七年级上学期期末数学检测题(三)
- 格式:doc
- 大小:85.00 KB
- 文档页数:2
A. B. C.3.以下列线段A.,1a =b =A.B C ∠=∠8.下列尺规作图求作BC A.B.C. 9.如图,AD 是ABC △DAE ∠A. B.10︒10.如图,AD 是的中线,ABC △图中阴影部分的面积为()A.4B.5A. B.C.D.12.从地面竖直向上抛射一小球.在落地前,小球向上的速度v )是运动时间t 16.如图,是等边三角形,ABC △17.如图所示,正方形ABGF 以AD 为直径的半圆的面积是18.如图,在纸片中,Rt ABC △式折叠,使点A 恰好落在斜边三、解答题:(本大题共7个小题,满分78分,解答应写出文字说明、证明过程或演算步骤.)(1)在平面直角坐标系中画出△(2)请画出关于y 轴对称的ABC △(3)已知P 为x 轴上一点,若△21.(10分)如图,已知AB 是线段,.试求30CEF ∠=︒2CF =CED △22.(10分)已知中,ABC △点B ,C 位于l 的同一侧,若∠23.(12分)某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:①测得水平距离BC 的长为15米.(1)求的度数;ABC ∠(2)求线段DE 的长度.25.(14分)如图,反映了某公司产品的销售收入与销售量的关系,1l 售成本与销售量的关系,观察图象,回答下列问题(1)当销售量为6吨时,销售收入为为______元;(2)当销售量每增加1吨,销售收入增加(3)设点P 的坐标为,(),0m 则,2BP m =-∴,12142ABP S m =-⨯=△∵,∴,……8分30CEF ∠=︒24CE CF ==∴,4CE DE ==∴,即的周长为12.……10分44412DE DC EC ++=++=CED △22.证明:∵,ADB BAC ∠=∠∴,……2分ADB BAD BAC BAD ∠+∠=∠+∠∵,,180ADB BAD ABD ∠+∠=︒-∠180BAC BAD CAE ∠+∠=︒-∠∴,……6分180180ABD CAE ︒-∠=︒-∠∴,ABD CAE ∠=∠在和中,ABD △CAE △,ADB CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴.……8分()ABD CAE AAS △≌△∴.……10分AD CE =23.解:(1)在中,,,,Rt ABC △90ACB ∠=︒15BC =17AB =由勾股定理得:,222217158AC AB BC =-=-=则;……6分8 1.79.7AD AC CD =+=+=(2)风筝沿DA 方向再上升12米后,风筝的高度为20米,则此时风筝线的长为:(米),22201525+=(米),25178-=答:他应该再放出8米线.……12分24.解:(1)∵,,∴,AD CE ⊥BE CE ⊥ADC CEB ∠=∠∵,∴,90ACB ∠=︒90ACD BCE ∠+∠=︒∵,∴,……3分90CBE BCE ∠+∠=︒ACD CBE ∠=∠∵,BE CD =在和中,ABC △DEF △,ADC CEB CD BEACD CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴,∴,()ABC DEF ASA △≌△AC BC =∵,∴……6分90ACB ∠=︒45ABC ∠=︒(2)∵,,.90ADC ∠=︒5CD =13AC =∴,12AD =∵,∴,ABC DEF △≌△12CE AD ==∴.……10分1257DE CE CD =-=-=25.解:(1)通过图象观察可以得出,当时,对应的与的交点是,与的交点是,6x =1l ()6,60002l ()6,5000∴当销售量为6吨时,销售收入6000元,销售成本为5000元,∴销售利润为:销售收入-销售成本元.600050001000=-=故6000,5000,1000;……6分(2)从图象观察可以得出:当销售量每增加1吨,销售收入增加1000元;产品未销售时,销售成本为2000元;故1000;2000;……10分(3)设的解析式为:,由图象,得1l 11y k x =,解得,140004k =11000k =的解析式为:,1l 11000y x =设的解析式为,由图象,得2l 222y k x b =+,解得:,222200044000b k b =⎧⎨+=⎩225002000k b =⎧⎨=⎩故的解析式为:,……12分2l 25002000y x =+设销售利润为w 元,则有:.()12100050020005002000w y y x x x =-=-+=-故利润与销售量间的函数关系表达式为.……14分5002000w x =-。
