甘肃省兰州市2018届高三一诊数学(理)试题 Word版含答案
- 格式:doc
- 大小:1.15 MB
- 文档页数:10
2018年高三诊断考试数 学(理)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
试题前标注有(理)的试题理科考生作答,试题前标注有(文)的试题文科考生作答,没有标注的试题文理科考生均作答。
2.本卷满分150分,考试用时120分钟。
3.答题全部在答题纸上完成,试卷上答题无效。
第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(理)设全集{1,2,3,4,5}U =,已知U 的子集M 、N 满足集{1,4}M =,{1}M N = ,(){3,5}U N M = ð,则N = A.{1,3}B. {3,5}C. {1,3,5}D. {1,2,3,5}2.(理)设i 为虚数单位,复数12aii+-为纯虚数,则实数a 为 A. 12- B. 2- C. 12D. 23.曲线311y x =+在点P(1,12)处的切线与两坐标轴围成三角形的面积是 A.75 B.752C. 27D.2724.若点(2,0)P 到双曲线22221x y a b-=(0,0)a b >>C. D.5.(理)已知命题:1p :函数1()(1)1f x x x x =+>-的最小值为3;2p :不等式11x>的解集是{|1}x x <; 3p :,R αβ∃∈ ,使得sin()sin sin αβαβ+=+成立; 4p :,R αβ∀∈,tan tan tan()1tan tan αβαβαβ++=-⋅成立.其中的真命题是 A. 1pB. 1p ,3pC. 2p ,4pD. 1p ,3p ,4p6.(理)数列{}n a 满足11a =,223a =,且11112(2)n n nn a a a -++=≥,则n a = A.21n + B.22n + C.2()3n D. 12()3n -7. 执行右面的程序框图,若输入的6n =,4m = 那么输出的p 是 A.120 B.240 C.360 D.7208. 有一个几何体的三视图如图所示,则该几何体的体积为A.16B.20C.24D.329.(理)已知动点P 到两定点A 、B 的距离和为8,且||AB =AB 的的中点为O ,过点O 的所有直线与点P 的轨迹相交而形成的线段中,长度为整数的有A.5条B.6条C.7条D.8条10.(理)将函数)0)(3sin(2)(>-=ωπωx x f 的图象向左平移3πω个单位,得到函数)(x g y =的图象.若)(x g y =在[0,4π]上为增函数,则ω的最大值为A .4B .3C .2D .111.(理)已知函数()f x 是R 上的偶函数,且满足)5()5(x f x f -=+,在[0,5]上有且只有0)1(=f ,则)(x f 在[–2013,2013]上的零点个数为A .808B .806C .805D .80412.(理)定义:, min{,}, a a b a b b a b ≤⎧=⎨>⎩.在区域0206x y ≤≤⎧⎨≤≤⎩内任取一点(,)P x y ,则x 、y 满足22min{2,4}2x x y x y x x y ++++=++的概率为A. 59B.49C.13D.29第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.(理)已知向量(,2)a k =-r ,(2,2)b =r ,a b +rr 为非零向量,若()a a b ⊥+r r r ,则k = .14.(理)三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有 种.15.已知三棱锥S ABC -的所有顶点都在以O 为球心的球面上,ABC ∆是边长为1的正三角形,SC 为球O的直径,若三棱锥S ABC -的体积为6,则球O 的表面积为 . 16.(理)已知各项为正的数列{}n a 中,122121,2,l o g l o gn n a a a a n +==+=(n N *∈),则10081220132a a a +++-= .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,222a b c bc =++.(Ⅰ)求角A 的大小;(Ⅱ)若a =,2b =,求c 的值.18.(本小题满分12分)(理)如图,在四棱锥ABCD P -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2=AB ,︒=∠60BAD .(Ⅰ)求证:BD ⊥PC ;(Ⅱ)若AB PA =,求二面角A PD B --的余弦值.19.(本小题满分12分)(理)某售报亭每天以每份0.4元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站. (Ⅰ)若售报亭一天购进270份报纸,求当天的利润y (单位:元)关于当天需求量x (单位:份,x N ∈)的函数解析式.以100天记录的需求量的频率作为各销售量发生的概率.(1)若售报亭一天购进270份报纸,ξ表示当天的利润(单位:元),求ξ的数学期望;(2)若售报亭计划每天应购进270份或280份报纸,你认为购进270份报纸好,还是购进280份报纸好? 说明理由.20.(本小题满分12分)已知点P 为y 轴上的动点,点M 为x 轴上的动点,点(1,0)F 为定点,且满足12PN NM +=0uuu r uuur,0PM PF ⋅=uuu r uu u r.(Ⅰ)求动点N 的轨迹E 的方程;PABDC(Ⅱ)过点F 且斜率为k 的直线l 与曲线E 交于两点A ,B ,试判断在x 轴上是否存在点C ,使得222||||||CA CB AB +=成立,请说明理由.21.(本小题满分12分)(理)已知函数21()22f x x ex =+,2()3ln g x e x b =+(x R +∈,e 为常数, 2.71828e =),且这两函数的图像有公共点,并在该公共点处的切线相同. (Ⅰ)求实数b 的值;(Ⅱ)若1x e ≤≤时,222[()2][2()](2)6af x exg x e a x e-++≤+恒成立,求实数a 的取值范围.请考生在第22,23,24题中任选一题....做答,如果多做,则按所做的第一题计分.做答时请写清题号.22.(本小题满分10分)选修4-1:《几何证明选讲》已知:如图,O 为ABC ∆的外接圆,直线l 为O 的切线,切点为B ,直线AD ∥l ,交BC 于D 、交O 于E ,F 为AC 上一点,且EDC FDC ∠=∠.求证:(Ⅰ)2AB BD BC =⋅;(Ⅱ)点A 、B 、D 、F 共圆.23.(本小题满分10分)选修4—4:《坐标系与参数方程》在直接坐标系xoy 中,直线l 的方程为40x y -+=,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数)(I )已知在极坐标(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系; (II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.24.(本小题满分10分)选修4—5:《不等式选讲》已知函数52)(---=x x x f .ABCD EF Ogl(I )证明:3)(3≤≤-x f ;(II )求不等式158)(2+-≥x x x f 的解集.2018高三诊断考试 数学参考答案及评分标准(理)一、选择题:本卷共12小题,每小题5分,共60分。
甘肃省兰州一中2018—2018学年度第一学期高三年级期中考试数学(理)试题一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
1.函数2log 2-=x y 的定义域是( )A .()+∞,3B .[)+∞,3C .()+∞,4D .[)+∞,42.已知等差数列{}n a 中,882=+a a ,则该数列前9项和S 9等于 ( )A .18B .27C .36D .453.设数列{}n a ,且n n i a +=1,(i 为虚数单位),则2008a 等于 ( )A .i +1B .i -1C .0D .24.函数)1(+-=x f y 的图像可由)(x f y -=的图像 ( )A .向左平移1个单位得到B .向右平移1个单位得到C .向上平移1个单位得到D .向下平移1个单位得到5.下列函数中,是偶数且在区间),0(+∞上单调递减的一个是 ( )A .xy 3-=B .31x y =C .23log x y =D .2x x y -=6.已知,200sin a =则160tan 等于( )A .21aa --B .21aa -C .a a 21--D .aa 21-7.已知0,0>>b a 且ab b a =,a b 3=那么a 等于( )A .3B .3C .31 D .338.在x y x y x y y x 2c o s ,,l o g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .39.已知函数42)(+=mx x f ,若在[]1,2-上存在0x ,使0)(0=x f ,则实数m 的取数范围是( )A .⎥⎦⎤⎢⎣⎡-4,45B .(][)+∞-∞-,12,C .[]2,1-D .[]1,2-10.若011log 22<++aa a,则a 的取值范围是 ( )A .⎪⎭⎫ ⎝⎛+∞,21B .()+∞,1C .⎪⎭⎫ ⎝⎛1,21D .⎪⎭⎫ ⎝⎛21,011.若数列{}n a 满足:311=a ,且对任意正整数m 、n ,都有n m n m a a a ⋅=+,则=++++∞→)(l i m 321n x a a a a( )A .21B .23 C .32 D .212.已知)(x f 是周期为2的奇函数,当10><x 时,x x f lg )(=,设⎪⎭⎫ ⎝⎛=56f a ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=25,23f c f b ,则( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<二、填空题:本题共4小题,每小题4分,共16分,答案填在题中的横线上. 13.函数x y lg =的单调递减区间是 .14.已知数列{}n a 的前n 项和224+-=n n S ,则a 4= .15.对于R b a ∈,,记{}⎩⎨⎧<≥=b a b ba ab a ,,,max ,函数{})(2,1max )(R x x x x f ∈-+=的最小值是 . 16.给出以下结论: ①通项公式为1132-⎪⎭⎫⎝⎛⋅=n n a a 的数列一定是以1a 为首项,32为公比的等比数列; ②若0cos sin >⋅θθ,则θ是第一、三象限的角;③函数xx y 2+=在()+∞,0上是单调减的; ④b G a ,,为实数,b G a ,,成等比数列的必要非充分条件是ab G =2;⑤函数)4(log 221x y -=的值域是[)+∞-,2其中正确的是 .(请填写所有正确选项的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(12分)若n S 是公差不为0的等差数列{}n a 的前n 项和,且421,,s s s 成等比数列. (1)求数列421,,s s s 的公比; (2)若,42=S 求{}n a 的通项公式.18.(12分)如图所示,在矩形ABCD 中,AB =4,BC=m ,且4>m .在四条边上分别取E ,F ,G ,H 点,使AE=AH=CG=CF=x ,试建立平行四边形EFGH 的面积y 与x 之间的函数关系式,并求x 为何值时,y 取得最大值。
