§153近似数
- 格式:ppt
- 大小:571.00 KB
- 文档页数:16
1.5.3 近似数教学目标:1.理解精确度的意义.2.要准确地说出精确位及按要求进行四舍五入取近似数.教学重点:近似数、精确度的意义.教学难点:按给定的精确度求一个数的近似数.教学过程:一、近似数的定义我们常会遇到这样的问题:(1)七年级(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.我们把像960万、49这些与实际数很接近的数称为近似数.在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是求精确度的问题.二、精确度我们都知道:π=3.1415926……我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01).一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.像上面我们取3.142为π的近似数,它精确到千分位(即精确到0.001).三、例题【例1】按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001);(2)30435(精确到万位);(3)1.804(精确到十分位);(4)1.804(精确到个位).【例2】下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万.四、课堂练习1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)东北师大附中共有98个教学班;(2)我国有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到千分位);(4)75460(精确到万位);(5)909900(精确到万位).4.下列由四舍五入法得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.。
1.5.3 近似数教学目标:1.理解精确度的意义.2.要准确地说出精确位及按要求进行四舍五入取近似数.教学重点:近似数、精确度的意义.教学难点:按给定的精确度求一个数的近似数.教学过程:一、近似数的定义我们常会遇到这样的问题:(1)七年级(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.我们把像960万、49这些与实际数很接近的数称为近似数.在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是求精确度的问题.二、精确度我们都知道:π=3.1415926……我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01).一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.像上面我们取3.142为π的近似数,它精确到千分位(即精确到0.001).三、例题【例1】按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001);(2)30435(精确到万位);(3)1.804(精确到十分位);(4)1.804(精确到个位).【例2】下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万.四、课堂练习1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)东北师大附中共有98个教学班;(2)我国有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到千分位);(4)75460(精确到万位);(5)909900(精确到万位).4.下列由四舍五入法得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.。
1.5.3近似数教案——人教版七年级上册一、教学目标1.知识与技能①帮助学生理解近似数和精确度的概念.②启发学生学会正确区分近似数与准确数.③引导学生掌握桉要求取近似数.2.过程与方法引领学生在近似数的学习过程中,体会精确与近似的辩证思想.3.情感态度与价值观带领学生体会近似数的意义及在生活中的作用,了解生活中处处有数学.二、教学重难点1.教学重点近似数、精确度的意义,根据具体要求取近似数.2.教学难点近似数的意义,按实际需要取近似数.三、教辅手段ppt.四、教学过程1.情景设置问题1.对于参加同一个会议的人数,有两个不同的报道,一个报道说:“会议秘书处宣布,参加今天会议的有513人。
