2016年高考数学复习专题15解析几何椭圆中的最值问题易错点
- 格式:doc
- 大小:328.00 KB
- 文档页数:3
椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。
一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。
推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a acPF -=+-⋅=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。
解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。
联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。
椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在)121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+=u u u r u u u r②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔u u u r u u u r数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x x y y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩ 所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()432000000320004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为2,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=u u u r u u u r,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点. (1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---u u u r u u u u r,,,,.所以()22120021PF PF x y ⋅=--=u u u r u u u r ,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x -,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k ++-+--=,设()B B B x y ,,则1B x -同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -==-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅u u u r u u u r为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++u u u r u u u r,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+.4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k -+=+,即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k =,所以222212m k k k+=+…,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y x x y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E D n y y m k==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k=,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B,,且3AP PB =u u u r u u u r , 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=u u u r u u u r Q ,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-…,所以112m -<-„或112m <„, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-„或112m <„.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=u u u u r u u u r u u u r. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-u u u r u u u r 剟,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--u u u r u u u u r u u u r,,,,,.由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>.所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--u u u r u u u r()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k -+--+剟,解得213k 剟.(3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅u u u r u u u r 的取值范围. 解:(13)AP =u u u r,,设()(31)Q x y AQ x y =--u u u r ,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-u u u r u u u r因为221182y x +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +⋅…,所以18618xy -剟.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-u u u r u u u r取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x轴上.若右焦点到直线0x y -+=的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m 的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=.