ABO和△ACD都是等腰直角三角形,当点C在x轴上运动(m>1)时,设点D的坐标为(x,y),请探求y与x直角的函数关系式;(3)如图3,四边形ACEF是正方形,当点C在x轴上运动(m>1)时,设点D的坐标为(x,y),请探求y与x直角的函数关系式.2016年江苏省泰州市兴化市顾庄学区网上阅卷中考数学二模试卷参考答案与试题解析一、选择题:本大题共6小题,每小题3分,共18分1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.2.下列运算结果为a6的是()A.a2+a3B.a2•a3 C.(﹣a2)3D.a8÷a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.3.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大 D.甲、乙的众数相同【考点】方差.【分析】根据方差、平均数的意义进行判断.平均数相同则总环数相同;方差越大,波动越大.【解答】解:A、根据平均数的定义,正确;B、根据方差的定义,正确;C、根据方差的定义,正确,D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.故选D.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.5【考点】由三视图判断几何体.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.【解答】解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.5.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的交点问题.【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选D.6.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,2)B.(3,3)C.(4,3)D.(3,2)【考点】坐标与图形变化-平移;等边三角形的性质.【分析】作AM⊥x轴于点M.根据等边三角形的性质得出OA=OB=2,∠AOB=60°,在直角△OAM中利用含30°角的直角三角形的性质求出OM=OA=1,AM=OM=,则A(1,),直线OA的解析式为y=x,将x=3代入,求出y=3,那么A′(3,3),由一对对应点A与A′的坐标求出平移规律,再根据此平移规律即可求出点B′的坐标.【解答】解:如图,作AM⊥x轴于点M.∵正三角形OAB的顶点B的坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=OA=1,AM=OM=,∴A(1,),∴直线OA的解析式为y=x,∴当x=3时,y=3,∴A′(3,3),∴将点A向右平移2个单位,再向上平移2个单位后可得A′,∴将点B(2,0)向右平移2个单位,再向上平移2个单位后可得B′,∴点B′的坐标为(4,2),故选A.二、填空题:本大题共10小题,每小题3分,共30分7.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.8.用科学记数法表示260000000000为 2.6×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示260000000000为2.6×1011.,故答案为2.6×1011.9.因式分解:﹣2x2y+12xy﹣18y=﹣2y(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣2y(x2﹣6x+9)=﹣2y(x﹣3)2.故答案为:﹣2y(x﹣3)2.10.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为6011.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.【解答】解:女生当选组长的概率是:4÷10=.故答案为:.12.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9.【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.13.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.【考点】平移的性质.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.14.如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于3.【考点】矩形的性质;翻折变换(折叠问题).【分析】设AM=x,表示出EM=BM=6﹣x,AE=2x,再利用勾股定理列出方程求出x,然后求出BM,AE,过点N作NF⊥AD于F,求出△AME和△FEN,再利用相似三角形对应边成比例列式求解即可.【解答】解:设AM=x,则EM=BM=6﹣x,AE=2AM=2x,∵四边形ABCD是矩形,∴∠A=90°,∴在Rt△AME中,由勾股定理得,AM2+AE2=EM2,即x2+(2x)2=(6﹣x)2,整理得,x2+3x﹣9=0,解得x1=,x2=(舍去),所以,BM=6﹣=,AE=﹣3+3,过点N作NF⊥AD于F,易求△AME∽△FEN,所以,,即,解得EN=3.故答案为:3.15.如图,半径为4的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于4π.【考点】轨迹.【分析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×4+×2π×4=4π,故答案为:4π.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.【考点】轴对称-最短路线问题.【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.三、解答题:本大题共10小题,共102分17.计算或化简:(1)+(π﹣2016)0+()﹣1﹣6tan60°(2)÷(a+2﹣)【考点】分式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)先计算二次根式、零指数幂、负整指数幂、特殊角的三角函数值,再计算乘法、最后计算加减即可;(2)先计算括号内异分母分式加法,再将除法转化为乘法,最后通过约分计算分式乘法即可.【解答】解:(1)原式=2+1+2﹣6×=2+1+2﹣2=3;(2)原式=÷=×=.18.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【考点】根的判别式.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.19.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A级人数为24人,以及在扇形图中所占比例为20%,24÷20%即可得出抽取的样本的容量;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,即可得出D级人数,补全条形图即可;(3)根据A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,即可得出该校这次活动共收到参赛作品750份,参赛作品达到B级以上的份数.