”另一个报道说:“约有五百人参加了今天的会议.”造成这两个报道不同的原因是什么呢?处理方式:由教师提问,启发学生正确区分近似数与准确数的概念.参考解答:这里的“513人”是一个精确数,“约五百人”是一个近似数.2.新知引入问题2.像这样,与实际接近却有差别的数字称为近似数,与实际完全符合的数为准确数.处理方式:通过板书,提出近似数与准确数概念,由学生笔记.问题3.下列选项中是准确数的是()A.七年级有学生800名.B.月球到地球的距离约38万千米.C .小明同学的身高是158cm .D .今天的温度为28C ︒.处理方式:通过提问学生得到正确答案,并简要分析错误原因.参考解答:选项A .通过测量得到的数据存在误差,因此不是准确数. 问题4.近似数与准确数的接近程度,可以用精确度表示. 3π≈, 3.1π≈ 3.14π≈,分别是精确到哪一位呢?π精确到千分位和万分位又分别是什么呢?处理方式:由教师先举例分析,得到答案,再引导学生积极思考得到正确答案. 参考解答:3π≈, 3.1π≈ 3.14π≈,分别是精确到个位,十分位,百分位. π精确到千分位和万分位分别是3.141和3.1416.问题5. 1.21万是精确到哪一位呢?10.5亿是精确到哪一位呢?处理方式:由教师先举例分析,得到答案,再引导学生积极思考得到正确答案.参考解答:1.21万是精确到百位,10.5亿是精确到千万位.问题6.将40958四舍五入,使其精确到百位,那么所得的近似数是多少?处理方式:先引导学生对其四舍五入后再精确到百位,最后用科学计数法进行表达.参考解答:44.1010⨯. 问题7.按括号内的要求,用四舍五入法对下列各数取近似数:①0.0158(精确到0.001);②304.35(精确到个位);③1.804(精确到0.1)④1.804(精确到0.01).处理方式:先通过分析得到答案,并同时辨析易错点.参考解答:①0.016;②304;③1.8;④1.80. 问题7.用四舍五入法对下列各数取近似数:①0.00356(精确到万分位);②61.235(精确到个位);③1.8935(精确到0.001);④0.0571(精确到0.1).处理方式:分别请四位同学进行板演,由师生共同完善扮演结果.参考解答:①0.0036;②61;③1.894;④0.1.5.课后延续问题8.活页近似数练习. 处理方式:学生课后独立完成,并于第二天上交.五、板书设计黑板未被投影屏幕遮盖的区域进行如下功能划分:六、教后反思。
第十五讲 1.5.3近似数【学习目标】1.理解近似数的概念;2.能够求一个数的近似数并指出精确到哪一位;3.能够由近似数推断真值范围.【基础知识】一、近似数的概念“约有五百人参加了今天的会议.”五百这个数只是接近实际人数,但与实际人数还有差别,它是一个近似数(approximate number).注意:1.近似数表示的是一个大概的数字,与实际有差别;2.近似数要看精确到哪一位,也就是实际 需要的取值精确度;3.近似数是估值,但是要控制误差.【考点剖析】考点一:求一个数的近似数例1.按括号内的要求用四舍五入法取近似数,下列结果正确的是( )A .403.53403≈(精确到个位)B .2.604 2.60≈(精确到十分位)C .0.02340.0≈(精确到0.1)D .0.01360.014≈(精确到0.0001)【答案】C【分析】根据四舍五入法、近似数的精确度定义逐项判断即可得.【详解】A 、403.53404≈(精确到个位),此项错误,不符题意;B 、2.604 2.6≈(精确到十分位),此项错误,不符题意;C 、0.02340.0≈(精确到0.1),此项正确,符合题意;D 、0.01360.0136≈(精确到0.0001),此项错误,不符题意;故选:C .【点睛】本题考查了四舍五入法、近似数的精确度,熟练掌握近似数的精确度定义是解题关键.考点二:指出一个近似数精确到哪一位例2.将8.28573精确到百分位为_______【答案】8.29【分析】把千分位上的数字5进行四舍五入即可.【详解】解:8.28573(精确到百分位)是8.29.故答案为:8.29.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.考点三:由近似数推断真值范围例3由四舍五入法得到近似数85,那么下列各数中,可能是它原数的是()A.84.49B.85.5C.85.49D.84.09【答案】C【分析】根据近似数的精确度得到在84.5与85.5之间的数(含84.5,不含85.5)四舍五入法得到近似数85.【详解】解:设a由四舍五入法得到近似数85,则84.5≤a<85.5.故选:C.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字;近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.【真题演练】1.2020年新冠疫情全球肆虐,据统计,截止11月3日全球确诊人数为47174368人,将这个数据精确到万位并用科学记数法表示为( )A .74.710⨯B .74.71710⨯C .84.7110⨯D .747.1710⨯【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:47174368精确到万位是47170000,47170000=4.717×107,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值,同时也考查了求近似数.2.用四舍五入法得到的近似数2.4万,精确到( )A .千位B .万位C .十位D .百位 【答案】A【分析】根据近似数的精确度求解.【详解】解:近似数2.4万精确到千位.故选:A .【点睛】本题考查了近似数,精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些. 3.下列说法正确的是( )A .近似数42.410⨯精确到十分位B .按科学记数法表示数55.0410⨯,其原数是50400C .将数60340精确到千位得46.010⨯D .用四舍五入得到的近似数8.1750精确到千分位【答案】C【分析】根据题目中的说法可以写出正确的结果,单后对照,即可得到哪个选项是正确,本题得以解决.