西安市高考数学一轮专题:第12讲 变化率与导数、导数的计算(I)卷
- 格式:doc
- 大小:211.50 KB
- 文档页数:8
第十二讲 导数的切线方程1. 导数的几何意义:切线的斜率2. 求斜率的方法 (1)公式:/12012tan ()y y k f x x x α-===-0απ为直线的倾斜角,范围[0,),x 是切点的横坐标(2)当直线l 1、l 2的斜率都存在时:1212l l k k ⇔=P ,12120l l k k ⊥⇔•= 3. 切线方程的求法 (1)求出直线的斜率 (2)求出直线上的一点或切点(3)利用点斜式00()y y k x x -=-写出直线方程。
考向一斜率(或倾斜角)与切点互求【例1】(1)曲线y =13x 3在x =1处切线的倾斜角为。
(2)设函数()ln f x x x =,若0()2f x '=,则0x =______________. 【答案】(1)π4.(2)e【解析】(1)∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.(3)由题意得()ln 1f x x '=+,又00()ln 12f x x '=+=,解得0e x =.【举一反三】1.已知在曲线2y x =上过点00(),P x y 的切线为l . (1)若切线l 平行于直线45y x =-,求点P 的坐标; (2)若切线l 垂直于直线2650x y -+=,求点P 的坐标; (3)若切线l 的倾斜角为135︒,求点P 的坐标. 【答案】(1)(2,4);(2)39(,)24-;(3)11(,)24-.【解析】(1)两条直线平行斜率相等,2x 0=4,x 0=2,代入曲线y 0=4,切点P (2,4) (2)直线直线垂直,斜率相乘等于-1.g 0000139392x =-1,x =-,将x 代入曲线y =,故P (-,)32424(3)因为切线l 的倾斜角为135︒,所以其斜率为1-.即021x =-,得012x =-,014y =,故11(,)24P -.考向二在某点处求切线方程【例2】设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.【解析】因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0. 【答案】x -y -1=0【举一反三】1.函数f (x )=e xcos x 在点(0,f (0))处的切线方程为。
西安市高考数学一轮复习:12 变化率与导数、导数的计算C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个公共点,这三个公共点横坐标的最大值为a,则a等于()A . -cosaB . -sinaC . -tanaD . tana2. (2分)已知,若,则a的值等于()A .B .C .D .3. (2分) (2015高二下·咸阳期中) 如果一个函数的瞬时变化率处处为0,则这个函数的图象是()A . 圆B . 拋物线C . 椭圆D . 直线4. (2分)一质点做直线运动,若它所经过的路程与时间的关系为(的单位:m,t的单位:s),则t=5时的瞬时速度(单位:m/s)为()A . 37B . 38C . 39D . 405. (2分) (2016高二下·晋中期中) 设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A . 2B .C . ﹣D . ﹣26. (2分)已知函数的图象过原点,且在原点处的切线斜率是-3,则不等式组所确定的平面区域在内的面积为()A .B .C .D .7. (2分) (2017高二下·延安期中) 若 =1,则f′(x0)等于()A . 2B . ﹣2C .D .8. (2分) (2015高二下·上饶期中) 已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0 , y0),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3﹣3x2 ,则可求出f()+f()+f()+…+f()+f()的值为()A . 4029B . ﹣4029C . 8058D . ﹣80589. (2分)三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是()A . y=x3+6x2+9xB . y=x3-6x2+9xC . y=x3-6x2-9D . y=x3+6x2-9x10. (2分)已知函数且 ,是f(x)的导函数,则 = ()A .B .C .D .11. (2分) f0(x)=sinx,f1(x)=f0'(x),f2(x)=f1'(x),...fn+1(x)=fn'(x),则f2012()= ()A .B .C .D .12. (2分)直线y=kx+b与曲线相切于点(2,3),则b的值为()A . -3B . 9C . -15D . -7二、填空题 (共5题;共5分)13. (1分) (2016高二下·民勤期中) 一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是________米/秒.14. (1分)已知f(x)=x(x﹣1)(x﹣2)…(x﹣10),则f′(4)=________.15. (1分)函数y=xsinx+cosx的导数为________.16. (1分)(2019·恩施模拟) 设函数,若,成立,则的取值范围是________.17. (1分)(2018·全国Ⅲ卷理) 曲线在点处的切线的斜率为,则 ________.三、解答题 (共5题;共30分)18. (10分) (2018高二下·西安期末) 已知函数在与时都取得极值.(1)求的值;(2)求函数的单调区间.19. (5分)(2019·北京) 已知函数f(x)= x3-x2+x.(I)求曲线y=f(x)的斜率为1的切线方程;(II)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(IlI)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a). 当M(a)最小时,求a的值.20. (5分)已知某物体的位移S(米)与时间t(秒)的关系是S(t)=3t﹣t2 .(Ⅰ)求t=0秒到t=2秒的平均速度;(Ⅱ)求此物体在t=2秒的瞬时速度.21. (5分)求下列函数的导数.(1) y=(2) y=(sinx﹣cosx)(3) y=x3+3x2﹣1.22. (5分) (2016高二上·长春期中) 已知函数F(x)=xlnx(1)求这个函数的导数;(2)求这个函数的图象在点x=e处的切线方程.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共30分) 18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、。