2018年甘肃省第一次高考诊断考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.设全集U R =,集合{}2A x x =≥,{}06B x x =≤<,则集合()U ()A.{}02x x <<B.{}02x x <≤C.{}02x x ≤<D.{}02x x ≤≤2.在复平面内复数34iz i+=、(i 是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.向量(,1)a m =,(1,)b m =,则“1m =”是“//a b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若实数x ,y 满足10,10,0,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则2z x y =+的最大值是()A.-1B.1C.2D.35.某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为23π,则a 的值为()A.1B.2 C.22D.326.已知{}n a 是各项均为正数的等比数列,n S 为其前n 项和,若11a =,3564a a ⋅=,则6S =()A.65B.64C.63D.627.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若7cos 225BAE ∠=,则在正方形ABCD 内随机取一点,该点恰好在正方形EFGH 内的概率为()A.2425B.45C.35D.1258.过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为()A.19B.25C.21D.5559.如图所示,若程序框图输出的所有实数对(,)x y 所对应的点都在函数2()f x ax bx c =++的图象上,则1()0f x dx =⎰()A.1011B.1112C.1312D.121110.过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点(22,0)F 作两条渐近线的垂线,垂足分别为,A B ,点O 为坐标原点,若四边形OAFB 的面积为4,则双曲线的离心率为()A.22B.2+1C.3D.211.如图,四棱锥P ABCD -的底面是边长为2的正方形,PA ⊥平面ABCD ,且4PA =,M 是PB 上的一个动点,过点M 作平面//α平面PAD ,截棱锥所得图形面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()y f x =的图象是()A.B. C.D.12.对于任意0b >,a R ∈,不等式[][]222(2)ln (1)b a b a m m --+--≥-恒成立,则实数m 的最大值为()A.eB.2 C.eD.3第Ⅱ卷(共90分)二、填空题:本题共4小题(每题5分,满分20分,将答案填在答题纸上)13.二项式62()x x-的展开式中的常数项是.(用数字作答)14.已知数列{}n a 满足115a =,12()n n a a n N n *+-=∈,则n an的最小值为.15.在某班举行的成人典礼上,甲、乙、丙三名同学中的一人获得了礼物.甲说:“礼物不在我这”;乙说:“礼物在我这”;丙说:“礼物不在乙处”.如果三人中只有一人说的是真的,请问(填“甲”、“乙”或“丙”)获得了礼物.16.抛物线2:4C y x =的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE NM NF =+,则MNF ∆的面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(Ⅰ)求角B 的大小;(Ⅱ)若6b =,求ABC ∆周长的取值范围.18.四棱台被过点11,,A C D 的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD 是边长为2的菱形,60BAD ∠=︒,1BB ⊥平面ABCD ,12BB =.(Ⅰ)求证:平面1AB C ⊥平面1BB D ;(Ⅱ)若1AA 与底面ABCD 所成角的正切值为2,求二面角11A BD C --的余弦值.19.2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量y (单位:千万立方米)与年份x (单位:年)之间的关系.并且已知y 关于x 的线性回归方程是ˆˆ6.5yx a =+,试确定ˆa 的值,并预测2018年该地区的天然气需求量;(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A 类:每车补贴1万元,B 类:每车补贴2.5万元,C 类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:类型A 类B 类C 类车辆数目102030为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列及期望.20.椭圆2222:1x y E a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 作垂直于x 轴的直线l 与椭圆E在第一象限交于点P ,若15PF =,且23a b =.(Ⅰ)求椭圆E 的方程;(Ⅱ)A ,B 是椭圆C 上位于直线l 两侧的两点.若直线AB 过点(1,1)-,且22APF BPF ∠=∠,求直线AB 的方程.21.已知函数()ln f x a x =,a R ∈.(Ⅰ)若曲线()y f x =与曲线()g x x =在公共点处有共同的切线,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,试问函数1()()12x xe F x xf x -=-+是否有零点?如果有,求出该零点;若没有,请说明理由.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线221:(3)(1)4C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,将曲线1C 绕极点逆时针旋转6π后得到的曲线记为2C .(Ⅰ)求曲线1C ,2C 的极坐标方程;(Ⅱ)射线3πθ=(0p >)与曲线1C ,2C 分别交于异于极点O 的A ,B 两点,求AB .23.选修4-5:不等式选讲已知函数()2f x m x =--,m R ∈,且(1)0f x +≥的解集为[]0,2.(Ⅰ)求m 的值;(Ⅱ)若a ,b ,c R ∈,且11123m a b c++=,求证:239a b c ++≥.2018年甘肃省第一次高考诊断理科数学考试参考答案及评分标准一、选择题1-5:CDACB 6-10:CDABD11、12:DB二、填空题13.-16014.27415.甲16.322三、解答题17.解:(Ⅰ)∵m n ⊥,则有cos (2)cos 0B a c C b ⋅++⋅=,∴cos (2sin sin )cos sin 0B AC C B ⋅++⋅=∴2cos sin (sin cos cos sin )sin()sin B A C B C B B C A =-⋅+⋅=-+=-,∴1cos 2B =-,∴23B π=.(Ⅱ)根据余弦定理可知2222cos b a c ac B =+-,∴2236a c ac =++,又∵236()a c ac =+-,∴22()36()2a c a c ac ++-=≤,∴643a c <+≤,则ABC ∆周长的取值范围是(12,643⎤+⎦.18.解:(Ⅰ)∵1BB ⊥平面ABCD ,∴1BB AC ⊥.在菱形ABCD 中,BD AC ⊥,又1BD BB B ⋂=,∴AC ⊥平面1BB D ,∵AC ⊂平面1AB C ,∴平面1AB C ⊥平面1BB D .(Ⅱ)∵1BB ⊥平面ABCD∴1AA 与底面ABCD 所成角为1A AB ∠,∴1tan 2A AB ∠=,∴111A B =设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系.则(0,1,0)B -,(0,1,0)D ,1(0,1,2)B -,(3,0,0)A .111131(,,2)222B A BA A =⇒- ,同理131(,,2)22C --,131(,,2)22BA = ,(0,2,0)BD = ,131(,,2)22BC =- .设平面1A BD 的法向量(,,)n x y z =,∴10,0,BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ 则(4,0,3)n =-,设平面1C BD 的法向量(,,)m x y z '''=,10,0,BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩则(4,0,3)m =,设二面角11A BD C --为θ,13cos 19m n m n θ⋅==.19.解:(Ⅰ)如折线图数据可知2008201020122014201620125x ++++==236246257276286260.25y ++++==代入线性回归方程ˆˆ6.5yx a =+可得ˆ12817.8a =-.将2018x =代入方程可得ˆ299.2y=千万立方米.(Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆,2辆,3辆则当A 类抽1辆,B 类抽1辆时,=3.5ξ,此时1112262( 3.5)15C C P C ξ===;当A 类抽1辆,C 类抽1辆时, 4.4ξ=,此时1113263( 4.4)15C C P C ξ===;当B 类抽1辆,C 类抽1辆时, 5.9ξ=,此时11232662( 5.9)155C C P C ξ====;当B 类抽2辆时,=5ξ,此时22261(5)15C P C ξ===;当C 类抽2辆时, 6.8ξ=,此时232631( 6.8)155C P C ξ====.所以ξ的分布列为:ξ3.54.45.956.8p2153152511515∴23211273.5 4.4 5.95 6.8151551555E ξ=⨯+⨯+⨯+⨯+⨯=(万元)20.解:(Ⅰ)由题可得223b PF a==,因为15PF =,由椭圆的定义得4a =,所以212b =,所以椭圆E 方程为2211612x y +=.(Ⅱ)易知点P 的坐标为(2,3).因为22APF BPF ∠=∠,所以直线PA ,PB 的斜率之和为0.设直线PA 的斜率为k ,则直线PB 的斜率为k -,设11(,)A x y ,22(,)B x y ,则直线PA 的方程为3(2)y k x -=-,由223(2)11612y k x x y -=-⎧⎪⎨+=⎪⎩可得222(3+4)8(32)4(32)480k x k k x k +-+--=,∴128(23)234k k x k ++=+同理直线PB 的方程为3(2)y k x -=--,可得2228(23)8(23)23434k k k k x k k---++==++,∴2122161234k x x k -+=+,1224834k x x k--=+,121212121212(2)3(2)3()412AB yy k x k x k x x k k x x x x x x --++--+-====---,∴满足条件的直线AB 的方程为11(1)2y x +=-,即为230x y --=.21.解:(Ⅰ)函数()ln f x a x =的定义域为(0)+∞,,()af x x '=,1()2g x x'=设曲线()y f x =与曲线()g x x =公共点为00(,)x y 由于在公共点处有共同的切线,所以0012a x x =,解得204x a =,0a >.