【详解】解:近似数2.4×104精确到千位,故选项A 错误;按科学记数法表示的数5.04×105其原数是504000,故选项B 错误;将数60340精确到千位是46.010⨯,故选项C 正确;用四舍五入法得到的近似数8.1750精确到万分位,故选项D 错误;故选:C .【点睛】本题考查科学记数法和有效数字,解题的关键是明确科学记数法和有效数字的含义.4.近似数2.52所表示的准确数x 的范围是( ).A .2.51 2.53x ≤<B .2520 2.525x ≤<.C .2515 2.525x ≤<.D .2.515 2.525x <≤【答案】C【分析】利用四舍五入的方法判断即可.【详解】解:∵2.515≤x<2.525时,可以精确到2.52,∵近似数2.52所表示的精确值x 的取值范围是:2.515≤x<2.525,故选:C .【点睛】本题考查近似数,解题的关键是熟知用四舍五入表示近似数.5.下列说法错误的是( )A .5.80万是精确到百位的近似数B .近似数58.3与58.30表示的意义不相同C .2.7×104精确到十分位D .近似数2.20是由数a 四舍五入得到的,那么数a 的取值范围是2.195 2.205a ≤<【分析】根据近似数的精确度对各选项进行判断.【详解】解:A. 5.80万是精确到百位的近似数,说法正确,不符合题意;B. 近似数58.3与58.30表示的意义不相同,说法正确,不符合题意;C. 2.7×104=27000精确到千位,说法错误,符合题意;D. 近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195 2.205≤<,说法正确,不符合题意;a故选C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.用四舍五入法将数取近似值:9.0594(精确到0.01)______;5109500(精确到万位,并用科学计数法表示)_______.【答案】9.06 5.11×106【分析】根据近似数的精确度分别进行求解即可.【详解】解:9.0594(精确到0.01)≈9.06;5109500(精确到万位,并用科学记数法表示)≈5.11×106;故答案为:9.06,5.11×106.【点睛】本题考查了科学记数法和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.7.106.49精确到个位:_______,6⨯精确到了_________位.5.1110【答案】106 万【分析】根据近似数的精确度求解.解:106.49精确到个位是106,6⨯=5110000,5.1110∵6⨯精确到了万位,5.1110故答案为:106,万.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.8.由四舍五入得到的近似数4.66,精确到_______位.【答案】百分【分析】根据近似数的精确度求解.【详解】解:近似数4.66精确到百分位.故答案为:百分.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.192.30万精确到________位,有________个有效数字.【答案】百 5【分析】根据近似数的精确度和有效数字的定义求解.【详解】解:近似数192.30万,精确到百位,有效数字为1、9、2、3、0.故答案为:百,5.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.10.把a 精确到千分位得到的近似数是6.010,则a 的范围是________.【答案】6.0095≤a <6.0105【分析】根据近似数的精确度即可得到结果.【详解】解:∵a 精确到千分位得到的近似数是6.010,∵6.0095≤a <6.0105,故答案为:6.0095≤a <6.0105.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数.23.近似数11.7精确到____位,这个近似数表示大于或等于______,而小于______的数.【答案】十分 11.65 11.75【分析】精确到哪位,就是对它后边的一位进行四舍五入,根据四舍五入的方法即可求解.【详解】解:近似数11.7精确到十分位,这个近似数表示大于或等于11.65,而小于11.75的数.故答案为:十分,11.65,11.75.【点睛】本题考查了近似数,精确到哪一位就是对这一位后边的数进行四舍五入.【真题演练】1.一个无理数为x ,四舍五入后 3.14x ≈,则x 的取值范围是( )A .3.1415 3.1416x <B .3.141 3.142x <C .3.135 3.145x <D .3.14 3.15x <【答案】C根据四舍五入的方法对百分位与千分位上的数分析即可.【详解】解:x≥3.135或x<3.145都可以四舍五入得到3.14,所以,x的取值范围是3.135≤x<3.145.故选:C.【点睛】本题考查了近似数与有效数字,掌握近似方法,难点在于对百分位上的数字4既可以是4舍,也可以是5入得到两种情况考虑.2.对于:①绝对值等于它本身的数是0、1;②相反数大于本身的数是负数;③近似数9.7万精确到十分位;④倒数等于它本身的是1、﹣1.其中正确的是()A.0个B.1个C.2个D.3个【答案】C【分析】分别根据绝对值的定义,相反数的定义,近似数和有效数字以及倒数的定义逐一判断即可.【详解】解:①绝对值等于它本身的数是0和正数,故原说法错误;②相反数大于本身的数是负数,说法正确;③近似数9.7万精确到千位,故原说法错误;④倒数等于它本身的是1、﹣1,说法正确.所以正确的说法有2个.故选:C.