课时作业(十二) 第12讲 变化率与导数、导数的运算时间:45分钟 分值:100分基础热身1.2011·余姚模拟 若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=02.2011·聊城模拟 曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( )A .e 2B .2e 2C .4e 2D.e 223.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为( )A .-15B .0 C.15D .54.2011·临沂模拟 若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3 能力提升5.有一机器人的运动方程为s (t )=t 2+3t(t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( )A.194B.174C.154D.1346.y =cos x 1-x的导数是( )A.cos x +sin x +x sin x (1-x )2B.cos x -sin x +x sin x (1-x )2C.cos x -sin x +x sin x 1-xD.cos x +sin x -x sin x (1-x )27.已知直线l 经过点P ⎛⎭⎫π4,1,且倾斜角为3π4,则下列曲线中与l 相切于点P 的是( )A .y =2sin xB .y =2tan xC .y =2cos xD .y =2tan x8.2011·郑州模拟 已知定义域为D 的函数f (x ),如果对任意x 1,x 2∈D ,存在正数K ,都有∣f (x 1)-f (x 2)∣≤K ∣x 1-x 2∣成立,那么称函数f (x )是D 上的“倍约束函数”,已知下列函数:①f (x )=2x ;②f (x )=2sin ⎝⎛⎭⎫x +π4;③f (x )=x -1;④f (x )=lg(2x 2+1),其中是“倍约束函数”的个数是( )A .1B .2C .3D .4 9.曲线y =5x 3在点P (1,1)处的切线方程为( ) A .3x -5y +2=0 B .y -x =0 C .5y -3x =0 D .3x +5y -8=010.一辆列车沿直线轨道前进,从刹车开始到停车这段时间内,测得刹车后t 秒内列车前进的距离为s =27t -0.45t 2(单位:米),则列车刹车后________秒车停下来,期间列车前进了________米.11.如图K12-1所示,函数y =f (x )的图像在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.12.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数:①f (x )=x 2+2x ;②f (x )=sin x +cos x ;③f (x )=ln x -x ;④f (x )=-x e x在⎝⎛⎭⎫0,π2上是凸函数的是________.(填序号)13.下列命题:①若f (x )存在导函数,则f ′(2x )=f (2x )′;②若函数h (x )=cos 4x -sin 4x ,则h ′⎝⎛⎭⎫π12=0;③若函数g (x )=(x -1)(x -2)(x -3)…(x -2010)(x -2011),则g ′(2011)=2010!;④若三次函数f (x )=ax 3+bx 2+cx +d ,则“a +b +c =0”是“f (x )有极值点”的充要条件. 其中假命题为________.(填序号)14.(10分)设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图像是一个中心对称图形,并求其对称中心; (3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.15.(13分)2011·六安模拟 设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l .(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f (x )+g (x )=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈x 1,x 2,f (x )+g (x )<m (x -1)恒成立,求实数m 的取值范围.难点突破16.(12分)已知抛物线C :y =x 2+4x +72,过C 上一点M ,且与M 处的切线垂直的直线称为C 在点M 处的法线.(1)若C 在点M 的法线的斜率为-12,求点M 的坐标(x 0,y 0);(2)设P (-2,a )为C 的对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.课时作业(十二)【基础热身】1.A 解析 y ′=4x 3=4,得x =1,即切点为(1,1),所以过该点的切线方程为y -1=4(x -1),整理得4x -y -3=0.2.D 解析 ∵点(2,e 2)在曲线上,∴切线的斜率k =y ′|x =2=e x |x =2=e 2,∴切线的方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0.与两坐标轴的交点坐标为(0,-e 2),(1,0),∴S =12×1×e 2=e 223.B 解析 因为f (x )是R 上的可导偶函数,所以f (x )的图像关于y 轴对称,所以f (x )在x =0处取得极值,即f ′(0)=0,又f (x )的周期为5,所以f ′(5)=0,即曲线y =f (x )在x =5处的切线的斜率为0,选B.4.B 解析 曲线上的点P 到直线的最短距离,就是与直线y =x -2平行且与y =x 2-ln x 相切的直线上的切点到直线y =x -2的距离.过点P 作y =x -2的平行直线,且与曲线y =x 2-ln x 相切,设P (x 0,x 20-ln x 0),则k =2x 0-1x 0,∴2x 0-1x 0=1,∴x 0=1或x 0=-12(舍去).∴P (1,1),∴d =|1-1-2|1+1= 2.