由00()()f x g x =可得00ln a x x =.联立20004,ln ,x a a x x ⎧=⎪⎨=⎪⎩解得2ea =.(Ⅱ)函数1()()12xxe F x xf x -=-+是否有零点,转化为函数()()ln 2eH x xf x x x==与函数1()12xxe G x -=-在区间(0,)x ∈+∞是否有交点,()()ln 2eH x xf x x x ==,可得()ln (1ln )222eeeH x x x '=+=+,令()0H x '>,解得1(,)x e ∈+∞,此时函数()H x 单调递增;令()0H x '<,解得1(0,)x e ∈,此时函数()H x 单调递减.∴当1x e =-时,函数()H x 取得极小值即最小值,11()2H e =-.1()12xxe G x -=-可得11()(1)2xG x x e -'=-,令()0G x '>,解得01x <<,此时函数()G x 单调递增;令()0G x '<,解得1x >,此时函数()G x 单调递减.∴当1x =时,函数()G x 取得极大值即最大值,1(1)2G =-.因此两个函数无交点.即函数1()()12xxe F x xf x -=-+无零点.22.解:曲线221:(3)(1)4C x y -+-=化为极坐标方程是23cos 2sin ρθθ=+设曲线2C 上的点(,)Q ρθ绕极点顺时针旋转6π后得到(,)6P πρθ-在1C 上,代入可得2C 的极坐标方程是2cos 23sin ρθθ=+.(Ⅱ)将3πθ=(0ρ>)分别代入1C ,2C 的极坐标方程,得到123ρ=,24ρ=12423AB ρρ=-=-.23.(Ⅰ)()01011f x m x m x m≥⇒--≥⇒-≤≤+由(+1)0f x ≥的解集为[]02,可知1m =.(Ⅱ)111123a b c++=则111233223(22)()111232233b c a c a b a b c a b c a b c a a b b c c++=++++=++++++++233233692323b a c a c b a b a c b c=++++++≥+=当且仅当23a b c ==时等号成立,即3a =,32b =,1c =时等号成立.。
2018年甘肃省第一次高考诊断考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U R ,集合2A x x ,06B x x ,则集合()U ()A .02x xB .02x xC .02x xD .02x x 2. 在复平面内复数34iz i 、 (i 是虚数单位)对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限3. 向量(,1)a m ,(1,)b m ,则“1m ”是“//a b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 若实数x ,y 满足10,10,0,x y x y y 则2z x y 的最大值是()A .-1B . 1 C. 2 D .35. 某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为23,则a 的值为()A .1B .2 C. 22 D .326. 已知n a 是各项均为正数的等比数列,n S 为其前n 项和,若11a ,3564a a ,则6S ()A . 65 B .64 C. 63 D .627. 中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若7cos225BAE,则在正方形ABCD 内随机取一点,该点恰好在正方形EFGH 内的概率为()A .2425 B .45 C.35 D .1258. 过直线23yx 上的点作圆2246120x y x y 的切线,则切线长的最小值为()。
绝密★启用前甘肃省兰州市2018届高三一诊理科综合试题(考试时间:150分钟试卷满分:300分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 Li 7 B 11 C 12 N 14 O 16 Na 23 Mg 24 P 31 Cl 35.5 Ga 70第Ⅰ卷一、选择题:本题共13个小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于细胞中化合物及相关生命活动的叙述,正确的是A.沸水浴时肽键断裂导致胰岛素生物活性丧失B.磷脂和腺嘌呤中均含有N元素C.所有细胞中核糖体的形成都与核仁有关D.与细胞代谢有关的酶都是在核糖体中合成的2.囊泡运输在细胞的生命活动中非常重要,下列相关叙述中错误的是A.囊泡膜的化学成分主要是磷脂和蛋白质B.生物膜的更新可通过囊泡运输实现C.只有大分子物质才通过囊泡运输D.囊泡运输需要消耗能量3.下列关于实验操作的叙述,错误的是A.不易选用橙汁鉴定还原糖,原因是其中不含还原糖B.鉴定花生子叶中的脂肪需要腿微镜才能看到被染成橘黄色的脂肪滴C.用某—浓度的硝酸钾溶液处理洋葱鳞片叶表皮细胞,不一定能观察到质壁分离复原现象D.调查菜青虫种群密度用的是样方法4.特异性在生物学的很多结构和物质中都具有,下列相关叙述中,正确的是A.信使RNA上有多少个密码子就有多少个转运RNA与之特异性的对应B.细胞之间的信息交流均依赖于细胞膜上的特异性受体C.突触后膜上的受体与神经递质发生特异性结合后均将神经递质输入细胞D.糖蛋白和DNA聚合酶都具有特异性5.下列关于植物激素及其类似物的叙述,错误的是A.在幼嫩的芽中,酪氨酸可转变成生长素B.在葡萄结果实的时期使用一定浓度的2,4-D可以使葡萄增产C.植物体各部位都能合成乙烯D.赤霉素能诱导α-淀粉酶的产生从而促进种子的萌发6.下图为某二倍体动物体内的细胞在细胞分裂过程中每条染色体上DNA分子含量的变化曲线,下列相关叙述中错误的是A.ah时期可能发生碱基互补配对B.be时期可能发生姐妹染色单体的形成C.cd时期可能发生同源染色体的分离D.ef时期可能存在四分体7.化学与生活、生产密切相关。
兰州市2018年高三诊断考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.C N=)1.()U+∞A(1,)2.,则下列说法正确的是()AC3.)A4.为()A5.)A6.)A7.)A8.刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为()A9.)A10.)A.必要不充分条件B.充分不必要条件 C.充要条件 D.既不充分也不必要的条件11.)A12.)AD二、填空题:本大题共4小题,每小题5分,共20分.13.14.的均方差为.15.16.的最小值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(3,1)(1(2.=18.BD GACE.(1(2.19.与该地当日最高气(1(2回归方程预测这天该商品的销售量;(3(,Nμσ13.4).附:12inbbx==∑(,Nμσ2Xσ-<<20.(1(2)..21..(1(2(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分.22.[选修4-4:坐标系与参数方程].(1(2.23.[选修4-5:不等式选讲](1(2.兰州市2018年高三诊断考试数学(理科)试题参考答案及评分参考一、选择题1-5: CDADA 6-10: DBBAB 11、12:CC 二、填空题三、解答题17.(1(2)由(118.(1=BF B(2)方法1:平面角,方法2:121n n =⋅CDE 所成角的余弦值.19.(12850b =-=bx9(=--(20.56b =-<.(3)由(120.解:(1(2.21.解:(1).(2由(1由(1上式已知成立,故原式成立,得证.22.解:(1(2)方法1方法223.解:(1(2。
2018年甘肃省兰州市高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U =R ,集合M ={x|x ≥0},集合N ={x|x 2<1},则M ∩(∁U N)=( ) A.(0, 1) B.[0, 1] C.[1, +∞) D.(1, +∞)2. 已知复数z =−5+12i (i 是虚数单位),则下列说法正确的是( ) A.复数z 的实部为5 B.复数z 的虚部为12iC.复数z 的共轭复数为5+12iD.复数z 的模为133. 已知数列{a n }为等比数列,且a 2a 6+2a 42=π,则tan(a 3a 5)=( ) A.√3 B.−√3 C.−√33D.±√3 4. 双曲线x 2a2−y 2b 2=1的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( ) A.54B.5C.√54D.√55. 在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足学AP →=2PM →,则PA →⋅(PB →+PC →)等于( ) A.−49 B.−43C.43D.496. 数列{a n }中,a 1=1,对任意n ∈N ∗,有a n+1=1+n +a n ,令b i =1a i,(i ∈N ∗),则b 1+b 2+...+b 2018=( ) A.20171009 B.20172018C.20182019D.403620197. 若(x +1x +1)n 的展开式中各项的系数之和为81,则分别在区间[0, π]和[0, n4]内任取两个实数x ,y ,满足y >sinx 的概率为( ) A.1−1πB.1−2πC.1−3πD.128. 刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A.4πB.3πC.√3πD.√32π9. 某程序框图如图所示,则程序运行后输出的S的值是()A.1008B.2017C.2018D.302510. 设p:实数x,y满足(x−1)2+\lbracky−(2−√2)brack2≤3−2√2;q:实数x,y满足{x−y≤1x+y≥1y≤1,则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要的条件11. 已知圆C:(x−1)2+(y−4)2=10和点M(5,t),若圆C上存在两点A,B,使得MA⊥MB,则实数t的取值范围为()A.[−2,6]B.[−3,5]C.[2,6]D.[3,5]12. 定义在(0,π2)上的函数f(x),已知f′(x)是它的导函数,且恒有cosx⋅f′(x)+sinx⋅f(x)<0成立,则有()A.f(π6)>√2f(π4) B.√3f(π6)>f(π3)C.f(π6)>√3f(π3) D.f(π6)>√3f(π4)二、填空题:本大题共4小题,每小题5分,共20分.13. 若sin(π4−α)=−25,则cos(π4+α)=________.14. 已知样本数据a1,a2,……a2018的方差是4,如果有b i=a i−2(i=1, 2,…,2018),那么数据b1,b2,……b2018的均方差为________.15. 设函数f(x)=sin(2x +φ)(|φ|<π2)向左平移π3个单位长度后得到的函数是一个奇函数,则φ=________.16. 函数f(x)=1+x −x 22+x 33,g(x)=1−x +x 22−x 33,若函数F(x)=f(x +3)g(x −4),且函数F(x)的零点均在[a, b](a <b, a, b ∈Z)内,则b −a 的最小值为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 已知向量a →=(cos2x,sin2x),b →=(√3,1),函数f(x)=a →∗b →+m .