【点睛】本题主要考查了正数和负数,相反数,绝对值,倒数以及近似数和有效数字,熟记相关定义是解答本题的关键.3.由四舍五入法得到的近似数8.16万,下列说法正确的是()A.精确到万位B.精确到百位C.精确到千分位D.精确到百分位【答案】B利用近似数的精确度进行判断,看数字6在哪一位即可.【详解】解:由四舍五入法得到的近似数8.16万,精确到了0.01万位,也就是精确到了百位,故选B.【点睛】本题考查了近似数和有效数字:精确到第几位和有几个有效数字是精确度的两种常用的表示形式,它们的实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对精确一些.4.近似数2.07是精确到()A.百分位B.十分位C.十位D.千位【答案】A【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【详解】解:2.07的最后一位是7,是百分位,因而精确到百分位.故选:A.【点睛】考查了近似数和有效数字,确定一个近似数精确到哪位的方法是需要熟记的内容.5.由四舍五入得到的近似数2.5万,精确到()A.个位B.千位C.万位D.十分位【答案】B【分析】先将2.5万还原,然后确定5所表示的数位即可.【详解】解:近似数2.5万还原为25000,所以精确到千位.故选:B.【点睛】此题考查了近似数,掌握一个数最后一位所在的数位就是这个数的精确度是解答本题的关键.6.近似数2.1070它精确到______;589800精确到千位是_____.【答案】万分位 5.90×105【分析】根据近似数的精确度求解.【详解】解:近似数2.1070它精确到万分位,589800精确到千位是5.90×105.故答案为:万分位,5.90×105.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.7.小明的身高为1.57米,由四舍五入得到的近似数1.57,精确到_____位,它表示大于或等于______,而小于______的数.【答案】百分 1.565 1.575【分析】利用近似数的精确度可判断近似数1.57精确到0.01位,它的范围为1.565≤a<1.575.【详解】解:近似数1.57,精确到百分位,它表示大于或等于1.565,而小于1.575的数.故答案为:百分,1.565,1.575.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.8.近似数6精确到_____位.四舍五入得到的近似数5.500表示数的范围是_______.9.3010【答案】万 5.4995≤a<5.5005【分析】根据近似数的精确度即可解答.【详解】解:9.30×106=9300000,则近似数9.30×106精确到万位,四舍五入得到的近似数5.500表示数的范围是5.4995≤a<5.5005,故答案为:万,5.4995≤a<5.5005.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.准确数A精确到0.01的近似数是2.40,那么A的取值范围为_______________;≤<【答案】2.395A 2.405【分析】精确到0.01求近似数要看千分位上的数进行四舍五入,近似值为2.40,有两种情况,千分位上的数舍去,和千分位上的数要进一,找出舍去和进一的数字即可解答.【详解】解:千分位上舍去的数有1、2、3、4,即数A可能是2.401、2.402、2.403、2.404;千分位进一的数有5、6、7、8、9,因为千分位进一,得到近似数是2.40,所以原来的小数的百分位上是10-1=9,百分位9+1=10又向十分位进一,即原数的十分位原来是4-1=3,即数A可能是2.395、2.396、2.397、2.398、2.399;所以数A精确到0.01时近似值是2.40,≤<.所以A的取值范围为:2.395A 2.405≤<.故答案为:2.395A 2.405【点睛】本题考查了近似数的求法,考虑A小于2.40,考虑A大于2.40,根据千分位(小数点后第三位)四舍五入是解题的关键.10.近似数4⨯精确到__________位,有效数字是__________.6.010【答案】千;6,0【分析】根据近似数的精确度和有效数字的定义求解.【详解】近似数46.010 =60000,精确到千位,有2个有效数字,有效数字是6和0. 故答案为:千;6和0.【点睛】本题考查了近似数和有效数字,理解近似数和有效数字是解题的关键.。
1.5.3 近似数一:学习目标:1.理解精确度和有效数字的意义,要能准确第说出精确位及有几个有效数字。
2.按要求进行四舍五入取近似数。
二:重点:近似数、精确度和有效数字的意义,难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数. 三:学法指导:对“零什么时候是有效数字,什么时候不是有效数字”及对“四舍五入进位时出现零的情况”容易出错,要反复强化。
四:教学过程:(一)课前预习1.什么叫近似数?什么又是精确度?有效数字又是什么?(二)原理探讨:(1)初一(4)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的 .(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.我们把象960万、49这些与 近似数(approximate number).在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.3个人分10个苹果,如何分? 331=3.33333333 若结果取到3,叫精确到个位若结果取到3.3叫精确到十分位若结果取到3.33叫精确到百分位若结果取到3.333叫精确到千分位……一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是0的数起,到精确到的数为止,所有的数字都叫做这个数的———---(significant digits).象上面我们取3.333为的近似数,它精确到千分位(即精确到0.001),共有 有效数字3、3、3、3。