(2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+, 所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=u u u u r u u u r u u u r u u u u r,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=u u u r u u u r,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=u u u u r u u u r u u u r u u u u r,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y +=(2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=u u u r u u u r,所以()()112222x y x y λ-=-,,,所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,, 所以()22121221x x x x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭, 因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===u u u r u u u r ,,, 所以113λ<…,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=u u u r u u u r u u u r(O 为坐标原点),当||PA PB -<u u u r u u u r时,求实数t 取值范围.解:(1)由题意知c e a ==,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=.(2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=u u u r u u u r u u u r ,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为||PA PB -<u u u r u u u r12x -()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为()22-U ,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=u u u r u u u r,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x a b+=,由题意可得2a b c ===,故椭圆方程为22142y x +=设AB 的直线方程:2y x m =+.由222124y x m y x ⎧=+⎪⎨+=⎪⎩,,得2242240x mx m ++-=,由()22(22)1640m m ∆=-->,得2222m -<<,P 到AB 的距离为3d =, 则()2111||432223PAB S AB d m ∆=⋅=-⋅⋅, ()()2222211882882m m m m -+=-+=„.当且仅当2(2222)m =±∈-,取等号,所以三角形PAB 面积的最大值为2. (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t ….当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()3311-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=1=,即221t k =+. 所以||AB ==因为||23||||ABt t ==+,且当t = 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯„, 当且仅当t =AOB∆面积S 的最大值为1,相应的T的坐标为(0-,或(0.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m 的函数,并求AB 的最大值.解:由题意知,||1m ….当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB= 当1m =-时,同理可得AB =当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB ,23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a b a b+=>>上的三点,其中点A 的坐标为(230),,BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==u u u r u u u r u u u r u u u r ,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =u u u r u u u r ,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=u u u r u u u r u u u r u u u r ,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点1(2)M ,,平行于OM 的直线l 在y 轴上的截距为(0)m m ≠,l交椭圆于A B ,两个不同点.(1)求椭圆的方程;(2)求m 的取值范围;(3)求证直线MA MB ,与x 轴始终围成一个等腰三角形.。
1 椭圆中的最值问题主标题: 副标题:为学生详细的分析椭圆中的最值问题的高考考点、命题方向以及规律总结。
关键词:椭圆,椭圆中的最值问题难度:5重要程度:4考点剖析:1.理解椭圆中的最值问题;2.会处理有关椭圆中的最值问题,命题方向: 椭圆中的最值问题以及与向量、不等式、方程结合的问题常以解答题的形式出现,具有一定的综合性和难度.主要体现了转化思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式等内容。
能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。
规律总结: 圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。
要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。
知识梳理(1) 设椭圆12222=+by a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为2a –︱PF 1︱。
(2) 设椭圆12222=+by a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为PF 2。
(3) 椭圆12222=+by a x 上的点M(x,y)到定点A(m,0)或B(0,n)距离的最值问题,可以用两点间距离公式表示︱MA ︱或︱MB ︱,通过动点在椭圆上消去y 或x,转化为二次函数求最值,注意自变量的取值范围。
(4) 若椭圆12222=+by a x 上的点到非坐标轴上的定点的距离求最值时,可通过椭圆的参数方程,统一变量转化为三角函数求最值。
(5) 椭圆上的点到定直线l 距离的最值问题,可转化为与l 平行的直线m 与椭圆相切的问题,利用判别式求出直线m 方程,再利用平行线间的距离公式求出最值。
椭圆中的常见最值问题1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。
例1、椭圆192522=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的最大值时,P 点的坐标是 。
P (0,3)或(0,-3)例2、已知椭圆方程12222=+by a x (222,0c b a b a +=>>)p 为椭圆上一点,21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。
分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。
例3、已知)1,1(A ,1F 、2F 是椭圆15922=+y x 的左右焦点,P 为椭圆上一动点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。
||||2PF PA -的最小值是 ,此时P 点坐标为 。
3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。