(1)求f(x)的最小正周期;(2)当x ∈[0,π2brack 时,f(x)的最小值为5,求m 的值.18. 如图所示,矩形ABCD 中,AC ∩BD =G ,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ;(2)求平面BCE 与平面CDE 所成角的余弦值.19. 某地一商场记录了12月份某5天当中某商品的销售量y (单位:kg )与该地当日最高气温x (单位:∘C )的相关数据,如表:(1)试求y 与x 的回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关;若该地12月某日的最高气温是6∘C ,试用所求回归方程预测这天该商品的销售量;(3)假定该地12月份的日最高气温X ∼N(μ, σ2),其中μ近似取样本平均数x ,σ2近似取样本方差s 2,试求P(3.8<X <13.4).附:参考公式和有关数据{b ^=∑−i=1n xiyi nxy ∑x i 2n i=1−nx 2=∑(n i=1x i −x)(y i −y)∑(x i −x)2n i=1a ^=y −b ^x ,√10≈3.2,√3.2≈1.8,若X ∼N(μ, σ2),则P(μ−σ<X <μ+σ)=0.6826,且P(μ−2σ<X <μ+2σ)=0.9544.20. 已知圆C :(x +1)2+y 2=8,过D(1, 0)且与圆C 相切的动圆圆心为P . (1)求点P 的轨迹E 的方程;(2)设过点C 的直线l 1交曲线E 于Q ,S 两点,过点D 的直线l 2交曲线E 于R ,T 两点,且l 1⊥l 2,垂足为W (Q ,R ,S ,T 为不同的四个点).①设W(x 0, y 0),证明:x 022+y 02<1;②求四边形QRST 的面积的最小值21. 已知函数f(x)=x+tx−1e x−1,其中e 为自然对数的底数. (1)证明:当x >1时,①ln √x <√x −1,②e x−1>x ;(2)证明:对任意x >1,t >−1,有f(x)>√x(1+12lnx).选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l 的参数方程是{x =√22t y =√22t +4√2 (t 是参数),圆C 的极坐标方程为ρ=2cos(θ+π4).(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,并切线长的最小值. [选修4-5:不等式选讲]23. 设函数f(x)=|x −a|+2x ,其中a >0.(1)当a =2时,求不等式f(x)≥2x +1的解集;(2)若x ∈(−2, +∞)时,恒有f(x)>0,求a 的取值范围.参考答案与试题解析2018年甘肃省兰州市高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:∵N={x|−1<x<1},U=R,∴∁U N={x|x≤−1或x≥1}.∵M={x|x≥0},∴M∩(∁U N)=[1,+∞).故选C.2.【答案】D【考点】虚数单位i及其性质复数的运算复数求模复数的基本概念【解析】直接利用复数的基本概念得选项.【解答】∵z=−5+12i,∴z的实部为−5,虚部为12,z的共轭复数为−5−12i,模为√(−5)2+(12)2=13.∴说法正确的是复数z的模为13.3.【答案】A【考点】等比数列的通项公式【解析】由等比数列{a n}的性质可得:a2a6=a3a5=a42,根据a2a6+2a42=π=3a3a5,可得a3a5.利用三角函数求值即可得出.【解答】由等比数列{a n}的性质可得:a2a6=a3a5=a42,∴a2a6+2a42=π=3a3a5,∴a3a5=π.3=√3.则tan(a3a5)=tanπ34.【答案】 D【考点】 圆锥曲线 【解析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0求得a 和b 的关系,进而求得a 和c 的关系,则双曲线的离心率可得. 【解答】依题意可知双曲线渐近线方程为y =±ba x ,与抛物线方程联立消去y 得x 2±ba x +1=0∵ 渐近线与抛物线有一个交点 ∴ △=b 2a 2−4=0,求得b 2=4a 2,∴ c =√a 2+b 2=√5a , ∴ e =ca =√5,5.【答案】 A【考点】平行向量的性质平面向量数量积的性质及其运算律 【解析】由M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足AP →=2PM →可得:P 是三角形ABC 的重心,根据重心的性质,即可求解. 【解答】∵ M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足AP →=2PM →∴ P 是三角形ABC 的重心 ∴ PA →∗(PB →+PC →) =PA →∗AP →=−|PA →|2 又∵ AM =1 ∴ |PA →|=23∴ PA →∗(PB →+PC →)=−496.【答案】 D【考点】 数列递推式 【解析】a n+1=1+n +a n ,即a n+1−a n =n +1.n ≥2时,a n =(a n −a n−1)+(a n−1−a n−2)+……+(a 2−a 1)+a 1,可得a n .b n =1a n=2n(n+1)=2(1n −1n+1),利用裂项求和方法即可得出. 【解答】a n+1=1+n +a n ,即a n+1−a n =n +1.∴ n ≥2时,a n =(a n −a n−1)+(a n−1−a n−2)+……+(a 2−a 1)+a 1 =n +(n −1)+……+2+1 =n(n+1)2.n =1时也成立.b n =1a n=2n(n+1)=2(1n−1n+1),则b 1+b 2+...+b 2018=2[(1−12)+(12−13)+……+(12018−12019)brack =2(1−12019) =40362019.7.【答案】 B【考点】二项式定理的用法 【解析】根据几何概型的概率公式,求出对应事件对应的平面区域的面积,进行求解即可 【解答】由题意知,令x =1,得到3n =81,解得 n =4,∴ 0≤x ≤π,0≤y ≤1. 作出对应的图象如图所示:则此时对应的面积S =π×1=π, 满足y ≥sinx 的点构成区域的面积为: S =∫πsinxdx =−cosx|π=−cosπ+cos0=2,则满足y >sinx 的概率为P =1−2π. 故选:B .8.【答案】D【考点】由三视图求体积球的体积和表面积球内接多面体【解析】根据三视图得出四棱锥的结构特征,根据阳马与长方体的关系计算长方体的棱长,得出外接球的体积.【解答】由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个侧面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球.由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为,1,∴长方体的一个顶点处的三条棱长分别为1,1,1,∴长方体的对角线为√3,∴外接球的半径为√32,∴外接球的体积为V=4π3∗(√32)3=√3π2.9.【答案】A【考点】程序框图【解析】本题主要考查程序框图,同时考查了三角函数的相关知识.【解答】解:执行程序框图可知,输出的S=a1+a2+⋯+a2016+a2017+a2018=(0+1)+(−2+1)+(0+1)+(4+1)+⋯+(0+1)+(−2014+1)+(0+1)+ (2016+1)+(0+1)+(−2018+1)=6×20164+1−2017=3024+1−2017=1008, 故输出的S的值是1008.故选A.10.【答案】B【考点】充分条件【解析】分别作出p,q对应区域,结合充分条件和必要条件的定义进行判断即可.【解答】(x−1)2+\lbracky−(2−√2)brack2≤3−2√2=(√2−1)2,则p对应的表达式表示以(1, 2−√2)为圆心,半径r=√2−1的圆及其内部,q对应的平面区域为三角形内部,由图象知p对应区域都在三角形内,则p是q的充分不必要条件,方法2:圆心(1, 2−√2)到y=1的距离d=1−(2−√2)=√2−1=R,圆心(1, 2−√2)到x−y=1的距离d=√2)−1|√2=√2√2=√2−1=R,圆心(1, 2−√2)当x+y=1的距离d=√2−1|√2=√2−1=R,即p对应的区域都在q对应三角形区域内部,则p是q的充分不必要条件,11.【答案】C【考点】直线与圆的位置关系【解析】本题考查直线与圆的位置关系.【解答】解:由题意,知满足条件的t的值在直线x=5的两个点的纵坐标之间取值,过此两个点与圆相切的两条直线互相垂直.设过点(5,t)的直线方程为y−t=k(x−5),由相切条件,得√k2+1=√10,整理,得6k2+8(4−t)k+(t−4)2−10=0,由题意知此方程的两根满足k1k2=−1,所以(t−4)2−106=−1,解得t=2或t=6,所以2≤t≤6.故选C.12.【答案】C【考点】利用导数研究函数的单调性【解析】根据题意,令g(x)=f(x)cosx ,x∈(0, π2),对其求导分析可得g′(x)<0,即函数g(x)为减函数,结合选项分析可得答案【解答】根据题意,令g(x)=f(x)cosx ,x∈(0, π2),则其导数g′(x)=f′(x)cosx+sinxf(x)cos2x,又由x∈(0, π2),且恒有cosx⋅f′(x)+sinx⋅f(x)<0,则有g′(x)<0,即函数g(x)为减函数,又由π6<π3,则有g(π6)>g(π3),即f(π6)cosπ6>f(π3)cosπ3,分析可得f(π6)>√3f(π3),又由π6<π4,则有g(π6)>g(π4),即f(π6)cosπ6>f(π4)cosπ4,分析可得√2f(π6)>√3f(π4),二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】−2 5【考点】两角和与差的三角函数【解析】根据(π4+α)+(π4−α)=π2,利用诱导公式求出对应数值.【解答】sin(π4−α)=−25,∴cos(π4+α)=cos[π2−(π4−α)]=sin(π4−α)=−25.14.【答案】4【考点】极差、方差与标准差【解析】根据一组数据的平均数与方差的定义和计算公式,即可推导出正确的结论.【解答】根据题意,样本数据a1,a2,…,a2018的平均数为a,其方差是4,则有s a2=12018[(a1−a )2+(a2−a )2+(a3−a )2+...+(a2018−a )2]= 4,对于数据b i=a i−2(i=1, 2,…,2018),其平均数为b=12018(b1+b2+...+b2018)=12018[(a1−2)+(a2−2)+...+(a2018−2)]=a−2,其方差为s b2=12018[(b1−b )2+(b2−b )2+(b3−b )2+...+(b2018−b )2]=12018[(a1−a )2+(a2−a )2+(a3−a )2+...+(a2018−a )2]=4,15.【答案】π3【考点】函数y=Asin(ωx+φ)的图象变换【解析】直接利用函数的图象的平移变换求出结果.【解答】函数f(x)=sin(2x+φ)(|φ|<π2)向左平移π3个单位长度后,得到:g(x)=sin(2x+2π3+φ)的函数是一个奇函数,则:φ+2π3=kπ(k∈Z),解得:φ=kπ−2π3(k∈Z),当k=1时,φ=π3.16.【答案】10【考点】函数与方程的综合运用【解析】根据函数单调性和零点的存在性定理判断f(x)与g(x)的零点所在区间,从而得出F(x)的零点所在区间.【解答】∵f′(x)=1−x+x2=(x−12)2+34>0,g′(x)=−1+x−x2=−(x−12)2−34<0,∴f(x)在R上单调递增,g(x)在R上单调递减,又f(−1)=−56<0,f(0)=1>0,g(1)=16>0,g(2)=−53<0,∴f(x)的唯一零点在(−1, 0)上,g(x)的唯一零点在(1, 2)上.