【能力提升】5.D 解析 ∵s (t )=t 2+3t ,∴s ′(t )=2t -3t 2,∴机器人在时刻t =2时的瞬时速度为s ′(2)=4-34=134.6.B 解析 y ′=-sin x (1-x )-(-1)cos x (1-x )2=cos x -sin x +x sin x(1-x )2. 7.C 解析 显然点P 不在曲线y =2tan x 和y =2tan x上,易求得正确选项为C.8.C 解析 由|f (x 1)-f (x 2)|≤K |x 1-x 2|,得⎪⎪⎪f (x 1)-f (x 2)x 1-x 2≤K ,即曲线f (x )的切线的斜率的绝对值有最大值.对于①,f ′(x )=2,符合定义;对于②,|f ′(x )|=⎪⎪⎪⎪2cos ⎝⎛⎭⎫x +π4≤2,符合定义;对于③,f ′(x )=12x -1,不存在最大值;对于④,|f ′(x )|=⎪⎪⎪⎪4x (2x 2+1)ln10≤2ln10,符合定义.故选C. 9.A 解析 y ′=35x -25,当x =1时,k =35,由点斜式得直线方程为y -1=35(x -1),即3x -5y +2=0,故选A.10.30 405 解析 s ′(t )=27-0.9t ,由瞬时速度v (t )=s ′(t )=0得t =30,期间列车前进了s (30)=27×30-0.45×302=405(米).11.2 解析 当x =5时,y =-x +8=-5+8=3,因此f (5)=3,又切线斜率为-1,即f ′(5)=-1,故f (5)+f ′(5)=2.12.②③④ 解析 对于①f ′(x )=2x +2,f ″(x )=2>0,因此①不是凸函数;对于②f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴sin x >0,cos x >0,∴f ″(x )<0,因此②是凸函数;对于③,f ′(x )=1x -1,f ″(x )=-1x2<0,因此③是凸函数;对于④,f ′(x )=-e x -x e x ,f ″(x )=-e x -e x -x e x =-(x +2)e x<0,因此④是凸函数.13.①②④ 解析 f (2x )′=f ′(2x )(2x )′=2f ′(2x ),①错误;h ′(x )=4cos 3x (-sin x )-4sin 3x cos x =-4sin x cos x =-2sin2x ,则h ′⎝⎛⎭⎫π12=-1,②错;f ′(x )=3ax 2+2bx +c ,Δ=4b 2-12ac =4(b 2-3ac ),只需b 2-3ac >0即可,a +b +c =0是b 2-3ac >0的充分不必要条件,④错.14.解答 (1)f ′(x )=a -1(x +b )2,于是⎩⎨⎧2a +12+b=3,a -1(2+b )2=0,解得⎩⎨⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因a ,b ∈Z ,故f (x )=x +1x -1. (2)证明:已知函数y 1=x ,y 2=1x都是奇函数. 所以函数g (x )=x +1x 也是奇函数,其图像是以原点为中心的中心对称图形.而f (x )=x -1+1x -1+1.可知,函数g (x )的图像按向量a =(1,1)平移,即得到函数f (x )的图像,故函数f (x )的图像是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点⎝⎛⎭⎫x 0,x 0+1x 0-1.由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎡⎦⎤1-1(x 0-1)(x -x 0). 令x =1得y =x 0+1x 0-1,切线与直线x =1交点为⎝⎛⎭⎫1,x 0+1x 0-1.令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1).从而所围三角形的面积为12⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以,所围三角形的面积为定值2.15.解答 (1)f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3,由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线,故有f (2)=g (2)=0,f ′(2)=g ′(2)=1,由此解得a =-2,b =5;切线l 的方程为:x -y -2=0.(2)由(1)得f (x )+g (x )=x 3-3x 2+2x ,依题意得:方程x (x 2-3x +2-m )=0有三个互不相等的根0,x 1,x 2,故x 1,x 2是方程x 2-3x +2-m =0的两个相异实根,所以Δ=9-4(2-m )>0⇒m >-14;又对任意的x ∈x 1,x 2,f (x )+g (x )<m (x -1)恒成立,特别地,取x =x 1时,f (x 1)+g (x 1)-mx 1<-m 成立,即0<-m ⇒m <0,由韦达定理知:x 1+x 2=3>0,x 1x 2=2-m >0,故0<x 1<x 2,对任意的x ∈x 1,x 2,有x -x 2≤0,x -x 1≥0,x >0,则f (x )+g (x )-mx =x (x -x 1)(x -x 2)≤0;又f (x 1)+g (x 1)-mx 1=0,所以函数在x ∈x 1,x 2上的最大值为0,于是当m <0时对任意的x ∈x 1,x 2,f (x )+g (x )<m (x -1)恒成立.综上:m 的取值范围是⎝⎛⎭⎫-14,0.【难点突破】16.解答 (1)函数y =x 2+4x +72的导数y ′=2x +4.C 上点(x 0,y 0)处切线的斜率k 0=2x 0+4,因为过点(x 0,y 0)的法线斜率为-12,所以-12(2x 0+4)=-1,解得x 0=-1,y 0=12,故点M 的坐标为⎝⎛⎭⎫-1,12.(2)设M (x 0,y 0)为C 上一点.①若x 0=-2,则C 上点M ⎝⎛⎭⎫-2,-12处的切线斜率k =0,∴过点M ⎝⎛-2,-12的法线方程为x =-2,此法线过点P (-2,a );②若x 0≠-2,则过点M (x 0,y 0)的法线方程为y -y 0=-12x 0+4(x -x 0).①若法线过P (-2,a ),则a -y 0=-12x 0+4(-2-x 0),将y 0=x 20+4x 0+72代入得(x 0+2)2=a ,② 若a >0,则x 0=-2±a ,从而y 0=x 20+4x 0+72=2a -12,将上式代入①,化简得x +2ay +2-2a a =0或者x -2ay +2+2a a =0.若a =0,则x 0=-2,与x 0≠-2矛盾. 若a <0,则②式无解.综上,当a >0时,在C 上有三个点⎝⎛⎭⎫-2+a ,2a -12,⎝⎛⎭⎫-2-a ,2a -12,⎝⎛⎭⎫-2,-12,在这三点的法线过点P (-2,a ),其方程分别是x +2ay +2-2a a =0、x -2ay +2+2a a =0、x =-2;当a ≤0时,在C 上有一个点⎝⎛⎭⎫-2,-12,在这点的法线过点P (-2,a ),其方程为x =-2.。