(三):能力形成:例1按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001);(2)30 435(保留3个有效数字);(3)1.804(保留2个有效数字);(4)1.804(保留3个有效数字)。
作品编号:4862354798562348112533学校:兽古上山市名扬镇装载小学*教师:葛蝇给*班级:朱雀捌班*1.5.3 近似数【知识与技能】1.了解近似数的概念.2.会按精确度要求取近似数.3.给一个近似数,会说出它精确到哪一位.【过程与方法】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.【情感态度】通过师生合作,联系实际,激发学生学好数学的热情.【教学重点】近似数和精确度的意义.【教学难点】由给出的近似数求其精确度,按给出的精确度求近似数.一、情境导入,初步认识我们常会遇到这样的问题:(1)七年级(2)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重约是49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.我们把像960万、49这些与实际数很接近的数称为近似数.近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在计算和测量中有时并不需要很准确的数,只需要一个近似数即可.如地球的表面积约为5.1亿平方千米,某市约有50万人等,这里的5.1亿、50万都是近似数.在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159…….我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.二、典例精析,掌握新知例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?(1)某中学七年级有897人;(2)小华的身高为1.6m;(3)一本书共有178页;(4)临园口每天的车流量大约有30000辆;(5)地球的平均半径约为6370km;(6)某小区在入冬以后有38户人家向物业部门报修暖气.【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)(1)0.0158(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.0158≈0.016;(2)304.35≈304;(3)1.804≈1.8;(4)1.804≈1.80.【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.试一试教材第46页练习.例3下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万解:(1)132.4精确到十分位(精确到0.1);(2)0.0572精确到万分位(精确到0.0001);(3)2.40万精确到百位.【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.例4一辆卡车最多能装4吨沙子,现有沙子79吨.(1)至少需要多少辆这样的卡车才能运完沙子?(2)这些沙子能装满多少辆这样的卡车?【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.三、运用新知,深化理解1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)某中学共有98个教学班;(2)我国约有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001).4.下列由四舍五入得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.【答案】1.略.2.(1)精确值;(2)近似值.3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.四、师生互动,课堂小结引导学生回忆相关概念,并由学生表述,互相指点.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.(1)下列由四舍五入得到的近似数各精确到哪一位?①32;②17.93;③0.084;④7.250;⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?①23.04②23.06③22.99④22.85【答案】3.(1)①精确到个位;②精确到百分位;③精确到千分位;④精确到千分位;⑤精确到百位;⑥精确到百位;⑦精确到千分位;⑧精确到万分位.(2)②和④.本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.。