令F(x)=0可得f(x+3)=0或g(x−4)=0,∴f(x+3)的唯一零点在(−4, −3)上,g(x−4)的唯一零点在(5, 6)上.∵函数F(x)的零点均在[a, b](a<b, a, b∈Z)内,∴a≤−4,b≥6.∴b−a的最小值为10.故答案为:10.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.【答案】由题意知:f(x)=cos(2x, sin2x)⋅(√3, 1)=√3cos2x+sin2x+m=2sin(2x+π3)+ m,所以f(x)的最小正周期为T=π.由(1)知:f(x)=2sin(2x+π3)+m,当x∈[0,π2brack时,2x+π3∈[π3,4π3brack.所以当2x+π3=4π3时,f(x)的最小值为−√3+m.又∵f(x)的最小值为5,∴−√3+m=5,即m=5+√3.【考点】平面向量数量积的性质及其运算律三角函数的周期性及其求法【解析】(1)根据向量的数量积公式和两角和的正弦公式可化简可得f(x)=2sin(2x+π3)+m,再根据周期的定义即可求出,(2)根据正弦函数的性质即可求出m的值.【解答】由题意知:f(x)=cos(2x, sin2x)⋅(√3, 1)=√3cos2x+sin2x+m=2sin(2x+π3)+ m,所以f(x)的最小正周期为T=π.由(1)知:f(x)=2sin(2x+π3)+m,当x∈[0,π2brack时,2x+π3∈[π3,4π3brack.所以当2x+π3=4π3时,f(x)的最小值为−√3+m.又∵f(x)的最小值为5,∴−√3+m=5,即m=5+√3.18.【答案】证明:因为AD⊥面ABE,所以AD⊥AE,又BC // AD,所以BC⊥AE.因为BF⊥面ACE,所以BF⊥AE.又BC∩BF=B,所以AE⊥面BCF,即AE⊥平面BCE.方法1:因为BF ⊥面ACE ,CE ⊂面ACE ,所以BF ⊥CE , 又BC =BE ,所以F 为CE 中点,在△DEC 中,DE =CE =CD =2√2,所以DF ⊥CE ,∠BFD 为二面角B −CE −D 的平面角,cos∠BFD =BF 2+DF 2−BD 22∗BF∗DF=2∗√2∗√6=−√33. ∴ 平面BCE 与平面CDE 所成角的余弦值为√33.方法2:以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,则相关点的坐标为E(0, 0, 0),B(2, 0, 0),C(2, 0, 2),D(0, 2, 2),设平面BCE 的法向量n 1→,平面CDE 的法向量为n 2→,易知n 1→=(0,1,0),令n 2→=(x,y,z),则{n 2→∗EC →=0n 2→∗ED →=0 ,故{2x +2z =02y +2z =0,令x =1,得{x =1y =1z =−1,n 2→=(1,1,−1), 于是,cos <n 1→,n 2→>=n 1→∗n 2→|n 1→||n 2→|=1∗√3=√33. 此即平面BCE 与平面CDE 所成角的余弦值. 【考点】直线与平面垂直二面角的平面角及求法 【解析】(1)证明AD ⊥AE ,BC ⊥AE .推出AE ⊥面BCF ,得到AE ⊥平面BCE .(2)方法1:说明∠BFD 为二面角B −CE −D 的平面角,通过求解三角形求解即可. 方法2:以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,求出平面BCE 的法向量n 1→,平面CDE 的法向量为n 2→,利用空间向量的数量积求解平面BCE 与平面CDE 所成角的余弦值. 【解答】证明:因为AD ⊥面ABE ,所以AD ⊥AE , 又BC // AD ,所以BC ⊥AE .因为BF ⊥面ACE ,所以BF ⊥AE .又BC ∩BF =B ,所以AE ⊥面BCF ,即AE ⊥平面BCE .方法1:因为BF ⊥面ACE ,CE ⊂面ACE ,所以BF ⊥CE , 又BC =BE ,所以F 为CE 中点,在△DEC 中,DE =CE =CD =2√2,所以DF ⊥CE ,∠BFD 为二面角B −CE −D 的平面角,cos∠BFD =BF 2+DF 2−BD 22∗BF∗DF=2∗√2∗√6=−√33. ∴ 平面BCE 与平面CDE 所成角的余弦值为√33.方法2:以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,则相关点的坐标为E(0, 0, 0),B(2, 0, 0),C(2, 0, 2),D(0, 2, 2),设平面BCE 的法向量n 1→,平面CDE 的法向量为n 2→,易知n 1→=(0,1,0),令n 2→=(x,y,z),则{n 2→∗EC →=0n 2→∗ED →=0 ,故{2x +2z =02y +2z =0,令x =1,得{x =1y =1z =−1,n 2→=(1,1,−1), 于是,cos <n 1→,n 2→>=n 1→∗n 2→|n 1→||n 2→|=1∗√3=√33. 此即平面BCE 与平面CDE 所成角的余弦值. 19.【答案】由题意,x =7,y =9,∑−i=1n xiyi nx y =287−5⋅7⋅9=−28,∑ni=1x i 2−nx 2=295−5⋅72=50,b ^=−2850=−0.56,a ^=y −b ^x =9−(−0.56)⋅7=12.92.所以所求回归直线方程为y ^=−0.56x +12.92.由b ^=−0.56<0知,y 与x 负相关.将x =6代入回归方程可得,y ^=−0.56∗6+12.92=9.56,即可预测当日销售量为9.56kg . 由(1)知μ≈x =7,σ≈√S 2=3.2,所以P(3.8<X <13.4)=P(μ−σ<X <μ+2σ)=12P(μ−σ<X <μ+σ)+12P(μ−2σ<X <μ+2σ)=0.8185. 【考点】求解线性回归方程 正态分布密度曲线(1)利用公式求出bˆ,a ˆ,即可得出结论. (2)根据bˆ的正负即可判断.将x =6代入回归方程,可得预测这天该商品的销售量; (3)根据X ∼N(μ, σ2)即可计算. 【解答】由题意,x =7,y =9,∑−i=1n xiyi nx y =287−5⋅7⋅9=−28,∑ni=1x i 2−nx 2=295−5⋅72=50,b ^=−2850=−0.56,a ^=y −b ^x =9−(−0.56)⋅7=12.92.所以所求回归直线方程为y ^=−0.56x +12.92.由b ^=−0.56<0知,y 与x 负相关.将x =6代入回归方程可得,y ^=−0.56∗6+12.92=9.56,即可预测当日销售量为9.56kg . 由(1)知μ≈x =7,σ≈√S 2=3.2,所以P(3.8<X <13.4)=P(μ−σ<X <μ+2σ)=12P(μ−σ<X <μ+σ)+12P(μ−2σ<X <μ+2σ)=0.8185. 20.【答案】设动圆半径为r ,则|PC|=2√2−r,|PD|=r,|PC|+|PD|=2√2>|CD|=2, 由椭圆定义可知,点P 的轨迹E 是椭圆, 其方程为x 22+y 2=1.①证明:由已知条件可知,垂足W 在以CD 为直径的圆周上, 则有x ∘2+y ∘2=1,又因Q ,S ,R ,T 为不同的四个点,x∘22+y∘2<1.②若l 1或l 2的斜率不存在,四边形QRST 的面积为2. 若两条直线的斜率存在,设l 1的斜率为k 1, 则l 1的方程为y =k 1(x +1), 联立{y =k 1(x +1)x 22+y 2=1,得(2k 2+1)x 2+4k 2x +2k 2−2=0, 则|QS|=2√2k 2+12k 2+1,同理得|RT|=2√2k 2+1k 2+2,∴ S QSRT =12|QS|∗|RT|=4(k 2+1)2(2k 2+1)(k 2+2)≥4(k 2+1)294(k 2+1)2=169,当且仅当2k 2+1=k 2+1,即k =±1时等号成立.综上所述,当k =±1时,四边形QRST 的面积取得最小值为169.轨迹方程直线与椭圆结合的最值问题【解析】(1)设动圆半径为r,则|PC|=2√2−r,|PD|=r,|PC|+|PD|=2√2>|CD|=2,由椭圆定义能求出点P的轨迹E的方程.(2)①由已知条件可知,垂足W在以CD为直径的圆周上,由Q,S,R,T为不同的四个点,能够证明x∘22+y∘2<1.②若l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率存在,设l1的斜率为k1,则l1的方程为y=k1(x+1){y=k1(x+1)x22+y2=1,得|QS|=2√2k2+12k2+1,同理得|RT|=2√2k2+1k2+2,由此能求出四边形QRST的面积取得最小值.【解答】设动圆半径为r,则|PC|=2√2−r,|PD|=r,|PC|+|PD|=2√2>|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,其方程为x22+y2=1.①证明:由已知条件可知,垂足W在以CD为直径的圆周上,则有x∘2+y∘2=1,又因Q,S,R,T为不同的四个点,x∘22+y∘2<1.②若l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率存在,设l1的斜率为k1,则l1的方程为y=k1(x+1),联立{y=k1(x+1)x22+y2=1,得(2k2+1)x2+4k2x+2k2−2=0,则|QS|=2√2k2+12k2+1,同理得|RT|=2√2k2+1k2+2,∴S QSRT=12|QS|∗|RT|=4(k2+1)2(2k2+1)(k2+2)≥4(k2+1)294(k2+1)2=169,当且仅当2k2+1=k2+1,即k=±1时等号成立.综上所述,当k=±1时,四边形QRST的面积取得最小值为169.21.【答案】f(x)>√x(1+12lnx),即x+tx−1e x−1>√x(1+12lnx)=√x(1+ln√x),由(1)ln√x<√x−1,所以1+ln√x<√x,√x(1+ln√x)<√x∗√x=x,所以,只需证x<x+tx−1e x−1,即(x+t)e x−1>x2−x,由(1)e x−1>x,所以只需证(x+t)x>x2−x,只需证x+t>x−1,即t>−1,上式已知成立,故原式成立,得证.【考点】函数恒成立问题不等式的证明【解析】(1)利用函数的导数,判断函数的单调性,然后证明不等式;(2)化简不等式利用(1)的结论,通过分析法转化证明即可.【解答】f(x)>√x(1+12lnx),即x+tx−1e x−1>√x(1+12lnx)=√x(1+ln√x),由(1)ln√x<√x−1,所以1+ln√x<√x,√x(1+ln√x)<√x∗√x=x,所以,只需证x<x+tx−1e x−1,即(x+t)e x−1>x2−x,由(1)e x−1>x,所以只需证(x+t)x>x2−x,只需证x+t>x−1,即t>−1,上式已知成立,故原式成立,得证.选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分.[选修4-4:坐标系与参数方程]22.【答案】∵圆C的极坐标方程为ρ=2cos(θ+π4).∴ρ=√2cosθ−√2sinθ,∴ρ2=√2ρcosθ−√2ρsinθ,∴圆C的直角坐标方程为x2+y2−√2x+√2y=0,即(x−√22)2+(y+√22)2=1,∴圆心直角坐标为(√22,−√22).解法一:直线l上的点向圆C引切线长是:√(√22t−√22)2+(√22t+√22+4√2)2−1=√t2+8t+40=√(t+4)2+24≥2√6,∴直线l上的点向圆C引的切线长的最小值是2√6.解法二:直线l的普通方程为x−y+4√2=0,∴圆心C到直线l距离是|√22+√22+4√2|√2=5,∴直线l上的点向圆C引的切线长的最小值是√52−12=2√6.