第一节 变化率与导数、导数的计算1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 称函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →f (x 0+Δx )-f (x 0)Δx =li m Δx →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=li m Δx →Δy=li m Δx →0f (x 0+Δx )-f (x 0). (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).(3)函数f (x )的导函数:称函数f ′(x )=li m Δx →f (x +Δx )-f (x )Δx为f (x )的导函数.2.几种常见函数的导数3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2 C .(3x )′=3x log 3e D .(x 2cos x )′=-2sin x解析:选B ⎝⎛⎭⎫x +1x ′=x ′+⎝⎛⎭⎫1x ′=1-1x 2;(3x )=3x ln 3;(x 2cos x )′=(x 2)′cos x + x 2(cos x )′=2x cos x -x 2sin x .2.若f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-4 B .-2 C .2 D .4解析:选B ∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx , 又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2. 3.曲线y =2x -x 3在x =-1处的切线方程为( ) A .x +y +2=0 B .x +y -2=0 C .x -y +2=0 D .x -y -2=0解析:选A ∵f (x )=2x -x 3,∴f ′(x )=2-3x 2.∴f ′(-1)=2-3=-1. 又f (-1)=-2+1=-1,∴切线方程为y +1=-(x +1),即x +y +2=0.4.曲线y =ax 2-ax +1(a ≠0)在点(0,1)处的切线与直线2x +y +1=0垂直,则a =( ) A.12 B .-12 C.13 D .-13解析:选B ∵y =ax 2-ax +1,∴y ′=2ax -a ,∴y ′|x =0=-a .又∵曲线y =ax 2-ax +1(a ≠0)在点(0,1)处的切线与直线2x +y +1=0垂直,∴(-a )·(-2)=-1,即a =-12.5.(教材习题改编)如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.解析:由题意知f ′(5)=-1,f (5)=-5+8=3,∴f (5)+f ′(5)=3-1=2. 答案:2[典例] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[解题指导] 由于点(1,0)不在曲线y =x 3上,故点(1,0)不是切点,因此应设直线与曲线y=x 3相切于点(x 0,x 30),通过直线与y =x 3相切求得切点坐标,然后再求a 的值.[解析] 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A已知曲线f (x )=2x 3-3x ,过点M (0,32)作曲线f (x )的切线,则切线的方程为________________.解析:设切点坐标为N (x 0,2x 30-3x 0),由导数的几何意义知切线的斜率k 就是切点处的导数值,而f ′(x )=6x 2-3,则切线的斜率k =f ′(x 0)=6x 20-3,所以切线方程为y =(6x 20-3)x +32.又点N 在切线上,所以有2x 30-3x 0=(6x 20-3)x 0+32,解得x 0=-2.故切线方程为y =21x +32.答案:y =21x +32[例1] 求下列函数的导数: (1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln xx ;(3)y =tan x ; (4)y =3x e x -2x +e ; (5)y =ln (2x +3)x 2+1.[自主解答] (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2.(5)y ′=(ln (2x +3))′(x 2+1)-ln (2x +3)(x 2+1)′(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2.【互动探究】若将本例(3)中“tan x ”改为“sin x2⎝⎛⎭⎫1-2cos 2x 4”,应如何求解? 解:∵y =sin x 2⎝⎛⎭⎫1-2cos 2x 4=-sin x 2cos x 2=-12sin x ,∴y ′=-12cos x .求下列函数的导数:(1)y =x +x 5+sin x x 2;(2)y =(x +1)(x +2)(x +3);(3)y =11-x +11+x ;(4)y =cos 2xsin x +cos x ;(5)y =3-x +e 2x .解:(1)∵y =x 12+x 5+sin x x 2=x -32+x 3+sin xx2, y ′=(x -32)′+(x 3)′+(x -2sin x )′=-32x -52+3x 2-2x -3sin x +x -2cos x .(2)∵y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11. (3)∵y =11-x +11+x =21-x ,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. (4)∵y =cos 2xsin x +cos x =cos x -sin x ,∴y ′=-sin x -cos x .