【解答】解:(1)∵A级人数为24人,在扇形图中所占比例为20%,∴这次抽取的样本的容量为:24÷20%=120;(2)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,∴D级人数为:120﹣36﹣24﹣48=12人,如图所示:(3)∵A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,∴该校这次活动共收到参赛作品750份,参赛作品达到B级以上有750×60%=450份.20.从甲、乙、丙、丁4名选手中随机抽取两名选手参加乒乓球比赛,请用画树状图或列表的方法列出所有可能的结果,并求甲、乙两名选手恰好被抽到的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙两名选手恰好被抽到的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,甲、乙两名选手恰好被抽到的有2种情况,∴甲、乙两名选手恰好被抽到的概率为:=.21.为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?【考点】一元二次方程的应用;分段函数.【分析】(1)由题意知,3月份电量超过了a千瓦,可列等式20+(80﹣a)=35,解一元二次方程求出a的值即可;(2)设月用电量为x千瓦时,交电费y元.根据题意列出分段函数,然后求出5月份的电量.【解答】解:(1)根据3月份用电80千瓦时,交电费35元,得,,即a2﹣80a+1500=0.解得a=30或a=50.由4月份用电45千瓦时,交电费20元,得,a≥45.∴a=50.(2)设月用电量为x千瓦时,交电费y元.则∵5月份交电费45元,∴5月份用电量超过50千瓦时.∴45=20+0.5(x﹣50),解得x=100.答:若该宿舍5月份交电费45元,那么该宿舍当月用电量为100千瓦时.22.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.【考点】相似三角形的判定;正方形的性质;平行线分线段成比例.【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.【解答】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B 的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x,根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.【解答】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)×,解得:x≈13,∴BC=13米,答:大树的高度为13米.24.如图,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD ∥AB交⊙A于点D(点D在点C右侧),连结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围.【考点】矩形的判定与性质;勾股定理;圆周角定理.【分析】(1)作AH⊥CD于H,如图,根据垂径定理得CH=DH=CD=×6=3,再利用勾股定理计算出AH=4,然后根据梯形的面积公式求解;(2)作CP⊥AB于P,如图1,根据垂径定理得CH=DH=x,易得AP=CH=x,则BP=AB ﹣AP=8﹣x,在Rt△PAC中利用勾股定理得到CP2=25﹣x2,在Rt△BPC中根据勾股定理得到y2=(8﹣x)2+25﹣x2=89﹣8x,然后利用算术平方根定义即可得到y与x的关系.【解答】解:过点A作AH⊥CD于H,如图,则CH=DH=CD=×6=3,在Rt△AHD中,∵AD=5,DH=3,∴AH==4,∴四边形ABCD的面积=(CD+AB)•AH=×(6+8)×4=28;(2)作点C作CP⊥AB于P,如图,∵AH⊥CD,CD=x,∴CH=DH=x,∴AP=CH=x,∴BP=AB﹣AP=8﹣x,在Rt△PAC中,∵AC2=AP2+CP2,∴CP2=25﹣x2,在Rt△BPC中,∵BC2=BP2+CP2,∴y2=(8﹣x)2+25﹣x2=89﹣8x,∴y=(0<x<10);25.如图,二次函数y=﹣x2﹣x+3的图象与x轴交于A、B两点,与C轴交于点C.(1)求点A、B、C的坐标;(2)在线段AB上是否存在点P,使得∠PCB=∠BAC?如果存在,求出P点的坐标;如果不存在,说明理由;(3)设点G、H是二次函数图象在x轴上方的两个动点,试猜想:是否存在这样的点G、H,使△AGH≌△ABH?如果存在,请举例验证你的猜想?如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线的性质和坐标轴上点的特点,求出点A,B,C的坐标;(2)先判断出△PBC∽△CBA,得到,建立方程从而求得a即可;(3)先判断出符合要求的点G,即点G和点C重合,然后说明△AGH≌△ABH即可.【解答】解:(1)令y=0,得,﹣x2﹣x+3=0,∴x1=1,x2=﹣4,∴A(﹣4,0),B(1,0),令x=0,得,y=3,∴C(0,3)(2)假设存在点P(a,0),使得∠PCB=∠BAC,∵∠PCB=∠BAC,∠PBC=∠CBA,∴△PBC∽△CBA,∴,∵BC=,BA=5,∴,∴a=﹣1,∴存在点P(﹣1,0);(3)存在点G,H,使△AGH≌△ABH,如图,∵A(﹣4,0),C(0,3),B(1,0)∴AB=5,AC=5,∴AB=AC,故点C就是符合要求的一个点G,作∠BAC的平分线交抛物线于点H,连接BH,CH(GH),∴∠CAH=∠BAH,∵AH=AH,∴△AGH≌△ABH,∴当点G和点C重合时,△AGH≌△ABH.26.在平面直角坐标系xOy中,已知点A的坐标为(0,﹣1),点C(m,0)是x轴上的一个动点.(1)如图1,△AOB和△BCD都是等边三角形,当点C在x轴上运动到如图所示位置时,连接AD,请证明△ABD≌△OBC;(2)如图2,△ABO和△ACD都是等腰直角三角形,当点C在x轴上运动(m>1)时,设点D的坐标为(x,y),请探求y与x直角的函数关系式;(3)如图3,四边形ACEF是正方形,当点C在x轴上运动(m>1)时,设点D的坐标为(x,y),请探求y与x直角的函数关系式.【考点】四边形综合题.【分析】(1)由等边三角形的性质得到AB=OB,BD=BC,∠ABO=∠DBC=60°,从而判断出∠ABD=∠OBC即可;(2))由△ABO和△ACD都是等腰直角三角形,得出,从而得到三角形相似,即可;(3)由DG∥EH,得到=,再利用正方形的性质即可.【解答】解:(1)∵△AOB和△BCD都是等边三角形,∴AB=OB,BD=BC,∠ABO=∠DBC=60°,∴∠ABD=∠OBC,在△ABD和△OBC中,,∴△ABD和△OBC,(2)∵△ABO和△ACD都是等腰直角三角形,∴,∵∠OAD=∠BAC,∴△AOD∽△ABC,∴∠AOD=∠ABC=135°为定值,∴y与x之间的关系是y=x,(3)如图,连接AE,CF交于点D,设D(a,a),过点D作DG⊥y轴,过点E作EH⊥y轴于H,∴DG∥EH,∴=,∵点D是正方形ACEF的对角线交点,∴AD=ED=AE,∴AG=a+1,AH=2a+2,DG=a,EH=2a,∴OH=2a+1,∴y=2a+1,x=2a,∴y=x+1.2016年9月27日。