【考点】圆的极坐标方程参数方程与普通方程的互化【解析】(1)圆C的极坐标方程转化为ρ2=√2ρcosθ−√2ρsinθ,由此能求出圆C的直角坐标方程,从而能求出圆心直角坐标.(2)法一:求出直线l 上的点向圆C 引切线长,由此能求出直线l 上的点向圆C 引的切线长的最小值.法二:求出圆心C 到直线l 距离,由此能求出直线l 上的点向圆C 引的切线长的最小值. 【解答】∵ 圆C 的极坐标方程为ρ=2cos(θ+π4).∴ ρ=√2cosθ−√2sinθ, ∴ ρ2=√2ρcosθ−√2ρsinθ,∴ 圆C 的直角坐标方程为x 2+y 2−√2x +√2y =0, 即(x −√22)2+(y +√22)2=1,∴ 圆心直角坐标为(√22,−√22).解法一:直线l 上的点向圆C 引切线长是: √(√22t −√22)2+(√22t +√22+4√2)2−1=√t 2+8t +40=√(t +4)2+24≥2√6,∴ 直线l 上的点向圆C 引的切线长的最小值是2√6. 解法二:直线l 的普通方程为x −y +4√2=0, ∴ 圆心C 到直线l 距离是|√22+√22+4√2|√2=5,∴ 直线l 上的点向圆C 引的切线长的最小值是√52−12=2√6.[选修4-5:不等式选讲] 23.【答案】当a =2时,|x −2|+2x ≥2x +1, 所以|x −2|≥1,所以x ≥3或x ≤1, 解集为(−∞, 1]∪[3, +∞).f(x)={3x −a,x ≥ax +a,x <a ,因为a >0,∴ x ≥a 时,3x −a ≥2a >0恒成立,又x <a 时,当x >−2时,x +a >−2+a ,∴ 只需−2+a ≥0即可, 所以a ≥2. 【考点】不等式恒成立的问题绝对值不等式的解法与证明 【解析】(1)当a =2时,化简不等式f(x)≥2x +1,通过去掉绝对值符号,求解不等式的解集;(2)化简函数的解析式,通过x 与a 的大小比较,转化不等式求解即可. 【解答】当a =2时,|x −2|+2x ≥2x +1, 所以|x −2|≥1,所以x ≥3或x ≤1, 解集为(−∞, 1]∪[3, +∞).f(x)={3x −a,x ≥ax +a,x <a ,因为a >0,∴ x ≥a 时,3x −a ≥2a >0恒成立,又x <a 时,当x >−2时,x +a >−2+a ,∴ 只需−2+a ≥0即可,所以a≥2.。
绝密★ 启用前甘肃省兰州市2018 届高三第一次诊断性考试数学(理)试题一、单选题1.设全集,集合,集合,则()A .B.C.D.2.已知复数(是虚数单位),则下列说法正确的是()A .复数的实部为B.复数的虚部为C.复数的共轭复数为 D .复数的模为3.已知数列为等比数列,且,则()A .B.C.D.4.双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为()A .B .C.D.5.在中,是的中点,,点在上且满足,则等于()A .B.C.D.6.数列中,,对任意,有,令,,则()A .B.C. D .7.若的展开式中各项的系数之和为,则分别在区间和内任取两个实数,,满足的概率为()A .B .C.D.8.刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为()A .B .C.D.9.某程序框图如图所示,则程序运行后输出的的值是()A .B.C.D.10.设:实数,满足;:实数,满足,则是的()A .必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要的条件11.已知圆C:22x 1y41 0和点 M5, t ,若圆 C 上存在两点 A , B ,使得 M A M B ,则实数t的取值范围为()A .2, 6B .3, 5C. 2 , 6D.3, 512.定义在上的函数,已知是它的导函数,且恒有成立,则有()A .B.C.D.1二、填空13.若,__________.14.已知本数据,,⋯⋯的方差是,如果有,那么数据,,⋯⋯的均方差 __________ .15.函数向左平移个位度后得到的函数是一个奇函数,__________ .16.函数,,若函数,且函数的零点均在内,的最小 __________.三、解答17.已知向量,,函数.(1)求的最小正周期;(2)当,的最小,求的.18.如所示,矩形中,,平面,,上的点,且平面.( 1)求:平面;( 2)求平面与平面所成角的余弦.19.某地一商了月份某天当中某商品的售量(位:)与地当日最高气温(位:)的相关数据,如下表:( 1)求与的回方程;( 2)判断与之是正相关是相关;若地月某日的最高气温是,用所求回方程天商品的售量;( 3)假定地月份的日最高气温,其中近似取本平均数,近似取本方差,求.附:参考公式和有关数据,,,若,,且.20.已知:,且与相切的心.(1)求点的迹的方程;(2)点的直交曲于,两点,点的直交曲于,两点,且,垂足(,,,不同的四个点).① ,明:;②求四形的面的最小.21.已知函数,其中自然数的底数.(1)明:当,①,②;(2)明:任意,,有.22. [修 4-4:坐系与参数方程 ]在直角坐系中,以坐原点极点,正半极建立极坐系.已知直的参数方程是(是参数),的极坐方程.(1)求心的直角坐;(2)由直上的点向引切,并切的最小.23. [修 4-5:不等式]函数,其中.( 1)当,求不等式的解集;( 2)若,恒有,求的取范.2。
甘肃省第一次高考诊断测试 数学(理)试题注意事项:1.本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题.每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,复数231i i -⎛⎫= ⎪+⎝⎭A .-3-4iB .-3 +4iC .3-4iD .3+4i2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)= A .3 B .-1 C .1 D .-3 3.某程序框图如图所示,若输出的S =57,则判断框内为 A .k>4? B .k>5? C .k>6? D .k>7? 4.设sin (4πθ+)=13,sin2θ= A .79-B .19-D .19D .795.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是A .1564B .15128C .24125D .481256.某几何体的三视图如图所示,则它的体积是A .23πB .83π-C .8-23πD .82π-7.(2x )8展开式中不含..x 4项的系数的和为A .-1B .0C .1D .28.已知二次函数y= f (x )的图象如图所示,则它与x 轴所围图形的面积为A .25π B .43C .32D .2π 9.已知点F 是双曲线222x y a b-=1(a>0,b>0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点.若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是 A .(1,+∞)B .(1,2)C .(2)D .(2)10.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m ,n ),b=(p ,q ),令a⊙b= mq-np ,下面说法错误的是A .若a 与b 共线,则a⊙b =0B .a⊙b =b⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a⊙b)D .(a⊙b)2+(a·b)2= |a|2|b|211.已知函数f (x )=sin (2x+ϕ),其中ϕ为实数,若f (x )≤()6f π对x∈R 恒成立,且()()2f f ππ>,则f (x )的单调递增区间是A .,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .2,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦12.已知函数f (x )=|1|,010,16,10.2gx x x x <≤⎧⎪⎨-+>⎪⎩若a ,b ,c 互不相等,f (a )=f (b )=f (c ),则abc 的取值范围是A . (1,10)B . (5,6)C . (10,12)D . (20,24)第Ⅱ卷 (非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答。
2018年甘肃省高三诊断考试数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集R U =,集合{}2≥=x A ,{}60<≤=x x B ,则集合()B A C U ⋂ A. {}20<<x x B.{}20≤<x x C.{}20<≤x x D.{}20≤≤x x2. 在复平面内复数(是虚数单位)对应的点在A. 第一象限B.第二象限C.第二象限D.第二象限3. 向量()1,m a =,()m b ,1=则“1=m ”是“b a //”的 A. 充分不必要条件 B.必要补充分条件B. 充要条件 D.既不充分也不必要条件4. 若实数y x ,满足⎪⎩⎪⎨⎧≥≤-+≥+-0,01,01y y x y x 则y x z 2+=的最大值是A. 1-B. 1C.2D.35. 某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为32π,则a 的值为 A.1 B. 2C.6.已知{}n a 是各项均为正数的等比数列,n S 为其前n 项和,若135164a a a =⋅=,,则6SA.65B. 64C.63D.627.中国古代数学家赵爽,创造了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明。
如图所示,在“勾股弦方图”中,以弦为边长得到正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若7cos 225BEA ∠=,则正方形ABCD 内随机取一点,该店恰好在正方形内的概率为 A.2524 B. 54 C.35 D.1258.过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为A.19B. 529.如图所示,若程序框图输出的所有实数对所(),x y 对应的点都在函数()2f x ax bx c =++的图像上,则()1f x dx =⎰A.1110B.1211C.1312D.121110. 过双曲线()2222:10,0x y C a b a b-=>>的右焦点()F 做两条渐近线的垂线,垂足分别为,A B ,点O 为坐标原点,若四边形OAFB 的面积为4,则双曲线的离心率为( )A .BC D11. 如图,四棱锥P ABCD -的底面是边长为2的正方形,PA ⊥平面ABCD ,且4PA =,M 是PB 上的一个动点,过点M 做平面α平行平面PAD ,截棱锥所得图形面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()y f x =的图像是( )12. 对于任意0,b a R >∈,不等式()()2222ln 1b a b a m m --+--≥-⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则实数m 的最大值为( )A B . 2 C . e D . 3第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13. 二项式62x x ⎛⎫- ⎪⎝⎭的展开式中的常数项是____________. 