(5)y ′=12(3-x )-12(3-x )′+e 2x (2x )′=-12(3-x )-12+2e 2x .[例2] (1)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e(2)等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29 C .212 D .215(3)(2013·江西高考)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. [自主解答] (1)∵f (x )=2xf ′(1)+ln x ,∴f ′(x )=[]2xf ′(1)′+(ln x )′=2f ′(1)+1x ,∴f ′(1)=2f ′(1)+1,即f ′(1)=-1.(2)因为f ′(x )=x ′·[](x -a 1)(x -a 2)…(x -a 8)+[](x -a 1)(x -a 2)…(x -a 8)′·x =(x -a 1)(x -a 2)…(x -a 8)+[](x -a 1)(x -a 2)…(x -a 8)′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+0=a 1a 2…a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.(3)令t =e x ,故x =ln t ,所以f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,所以f ′(1)=2.[答案] (1)B (2)C (3)21.若函数f (x )=cos x +2xf ′⎝⎛⎭⎫π6,则f ⎝⎛⎭⎫-π3与f ⎝⎛⎭⎫π3的大小关系是( ) A .f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫π3 D .不确定 解析:选C 依题意得f ′(x )=-sin x +2f ′⎝⎛⎭⎫π6,∴f ′⎝⎛⎭⎫π6=-sin π6+2f ′⎝⎛⎭⎫π6, ∴f ′⎝⎛⎭⎫π6=12.∴f (x )=cos x +x ,即f ⎝⎛⎭⎫π3=cos π3+π3=12+π3,f ⎝⎛⎭⎫-π3=cos ⎝⎛⎭⎫-π3-π3=12-π3, ∴f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫-π3.2.(2014·台州模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 014(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选C f 1(x )=sin x +cos x ,f 2(x )=f 1′(x )=(sin x +cos x )′=cos x -sin x , f 3(x )=f 2′(x )=(cos x -sin x )′=-sin x -cos x ,f 4(x )=f 3′(x )=sin x -cos x , f 5(x )=f 4′(x )=sin x +cos x .故f n (x )是以4为周期的周期函数,又2 014=503×4+2, ∴f 2 014(x )=f 2(x )=-sin x +cos x[例3] (1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________________.(2)(2013·广东高考)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________. (3)(2013·江西高考)若曲线y =x α+1(α∈R )在点(1,2)处的切线经过坐标原点,则α=________.(4)(2014·南京模拟)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是________.[自主解答] (1)y ′=3ln x +1+x ·3x=3ln x +4,k =y ′|x =1=4,故切线方程为y -1=4(x-1),即y =4x -3.(2)∵f (x )=ax 2-ln x ,则f ′(x )=2ax -1x ,∴f ′(1)=2a -1=0,得a =12.(3)求导得y ′=αx α-1,切线的斜率k =α,由点斜式得切线方程为y -2=α(x -1). ∵切线经过原点(0,0),∴-2=α×(-1),α=2.(4)∵y =4e x +1,∴y ′=-4e x e x +12=-4e xe 2x +2e x +1=-4e x +1e x+2.∵e x >0,∴e x +1e x≥2,∴y ′∈[-1,0),∴tan α∈[-1,0).又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫3π4,π. [答案] (1)y =4x -3 (2)12(3)2 (4)⎣⎡⎭⎫3π4,π 1.已知直线y =kx +b 与曲线y =x 3+ax +1相切于点(2,3),则b 的值为( ) A .-3 B .9 C .-15 D .-7解析:选C 将点(2,3)分别代入曲线y =x 3+ax +1和直线y =kx +b ,得a =-3,2k +b =3.又k =y ′|x =2=(3x 2-3)|x =2=9,∴b =3-2k =3-18=-15.2.已知a 为常数,若曲线y =ax 2+3x -ln x 存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是( )A.⎣⎡⎭⎫-12,+∞B.⎝⎛⎦⎤-∞,-12C.[)-1,+∞D.(]-∞,-1解析:选A 由题意知曲线上存在某点的导数为1,所以y ′=2ax +3-1x =1有正根,即2ax 2+2x -1=0有正根.当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0.综上,a ≥-12.3.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 解析:设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1,得x 0=1或x 0=-12(舍).∴P 点坐标为(1,1).∴P 到直线y =x -2的距离d =|1-1-2|1+1= 2.