例4、已知)1,1(A ,1F 是椭圆15922=+y x 的左焦点,P 为椭圆上一动点,则||||1PF PA +的最小值是 ,此时P 点坐标为 。
||||1PF PA +的最大值是 ,此时P 点坐标为 。
分析:||||||||||2121AF PF PF PF PA ++≤+,当P 是2AF 的延长线与椭圆的交点时取等号。
||||||||||2121AF PF PF PF PA -+≥+,当P 是2AF 的反向延长线与椭圆的交点时取等号。
破解椭圆中最值问题的常见策略有关圆锥曲线的最值问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以 解答题为重,在平时的高考复习需有所重视。
圆锥曲线最值问题具有综合性强、涉及知识面广而且 常含有变量的一类难题,也是教学中的一个难点。
要解决这类问题往往利用函数与方程思想、数形 结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、 各种平面几何中最值的思想来解决。
第一类:求离心率的最值问题2 2例1:若A, B 为椭圆 笃•爲=1(a b 0)的长轴两端点,Q 为椭圆上一点,使 /AQB = 120°, a b求此椭圆离心率的最小值。
分析:建立a,b,c 之间的关系是解决离心率最值问题常规思路。
此题也就要将角转化为边的思 想,但条件又不是与焦点有关,很难使用椭圆的定义。
故考虑使用到角公式转化为坐标形式运用椭 圆中x, y 的取值进行求解离心率的最值。
解:不妨设 A(a,0), B( -a,0),Q(x, y),则 k AQ = —^,k BQx + a故于沃")(注:本题若是选择或填空可利用数形结合求最值)a,b,c 之间的关系。
常用椭圆上的点 (x, y )表示成a,b,c ,并利用椭圆中x, y 的取值来求解范围问题或用数形结合进行求解。
破解策略之二:利用三角函数的有界性求范围2 2例2:已知椭圆C :务•占=1@ b 0)两个焦点为F1,F2,如果曲线C 上存在一点Q,使FQ _ F?Q , a b 求椭圆离心率的最小值。
分析:根据条件可采用多种方法求解,如例1中所提的方法均可。
本题如借用三角函数的有界性求解,也会有不错的效果。
解:根据三角形的正弦定理及合分比定理可得:2c 二 PF1 _ PF2 _ PF 「PF2 _ 2a sin900sin : sin : sin : cos :sin : cos :利用到角公式及 NAQB =120。
高考数学考点:椭圆的最值问题
于长轴长加上这个定点到另一焦点的距离。
二. 利用椭圆的定义或几何性质求最值(取值范围)
例3. 已知椭圆的长轴的两端点分别是A、B,若椭圆上有一点P,使得∠APB=120°,求椭圆的离心率e的取值范围。
分析:要求离心率e的取值范围,根据条件建立等式,再根据椭圆上点的坐标的范围建立不等式求解。
解:由题设知设点,则有
化简得
由椭圆的几何性质知利用得,
解得
点评:当点P在椭圆上运动时,∠APB的大小也随之变化,且当点P在向短轴端点靠近时,∠APB逐渐增长,当点P为椭圆短轴端点时,∠APB达到最大。
因此,只要长轴关于短轴端点的张角大于或等于120°,椭圆上就存在一点P,使∠ABP=120°。
练一练:直线总有公共点,试求m的取值范围。
答案:。
For personal use only in study and research; not for commercial use椭圆中的常见最值问题1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。
例1、椭圆192522=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的最大值时,P 点的坐标是 。
P (0,3)或(0,-3)例2、已知椭圆方程12222=+by a x (222,0c b a b a +=>>)p 为椭圆上一点,21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。
分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。
例3、已知)1,1(A ,1F 、2F 是椭圆15922=+y x 的左右焦点,P 为椭圆上一动点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。
||||2PF PA -的最小值是 ,此时P 点坐标为 。
3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。
例4、已知)1,1(A ,1F 是椭圆15922=+y x 的左焦点,P 为椭圆上一动点,则||||1PF PA +的最小值是 ,此时P 点坐标为 。
||||1PF PA +的最大值是 ,此时P 点坐标为 。
椭圆上的点到定点与一焦点距离和的最值问题求解作者:姜建平来源:《新一代》2016年第16期摘要:椭圆上的点到定点与一焦点距离和的最值问题求解问题主要是在对取得最值条件的分析,在本文中主要利用三角形三边关系的不等关系分析取得最值得条件,并根据定点与椭圆的三种位置关系分别归纳结论并证明,然后对结论进行应用。
关键词:椭圆;距离和;最值高中数学中的最值问题是高考数学最常见的题型,也是大部分学生感到最棘手的问题。
在圆锥曲线中也经常遇到圆锥曲线上的点到定点与一焦点距离和的最值问题,常出现在一些选择和填空题中。
为了能够是学生更好的解决此类问题,在此以椭圆为例对其求解方法进行探讨,加深学生对椭圆概念理解的同时形成结论,以便在以后解题中直接应用,提高解题效率,不足之处请大家批评指正。
一、问题二、结论(一)当点M在椭圆外时(如图)结论1:连结点F1,M与椭圆相交于一点P1,显然当点P,P1 重合时|PF1|+|PM|最小,利用距离公式求得最小值;结论2:连结点M,F2并延长与椭圆相交于一点P2,当点P,P2,重合时|PF1|+|PM|最大,最大为2A+|MF2|证明:在椭圆上任取一点P,|PM|≤|MF2|+|PF2|,只有当点P,P2重合时|PM|=|MF2|+|PF2|,所以|PF1|+|PM|≤|PF1|+|PF2|+|MF2|=2a+|MF2|所以当点P,P2重合时|PF1|+|PM|最大,最大为2a+|MF2|(二)当点M在椭圆内时(如图)1.当点M与F2不重合时结论1:射线F2M交椭圆与点P1,当点P与点P1重合时|PF1|+|PM|最小,最小为2a-|MF2|结论2:射线MF2交椭圆与点P2,当点P与点P2重合时|PF1|+|PM|最大,最大为2a+|MF2|证明:由|PF1|+|PM|=|PF1|+|PF2|-|PF2|+|PM|得|PF1|+|PM|=2a-(|PF2|-|PM|)又|PF2|-|PM|≤|MF2|,所以|PF1|+|PM|≥2a-|MF2|只有当当点P与点P1重合时|PF2|-|PM|=|MF2|所以当点P与点P1重合时|PF1|+|PM|最小,最小为2a-|MF2|又|PF1|+|PM|=2a+(|PF2|-|PM|),|PM|-|PF2|≤|MF2|,所以|PF1|+|PM|≤2a+|MF2|只有当点P与点P2重合时|PF2|-|PM|=|MF2|所以当点P与点P2重合时|PF1|+|PM|最大,最大为2a+|MF2|2.当点M与F2重合时显然|PF1|+|PM|=2a为定值(三)当点M在椭圆上时(如图)结论1:容易得当P与M点重合时|PF1|+|PM|最小,最小为|MF1|结论2:连结点M,F2延长线交椭圆与P1,当点P与点P1重合时|PF1|+|PM|最大,最大为2a+|MF2|证明:在椭圆上任取一点P,|PM|≤|PF2|+|MF2|,只有当点P,P1重合时|PM|=|MF2|+|PF2|,所以|PF1|+|PM|≤|PF1|+|PF2|+|MF2|=2a+|MF2|所以当点P,P2重合时|PF1|+|PM|最大,最大为2a+|MF2|类似的我们可以得到P为椭圆上任意一点,M为任意的点,求|PF2|+|PM|的范围问题,我们还可以继续思考在双曲线和抛物线中距离和的最值问题。