14. 已知数列{}n a 满足()*1115,2n n a a a n N n +-==∈,则n an的最小值为____________. 15. 在某班举行的成人礼典礼上,甲乙丙三名同学中的一人获得了礼物,甲说:“礼物不在我这”; 乙说:“礼物在我这”; 丙说:“礼物不在乙处”.如果三人中只有一人说的是真的,请问____________.(填“甲”、“乙”或“丙”)获得了礼物. 16. 抛物线2:y 4C x =的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE NM NF =+,则MNF ∆的面积为____________. 二、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程和验算步骤.17. (本小题满分12分)ABC ∆中,三个内角A B C ,,的对边分别为b c a ,,,若()cos ,cos m B C =,()2,n a c b =+,且m n ⊥.(1)求角B 的大小;(2)若6b =,求ABC ∆周长的取值范围. 18.(本小题满分12分)四棱台被过1A ,1C ,D 的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD 是边长为2的菱形,060BAD ∠=,1BB ⊥平面ABCD ,12BB =.(1)求证:平面1AB C ⊥平面1BB D(2)若1AA 与底面ABCD 所成角的正切值为2,求二面角11A BD C --的余弦值.19.(本小题满分12分)2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图. (Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需求量y (单位:千万立方米)与年份x (单位:年)之间的关系.并且已知y 关于x 的线性回归方程是ˆˆ6.5yx a =+,试确定ˆa 的值,并预测2018年该地区的天然气需求量;(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对汽车续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A 类:每车补贴1万元,B 类:每车补贴2.5万元,C 类:每车补贴3.4万元.某出租公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:为了制定更合理的补贴方案,政府部门决定采取分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列及期望. 20.(本小题满分12分)椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为1F ,2F ,过2F 作垂直于x 轴的直线l 与椭圆E 在第一象限交于点P ,若15PF =,且23a b =. (Ⅰ)求椭圆E 的方程;(Ⅱ),A B 是椭圆C 上位于直线l 两侧的两点.若直线AB 过点()1,1-,且22APF BPF ∠=∠,求直线AB 的方程. 21. (本小题满分12分) 已知函数()ln ,f x a x a R =∈.(Ⅰ)若曲线()y f x =与曲线()g x =,求实数a 的值;(Ⅱ)在(Ⅰ)条件下,试问函数()()11xxe F x xf x x-=-+是否有零点?如果有,求出该零点;若没有,请说明理由.(二)选考题:共10分.请考生在22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分,多答按所答第一题评分.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系中,曲线(()221:14C x y +-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,将曲线1C 绕极点逆时针旋转6π后得到的曲线记为2C .(Ⅰ)求曲线1C ,2C 的极坐标方程;(Ⅱ)射线()03πθρ=>与曲线1C ,2C 分别交于异于极点O 的A ,B 两点,求AB . 23. (本小题满分10分) 选修45-:不等式选讲已知函数()2f x m x =--,m R ∈,且()10f x +≥的解集为[]0,2. (Ⅰ)求m 的值;(Ⅱ)若,,a b c R ∈,且11123m a b c++=,求证:239a b c ++≥.2018甘肃省第一次高考诊断理科数学考试参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给出的选项中,只有一项是符合要求的.1.C2.D3.A4.C5.B6.C7.D8.A9.B 10.D 11.D 12.B 12.提示:不等式左侧()()222ln 1b a b a --+--⎡⎤⎡⎤⎣⎦⎣⎦的最小值的几何意义是函数ln y x =上的点(),ln b b 与函数1y x =+上的点()2,1a a --之间距离的最小值的平方,与直线1y x =+平行且与函数ln y x =相切的直线为1y x =-,两线之间距离的所以22m m -≤,解得12m -≤≤,所以m 的最大值为2. 二、填空题:本大题共4小题,每小题5分.13.160- 14.274 15.甲 16.216.提示:由2NE NM NF =+可得点E 为MF 的中点,准线方程1x =-,焦点()1,0F ,不防设点N 在第三象限,因为MNF ∠为直角,所以12NE MF EF ==,由抛物线的定义得//NE x 轴,则可求得((1,,0,,1,2E M N ⎛-- ⎝,即NF =MN =所以2MNF S ∆=. 三、解答题:解答应写出文字说明,证明过程或验算步骤.17.解: (Ⅰ)m n ⊥,则有()cos 2cos 0B a c C b ⋅++⋅=,()cos 2sin sin cos sin 0B A C C B ∴⋅++⋅=,()()2cos sin sin cos cos sin sin sin B A C B C B B C A ∴=-⋅+⋅=-+=-,1cos 2B ∴=-23B π∴=. …………………………6分(Ⅱ)根据余弦定理可知222222cos ,36b a c ac B a c ac =+-∴=++,……………8分又()()22236,36,62a c a c ac a c ac a c +⎛⎫=+-∴+-=≤∴<+≤ ⎪⎝⎭则ABC ∆的周长的取值范围是(12,6+. …………………………12分18.解: 平面在菱形中,又平面 平面平面平面平面与底面所成角为设交于点以为坐标原点如图建立空间直角坐标系则同理设平面的法向量则设平面的法向量则设二面角为19.解:如折线图数据可知代入线性回归方程可得将代入方程可得千万立方米.根据分层次抽样可知类,类,类抽取人数分别为辆,辆,辆,则当类抽辆,类抽辆时,此时当类抽辆,类抽辆时,此时当类抽辆,类抽辆时,此时当类抽辆时,此时当类抽辆时,此时所以的分布列为:(万元).20.解:由题可得223,b PE a==因为15PE =,由椭圆的定义得4,a =所以212,b = 所以椭圆E 方程为221.1612x y += ()II 易知点P 的坐标为()2,3.因为22,APF BPF ∠=∠所以直线,PA PB 的斜率之和为0.设直线PA 的斜率为,k 则直线PB 的斜率为-k ,设()()1122,,,,A x y B x y 则直线PA 的方程为()32,y k x -=-由 ()223211612y k x x y -=-⎧⎪⎨+=⎪⎩ 可得()()()22234832432480,k x k k x k ++-+--=()12823234k k x k-∴+=+ 同理直线PB 的方程为()2,y k x -=--可得()()222-8238232,3434k k k k x k k -++==++2121222161248,,3434k kx x x x k k--∴+=-++ ()()()121212121212232341,2AB k x k x k x x k y y k x x x x x x -++--+--====---∴满足条件的直线AB 的方程为()111,2y x +=-即为230.x y --= 21.()I 函数()ln f x a x =的定义域为()0,a x +∞=,,()()'',g a f x x x == 设曲线()y f x =与曲线()g x =()00,x y由于在公共点处有共同的切线,所以0a x =解得204,0.x a a =〉 由()()00f x g x =可得0ln a x =解得.2ea =()II 函数()()112xxe F x xf x -=-+是否有零点,转化为函数()()ln 2e H x xf x x x ==与函数()112xxe G x -=-在区间()0,x ∈+∞是否有交点. ()()ln .2e H x xf x x x ==可得()()ln 1ln 222e e e H x x x +=+‘ 令()0,Hx 〉’解得1,,x e⎛⎫∈+∞ ⎪⎝⎭此时函数()H x 单调递增;令()0,Hx 〈’解得10,x e ⎛⎫∈ ⎪⎝⎭,此时函数()H x 单调递减.∴当1x e =时,函数()H x 取得极小值即最小值,11=-.2H e ⎛⎫ ⎪⎝⎭ ()1G 12x xe x -=-可得()()'11G 12x x x e -=-令()'G 0x 〉,解得1x 〈〈0,此时函数()G x 单调递增;令()'G 0x 〈解得1x 〉,此时函数()G x 单调递减.∴当1x =时,函数()G x 取得极大值即最大值,()1G 1=.2-因此两个函数无交点,即函数()()112xxe F x xf x -=-+无零点. 22.解:曲线(()22114C x y +-=:化为极坐标方程是2sin ρθθ+11 设曲线2C 上的点(),Q ρθ绕极点顺时针旋转6π后得到,6P πρθ⎛⎫- ⎪⎝⎭在1C 上,代入可得2C的极坐标方程是=2cos ρθθ+. ()II 将=3πθ()0ρ〉分别代入12,C C 的极坐标方程,得到1212=4==4AB ρρρρ--23.()I ()101011f x m x m x m +≥⇒--≥⇒-≤≤+ 由()10f x +≥的解集为[]0,2可知=1.m ()II 111123a b c ++=则()11123322323111232233b c a c a b a b c a b c a b c a a b b c c ⎛⎫++=++++=++++++++= ⎪⎝⎭ 233233692323b a c a c b a b a c b c++++++≥+= 当且仅当23a b c ==时等号成立,即33,12a b c ===,时等号成立.。