答案:21.函数y =x 2cos x 在x =1处的导数是( ) A .0 B .2cos 1-sin 1 C .cos 1-sin 1 D .1解析:选B ∵y ′=(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x , ∴y ′|x =1=2cos 1-sin 1.2.已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( ) A .0 B .-1 C.12D .2解析:选C f ′(x )=3x 2-2tx -4,f ′(-1)=3+2t -4=0,t =12.3.(2014·丽水模拟)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:选C 由题意得P (4,8),Q (-2,2).∵y =x 22,∴y ′=x ,∴在P 处的切线方程:y -8=4(x -4),即y =4x -8.在Q 处的切线方程:y -2=-2(x +2),即y =-2x -2.∴A (1,-4).4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1解析:选A y ′=2x +a ,因为切线x -y +1=0的斜率为1,所以2×0+a =1,即a=1.又(0,b )在直线x -y +1=0上,因此0-b +1=0,即b =1.5.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2解析:选C ∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b 得b =ln 2-1.6.(2014·杭州模拟)已知f ′(x )是函数f (x )的导函数,如果f ′(x )是二次函数,f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任意一点处的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎤0,π3B.⎣⎡⎭⎫π3,π2C.⎣⎡⎦⎤π2,2π3D.⎣⎡⎭⎫π3,π 解析:选B 由题意知f ′(x )=a (x -1)2+3(a >0),所以f ′(x )=a (x -1)2+3≥ 3,即tan α≥ 3,所以α∈⎣⎡⎭⎫π3,π2.7.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为________.解析:由题意可知f ′⎝⎛⎭⎫14=12x -12|x =14=g ′⎝⎛⎭⎫14=a 14,可得a =14,经检验,a =14满足题意.答案:148.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.答案:x -y -2=09.(2014·金华模拟)若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0.故实数a 的取值范围是(-∞,0). 答案:(-∞,0) 10.求下列函数的导数. (1)y =(2x 2+3)(3x -1); (2)y =(x -2)2; (3)y =x -sin x 2 cos x 2;(4)设f (x )=(ax +b )sin x +(cx +d )cos x ,试确定常数a ,b ,c ,d ,使得f ′(x )=x cos x . 解:(1)∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3,∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9.(2)∵y =(x -2)2=x -4x +4,∴y ′=x ′-(4x )′+4′=1-4×12x -12=1-2x -12.(3)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=x ′-⎝⎛⎭⎫12sin x ′=1-12cos x . (4)由已知f ′(x )=[(ax +b ) sin x +(cx +d )cos x ]′=[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′=a sin x +(ax +b )cos x +c cos x -(cx +d )sin x =(a -cx -d )sin x +(ax +b +c )cos x .∵f ′(x )=x cos x ,∴必须有⎩⎪⎨⎪⎧a -d -cx =0,ax +b +c =x ,即⎩⎪⎨⎪⎧a -d =0,-c =0,a =1,b +c =0⇒a =d =1,b =c =0.11.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y =13(x -2)+(-6), 即y =13x -32. (2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16, 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得,x 30=-8,∴x 0=-2. ∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26).(3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,解得x 0=±1.∴⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.切线方程为y =4(x -1)-14或y =4(x +1)-18.即y =4x -18或y =4x -14.12.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直.(1)求a ,b 之间的关系; (2)求ab 的最大值.解:(1)对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′= -2x +a ,设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直.∴(2x 0-2)·(-2x 0+a )=-1,即4x 20-2(a +2)x 0+2a -1=0,①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,⇒2x 20-(a +2)x 0+2-b =0.② 由①②消去x 0,可得a +b =52.11 (2)由(1)知:b =52-a ,∴ab =a ⎝⎛⎭⎫52-a =-⎝⎛⎭⎫a -542+2516.∴当a =54时,(ab )max =2516.。