兰州市2018年高三诊断考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|0}M x x =≥,集合2{|1}N x x =<,则()U M C N =I ( ) A .(0,1) B .[0,1] C .[1,)+∞ D .(1,)+∞ 2.已知复数512z i =-+(i 是虚数单位),则下列说法正确的是( ) A .复数z 的实部为5 B .复数z 的虚部为12i C .复数z 的共轭复数为512i + D .复数z 的模为133.已知数列{}n a 为等比数列,且22642a a a π+=,则35tan()a a =( )A 3B .3.3.34.双曲线22221x y a b-=的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为( ) A .54B .5C .54D 55.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =u u u r u u u u r,则()PA PB PC ⋅+u u u r u u u r u u u r等于( )A .49-B .43-C .43D .496.数列{}n a 中,11a =,对任意*n N ∈,有11n n a n a +=++,令1i ib a =,*()i N ∈,则122018b b b ++⋅⋅⋅+=( )A .20171009 B .20172018 C .20182019 D .403620197.若1(1)nx x ++的展开式中各项的系数之和为81,则分别在区间[0,]π和[0,]4n 内任取两个实数x ,y ,满足sin y x >的概率为( )A.11π- B.21π- C.31π- D.128.刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为()A.3π B.3π C.3π D.4π9.某程序框图如图所示,则程序运行后输出的S的值是()A.1008 B.2017 C.2018 D.302510.设p:实数x,y满足22(1)[(22)]x y-+-322≤-q:实数x,y满足111x yx yy-≤⎧⎪+≥⎨⎪≤⎩,则p是q的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要的条件11.已知圆C:22(1)(4)10x y-+-=和点(5,)M t,若圆C上存在两点A,B使得MA MB⊥,则实数t的取值范围是()A .[2,6]-B .[3,5]-C .[2,6]D .[3,5] 12.定义在(0,)2π上的函数()f x ,已知'()f x 是它的导函数,且恒有cos '()sin ()0x f x x f x ⋅+⋅<成立,则有( )A .()()64f ππ>B ()()63f ππ>C .()()63f ππ>D .()()64f ππ>二、填空题:本大题共4小题,每小题5分,共20分. 13.若2sin()45πα-=-,则cos()4πα+= . 14.已知样本数据1a ,2a ,……2018a 的方差是4,如果有2i i b a =-(1,2,,2018)i =⋅⋅⋅,那么数据1b ,2b ,……2018b 的均方差为 . 15.设函数()sin(2)f x x ϕ=+()2πϕ<向左平移3π个单位长度后得到的函数是一个奇函数,则ϕ= .16.函数23()123x x f x x =+-+,23()123x x g x x =-+-,若函数()(3)(4)F x f x g x =+-,且函数()F x 的零点均在[,](,,)a b a b a b Z <∈内,则b a -的最小值为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知向量(cos 2,sin 2)a x x =r ,b =r ,函数()f x a b m =⋅+r r. (1)求()f x 的最小正周期; (2)当[0,]2x π∈时,()f x 的最小值为5,求m 的值.18.如图所示,矩形ABCD 中,AC BD G =I ,AD ⊥平面ABE ,2AE EB BC ===,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求平面BCE 与平面CDE 所成角的余弦值.19.某地一商场记录了12月份某5天当中某商品的销售量y (单位:kg )与该地当日最高气温x (单位:C o)的相关数据,如下表:x11 9 8 5 2 y78 8 1012(1)试求y 与x 的回归方程$$y bxa =+$; (2)判断y 与x 之间是正相关还是负相关;若该地12月某日的最高气温是6C o,试用所求回归方程预测这天该商品的销售量;(3)假定该地12月份的日最高气温2(,)X N μσ:,其中μ近似取样本平均数x ,2σ近似取样本方差2s ,试求(3.813.4)P X <<.附:参考公式和有关数据$1122211()()()nni i iii i nni ii i x y nx y x x y y b x nx x x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑$$,10 3.2≈, 3.2 1.8≈,若2(,)X N μσ:,则()0.6826P X μσμσ-<<+=,且(22)0.9544P X μσμσ-<<+=.20.已知圆C :22(1)8x y ++=,过(1,0)D 且与圆C 相切的动圆圆心为P . (1)求点P 的轨迹E 的方程;(2)设过点C 的直线1l 交曲线E 于Q ,S 两点,过点D 的直线2l 交曲线E 于R ,T 两点,且12l l ⊥,垂足为W (Q ,R ,S ,T 为不同的四个点).①设00(,)W x y ,证明:220012x y +<; ②求四边形QRST 的面积的最小值. 21.已知函数1()1x x t f x e x -+=-,其中e 为自然对数的底数. (1)证明:当1x >时,①1,②1x e x ->;(2)证明:对任意1x >,1t >-,有1()ln )2f x x >+.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l 的参数方程是22x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),圆C 的极坐标方程为2cos()4πρθ=+. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,并切线长的最小值. 23.[选修4-5:不等式选讲]设函数()2f x x a x =-+,其中0a >.(1)当2a =时,求不等式()21f x x ≥+的解集; (2)若(2,)x ∈-+∞时,恒有()0f x >,求a 的取值范围.兰州市2018年高三诊断考试 数学(理科)试题参考答案及评分参考一、选择题1-5: CDADA 6-10: DBBAB 11、12:CC 二、填空题 13. 25-14. 2 15. 3π16. 10 三、解答题17.(1)由题意知:()cos(2,sin 2)f x x x =(3,1)m ⋅+3cos 2sin 2x x m =++2sin(2)3x m π=++,所以()f x 的最小正周期为T π=. (2)由(1)知:()2sin(2)3f x x m π=++,当[0,]2x π∈时,42[,]333x πππ+∈. 所以当4233x ππ+=时,()f x 的最小值为3m -+. 又∵()f x 的最小值为5,∴35m -+=,即53m =+. 18.(1)因为AD ⊥面ABE ,所以AD AE ⊥, 又//BC AD ,所以BC AE ⊥. 因为BF ⊥面ACE ,所以BF AE ⊥.又BC BF B =I ,所以AE ⊥面BCF ,即AE ⊥平面BCE .(2)方法1:因为BF ⊥面ACE ,CE ⊂面ACE ,所以BF CE ⊥,又BC BE =,所以F 为CE 中点,在DEC ∆中,DE CE CD ===DF CE ⊥,BFD ∠为二面角B CE D --的平面角,222cos 2BF DF BD BFD BF DF +-∠=⋅⋅==∴平面BCE 与平面CDE所成角的余弦值为3. 方法2:以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,则相关点的坐标为(0,0,0)E ,(2,0,0)B ,(2,0,2)C ,(0,2,2)D ,设平面BCE 的法向量1n u r ,平面CDE 的法向量为2n u u r ,易知1(0,1,0)n =u r,令2(,,)n x y z =u u r ,则2200n EC n ED ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r,故220220x z y z +=⎧⎨+=⎩,令1x =,得111x y z =⎧⎪=⎨⎪=-⎩,2(1,1,1)n =-u u r , 于是,12cos ,n n <>u r u ur 1212n n n n ⋅==u r u u ru r u ur 3=此即平面BCE 与平面CDE 所成角的余弦值. 19.(1)由题意,7x =,9y =,1ni ii x y nx y =-∑28757928=-⋅⋅=-,221nii x nx =-∑22955750=-⋅=,280.5650b =-=-$,$a y bx =-$9(0.56)712.92=--⋅=. 所以所求回归直线方程为$0.5612.92y x =-+.(2)由0.560b=-<$知,y 与x 负相关.将6x =代入回归方程可得, $0.56612.929.56y =-⋅+=,即可预测当日销售量为9.56kg .(3)由(1)知7x μ≈=, 3.2σ=,所以(3.813.4)P X <<(2)P X μσμσ=-<<+1()2P X μσμσ=-<<+1(22)2P X μσμσ+-<<+0.8185=. 20.解:(1)设动圆半径为r ,由于D 在圆内,圆P 与圆C 内切,则PC r =,PD r =,PC PD +=2CD >=, 由椭圆定义可知,点P 的轨迹E是椭圆,a =1c =,1b ==,E 的方程为2212x y +=.(2)①证明:由已知条件可知,垂足W 在以CD 为直径的圆周上,则有22001x y +=,又因Q ,R ,S ,T 为不同的四个点,220012x y +<. ②解:若1l 或2l 的斜率不存在,四边形QRST 的面积为2. 若两条直线的斜率存在,设1l 的斜率为1k , 则1l 的方程为1(1)y k x =+,解方程组122(1)12y k x x y =+⎧⎪⎨+=⎪⎩,得222(21)4k x k x ++2220k +-=,则QS =,同理得RT =∴12QSRTS QS RT =⋅2222(1)4(21)(2)k k k +=++2222(1)49(1)4k k +≥+169=,当且仅当22212k k +=+,即1k =±时等号成立. 综上所述,当1k =±时,四边形QRST 的面积取得最小值为169.21.解:(1)令()1)m x =,则1'()2m x x =-1)0=-<,()m x 为(1,)+∞上的减函数, 而(1)0m =,所以()ln 1)0m x =<,ln 1<成立;令1()x n x ex -=-,则1'()10x n x e -=->,()n x 为(1,)+∞上的增函数,而(1)0n =,所以1()0x n x e x -=->,1x e x ->成立.(2)1()ln )2f x x >+,即11x x t e x -+-1ln )2x >+=+,由(1)1<,所以1+,ln+x <=,所以,只需证11x x t x e x -+<-,即12()x x t e x x -+>-, 由(1)1x ex ->,所以只需证2()x x t x x +>-,只需证1x t x +>-,即1t >-,上式已知成立,故原式成立,得证. 22.解:(1)∵ρθθ=-,∴2cos sin ρθθ=,∴圆C的直角坐标方程为220x y ++=,即22()(122x y -++=,∴圆心直角坐标为(22-. (2)方法1:直线l 上的点向圆C 引切线长是==≥, ∴直线l 上的点向圆C引的切线长的最小值是. 方法2:直线l的普通方程为0x y -+=,∴圆心C 到直线l|5=,∴直线l 上的点向圆C=23.解:(1)当2a =时,2221x x x -+≥+, 所以21x -≥,所以3x ≥或1x ≤, 解集为(,1][3,)-∞+∞U .(2)3,(),x a x a f x x a x a -≥⎧=⎨+<⎩,因为0a >,∴x a ≥时,320x a a -≥>恒成立,又x a <时,当2x >-时,2x a a +>-+,∴只需20a -+≥即可,所以2a ≥.。