第十节变化率与导数、导数的计算[考纲 ] (教师用书独具 )1.了解导数概念的实际背景.2.通过函数图象直观理1解导数的几何意义 .3.能根据导数的定义求函数y=C(C 为常数 ), y=x,y=x,y=x2,y= x3,y= x的导数 .4.能利用根本初等函数的导数公式和导数的四那么运算法那么求简单函数的导数.(对应学生用书第30 页)[根底知识填充 ]1.导数的概念(1)函数 y= f(x)在 x=x0处的导数:①定义:称函数y= f(x)在 x=x0处的瞬时变化率lim f x0+ x -f x0= lim y为函数 y=f(x)在 x=x0处的导数,记作 f′ (x0)x→ 0xx→0xx=x0,即 f′(x0)= limy=limf x0+ x - f x0或 y′|x x.x→ 0x→0②几何意义:函数 f(x)在点 x0处的导数 f′ (x0)的几何意义是曲线y=f(x)在点0 ,f(x0))处的切线斜率.相应地,切线方程为000(x y-f(x )=f′(x )(x-x ).f x+ x -f x为 f(x) 的导函数.(2)函数 f(x)的导函数:称函数 f ′(x)= lim xx→02.根本初等函数的导数公式根本初等函数导函数f(x)= c(c 为常数 )f′ (x)=0f(x)=x n(n∈Q* )f′(x)=n·x n-1f(x)= sin x f′ (x)=cos_xf(x)=cos x f′(x)=- sin_xf(x)=a x f′ (x)=a x ln_a(a>0)f(x)=e x f′ (x)=e x1f(x)=log a xf ′ (x)=xln a1f(x)=ln xf ′ (x)= x3. 导数的运算法那么(1)[f(x) ±g(x)]′= f ′ (x) ±g ′ (x);(2)[f(x) ·g(x)]′= f ′(x)g(x)+f(x)g ′(x);f xf ′ xg x -f x g ′ x(3) g x ′= [g x ]2(g(x)≠0).[知识拓展 ]1.曲线 y =f(x)“在点 P(x 0, y 0 )处的切线 〞 与“过点 P(x 0,y 0)的切线 〞 的区别:前者 P(x 0, y 0)为切点,而后者 P(x 0,y 0)不一定为切点.2.直线与二次曲线 (圆、椭圆、双曲线、抛物线)相切只有一个公共点;直线与非二次曲线相切,公共点不一定只有一个.[根本能力自测 ]1.(思考辨析 )判断以下结论的正误. (正确的打“√〞,错误的打“×〞 )(1)f ′(x 0)与 (f(x 0 ))′表示的意义相同. ( )(2)求 f ′(x )时,可先求 f(x )再求 f ′ (x ).()(3)曲线的切线与曲线不一定只有一个公共点. () (4)假设 f(a)= a 3+2ax -x 2,那么 f ′(a)= 3a 2+ 2x.()[答案 ] (1)×(2)× (3)√ (4)√2 32.(教材改编 )有一机器人的运动方程为s(t)=t + t (t 是时间, s 是位移 ),那么该机器人在时刻 t =2 时的瞬时速度为 ()19B . 17A . 4415D . 13C . 442313器人的瞬时速度为 v(2)= 2× 2-22=4 .]3.(2021 ·天津高考 )函数 f(x)=(2x+1)e x,f′(x)为 f(x)的导函数,那么 f′(0)的值为 ________.3 [ 因为 f(x)= (2x+ 1)e x,x x x所以 f′(x)= 2e + (2x+ 1)e =(2x+3)e ,所以 f′(0)= 3e0= 3.]4.(2021 ·全国卷Ⅰ )曲线 y=x2+1x在点 (1,2)处的切线方程为 ________.1x-y+1=0[∵y′=2x-x2,∴y′|x=1=1,即曲线在点 (1,2)处的切线的斜率k= 1,∴切线方程为 y- 2= x- 1,即x- y+ 1= 0.]35.(2021 ·全国卷Ⅰ )函数f(x)=ax +x+ 1 的图象在点 (1,f(1))处的切线过点1 [ ∵f′(x)=3ax2+ 1,∴f′(1)= 3a+1.又f(1)=a+2,∴切线方程为 y- (a+2)= (3a+ 1)(x-1).∵切线过点(2,7),∴7- (a+2)= 3a+1,解得 a=1.](对应学生用书第30 页)导数的计算求以下函数的导数:(1)y=e x ln x;211 (2)y=x x +x+x3;x x (3)y=x-sin2cos2;(4)y=cos x.【导学号: 79170059】e x[解]x′+x′=x+x 1x ln x+1(1)y′= (e)ln x e (ln x)·=e x.e ln x e x3122 (2)∵y= x +1+x2,∴y′=3x-x3.11 (3)∵y= x-2sin x,∴y′=1-2cos x.cos x′=cos x ′e x- cos x e x′(4)y′=x x 2e esin x+cos x=-e x.[规律方法 ] 1.熟记根本初等函数的导数公式及运算法那么是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少过失.2.如函数为根式形式,可先化为分数指数幂,再求导.[变式训练 1] (1)函数 f(x)的导函数为 f′(x),且满足 f(x)=3x2+2x·f′(2),那么 f′(5)= ()A.2B.4C.6D.8(2)(2021 天·津高考 )函数 f(x)=axln x,x∈(0,+∞ ),其中 a 为实数, f′(x)为f(x)的导函数.假设 f′ (1)= 3,那么 a 的值为 ________.(1)C(2)3 [(1)f′(x)=6x+ 2f′(2),令x=2,得 f′(2)=- 12.再令 x=5,得 f′ (5)= 6× 5+ 2f′(2)= 30-24=6.1(2)f′ (x)= a ln x+x·=a(1+ ln x).x由于 f′(1)=a(1+ln 1) =a,又 f′(1)=3,所以 a=3.]导数的几何意义角度 1求切线方程1 34曲线 y=3x +3.(1)求曲线在点 P(2,4)处的切线方程;(2)求曲线过点 P(2,4)的切线方程.[思路点拨 ] (1)点 P(2,4)是切点,先利用导数求切线斜率,再利用点斜式写出切线方程;1 34(2)点 P(2,4)不一定是切点,先设切点坐标为x0,3x0+3,由此求出切线方程,再把点 P(2,4)代入切线方程求x0.[解] (1)根据得点 P(2,4)是切点且 y′=x2,∴在点P(2,4)处的切线的斜率为y′|x=2=4,∴曲线在点 P(2,4)处的切线方程为y- 4= 4(x- 2),即 4x- y- 4= 0.1 34134,(2)设曲线 y=3x +3与过点 P(2,4)的切线相切于点 A x0,3x0+32那么切线的斜率为 y′|x=x0=x0,∴切线方程为 y-1342,x0+= 0 - 033x (x x )2 23 4即y=x0·x-3x0+3.∵点P(2,4)在切线上,2 23 4∴4=2x0-3x0+3,3 2即x0- 3x0+ 4= 0,322∴x0+ x0-4x0+4=0,∴x02(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得 x0=- 1 或 x0=2,故所求的切线方程为x- y+ 2=0 或 4x- y- 4= 0.角度 2求切点坐标假设曲线 y=xln x 上点 P 处的切线平行于直线 2x- y+ 1= 0,那么点 P 的坐标是 ________.1e) [ 由题意得 y′=ln x+x·=1+ln x,直线 2x-y+1= 0 的斜率为 2.设 xP(m,n),那么 1+ln m= 2,解得 m=e,所以 n= eln e= e,即点 P 的坐标为 (e,e).]角度 3求参数的值(1)直线 y= 1 +与曲线=-1 +相切,那么b的值为()2x b y2x ln x A.2B.- 1C.-1D.12x+1(2)(2021 西·宁复习检测 (一))曲线 y=x-1在点 (3,2)处的切线与直线ax+y +1=0 垂直,那么 a=()A.- 2B.211C.-2D.2(1)B(2)A [(1) 设切点坐标为 (x0, y0 ),1 1y′=-2+x,则y′|x=x0=-1+1,由-1+1=1得 x0=1,切点坐标为 1,-1,又切点2 x02 x0 2211111,-2在直线 y=2x+b 上,故-2=2+b,得 b=- 1.- 21(2)由 y′=x-12得曲线在点 (3,2)处的切线斜率为-2,又切线与直线ax+y +1=0 垂直,那么 a=- 2,应选A .][规律方法 ] 1.导数 f′(x0)的几何意义就是函数 y=f(x)在点 P(x0,y0)处的切线的斜率,切点既在曲线上,又在切线上,切线有可能和曲线还有其他的公共点.2.曲线在点 P 处的切线是以点P 为切点,曲线过点 P 的切线那么点 P 不一定是切点,此时应先设出切点坐标.易错警示:当曲线 y= f(x)在点 (x0, f(x0 ))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x=x0.。
西安市高考数学一轮专题:第12讲变化率与导数、导数的计算(I)卷姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)设,则等于()
A .
B .
C .
D .
2. (2分) (2018高二上·黑龙江期末) 设则等于()
A .
B .
C .
D .
3. (2分)已知是奇函数,则f(3)+f'(1)= ()
A . 14
B . 12
C . 10
D . -8
4. (2分)
设函数f‘(x)是奇函数f(x)(x R)的导函数,f(-1)=0,当x0时,xf'(x)-f(x)0,则使得f (x)0成立的x的取值范围是()
A . (-, -1)(0,1)
B . (-1,0)(1,+)
C . (-, -1)(-1,0)
D . (0,1)(1,+)
5. (2分)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()
A . 奇函数,且在(0,1)上是增函数
B . 奇函数,且在(0,1)上是减函数
C . 偶函数,且在(0,1)上是增函数
D . 偶函数,且在(0,1)上是减函数
6. (2分) (2018高二上·辽源期末) 下列求导运算正确的是()
A . =sinx
B .
C . =
D .
7. (2分)已知一质点的运动方程是s(t)=8﹣3t2 ,则该质点在[1,1+△t]这段时间内的平均速度是()
A . ﹣6﹣3△t
B . ﹣6+3△t
C . 8﹣3△t
D . 8+3△t
8. (2分)(2013·浙江理) 设函数f(x)=e2x—2x,则=()
A . 0
B . 1
C . 2
D . 4
9. (2分) y=x2+2在x=1处的导数为()
A . 2x
B . 2
C . 2+△x
D . 1
10. (2分)设函数f(x)在x0处可导,则()
A . f′(x0)
B . 2
C . 2f′(x0)
D . -2f′(x0)
二、填空题 (共5题;共5分)
11. (1分) (2018高二上·南阳月考) 汽车行驶的路程和时间之间的函数如图所示,在时间段,
,上的平均速度分别为,三者的大小关系为________.(由大到小排列)
12. (1分)若函数f(x)=x2-x+1在其定义域内的一个子区间内存在极值,则实数的取值范围是________.
13. (1分) (2019高二下·临海月考) y=lgx-ex ,y'=________
14. (1分)设f(x)=x(x+1)(x+2)(x+3)…(x+n),则f′(0)=________
15. (1分)设函数f(x)=x3+bx2+cx(x∈R),若g(x)=f(x)﹣f′(x)是奇函数,则b+c的值为________ .
三、解答题 (共5题;共40分)
16. (5分)某质点A从时刻t=0开始沿某方向运动的位移为:S(t)=
(1)比较质点A在时刻t=3与t=5的瞬时速度大小;
(2)若另一个质点B也从时刻t=0开始沿与A相同的方向从同一个地点匀速运动,运动速度为,质点B 何时领先于质点A最远?并且求此最远距离.
17. (10分)在曲线上取一点及附近一点,
求:
(1);
(2).
18. (10分)求下列函数的导数:
(1)
(2)
19. (5分)求下列函数的导数.
(1)f(x)=+6
(2)f(x)=(5x﹣4)cosx.
20. (10分)已知函数f(x)=﹣x2+4|x|+5.
(1)画出函数y=f(x)在闭区间[﹣5,5]上的大致图象;
(2)若直线y=a与y=f(x)的图象有2个不同的交点,求实数a的取值范围.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共5分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共5题;共40分)
16-1、
17-1、
17-2、
18-1、
18-2、
19-1、
20-1、20-2、。