2023~2024学年度第一学期学业水平终期评价七年级数学(人教版)2024.1注意事项:1.本次评价满分100分,时间为90分钟.2.答卷前,务必在答题卡上用0.5mm 黑色字迹的签字笔填写自己的学校、班级、姓名及考生号,并用2B 铅笔把对应考生号的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题必须用0.5mm ,黑色字迹签字笔作答;答案必须写在答题卡各题指定区域内的相应位置上;不准使用涂改液,涉及作图的题目,用2B 铅笔画图,答在试卷上无效.4.必须保持答题卡的整洁,不要折叠答题卡.一、选择题(本大题有12个小题,每题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图1,同时经过P 、Q 两点可以画()直线A.一条B.两条C.三条D.无数条2.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:),则下列信号最强的是A. B. C. D.3.根据语句“直线与直线相交,点M 在直线上,直线不经过点M .”画出的图形正确的是A. B.C.D.4.将方程移项后,正确的是A. B.C. D.5.如图2,A ,B 是两个海上观测站,A 在灯塔O 北偏东40°方向上,,则B 在灯塔O的dBm 50-60-70-80-1l 2l 1l 2l 37322x x +=-32327x x -=+32327x x +=-32327x x -=-32327x x +=+110AOB ∠=︒A.南偏东30°方向B.南偏东40°方向C.南偏东50°方向D.南偏东60°方向6.下列计算结果错误的是A. B.C. D.7.如图3,“若,则.”这是根据A.同角的补角相等B.同角的余角相等C.等角的补角相等D.等角的余角相等8.夕夕总结了以下结论,不正确的是A. B.C. D.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是A. B.C. D.10.如图4,是一无盖长方体盒子的展开图,则无盖长方体的容积为A.4B.6C.8D.122226++=2222--=-2228⨯⨯=2222÷÷=90AOC BOD ∠=∠=︒12∠=∠a b b a +=+()()ab c a bc =()a b c ab ac+=+()a b c a b a c÷+=÷+÷()221627x x =-()162227x x =-()2162227x x ⨯=-()2221627x x ⨯=-11.一个正两位数M ,它的个位数字是a ,十位数字比个位数字大3,把M 十位上的数字与个位上的数字交换位置得到一个新两位数N ,则的值总能A.被3整除B.被9整除C.被11整除D.被22整除12.如图5,是一条拉直的细线,A 、B 两点在上,,.若先固定B 点,将折向,使得重叠在上,如图6,再从图6的A 点及与A 点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比是A. B. C. D.二、填空题(本大题有4个小题,每小题3分,共12分)13.北京故宫的占地面积约为,将720000用科学记数法表示为______________.14.已知方程与的解相同,则k 的值为______________.15.比较大小:_______24.5°,(填“<”或“>”或“=”)16.关于x 的方程的解为正整数,其中m 是正整数.则m 的值为______________.三、解答题(本大题有8道小题,共64分)17.(本小题满分8分)(1)计算:(2)计算:18.(本小题满分5分)解方程:19.(本小题满分6分)先化简,再求值:,其中,.20.(本小题满分6分)如图7,A ,B ,C 三点在同一直线上,点D 在的延长线上,且.(1)用圆规在图中确定D 点的位置,保留作图痕迹;(2)若点B 是线段的三等分点且靠近点A ,,求的长.21.(本小题满分9分)某中学七年级一班有44人,一次数学活动中分为四个组,第一组有a 人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.M N +OP OP :1:3OA AP =:3:5OB BP =OB BP OB BP 1: 1:11: 1:21: 2:21: 2:52720000m 7236x x +=-1x k -=2425'︒26x m +=()()()13749---++-()()232363-⨯--÷321163x x --=-()()2222322x y xy xy xy ---2x =1y =-AC CD AB =AC 12AC =AD(1)求第四组的人数;(用含a 的代数式表示)(2)夕夕通过计算发现:“第一组不可能有12人.”你同意她的答案吗?请说明理由.22.(本小题满分10分)下表为某市居民每月用水收费标准,(单位:元/).用水量单价a超出部分(1)某用户用水8立方米,共交水费18.4元,求a 的值;(2)在(1)的前提下,该用户3月份交水费29.1元,请问该用户用水多少立方米.23.(本小题满分9分)如图8,点O 为直线上一点,,平分.(1)求的度数;(2)作射线,若与互余,求的度数.24.(本小题满分11分)如图9,数轴上摆放着两根木棒m 、n ,木棒的端点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,已知,,.若木棒m 、n 分别以4个单位长度/s 和3个单位长度/s 的速度同时沿x轴正方向移动,设平移时间为.(1)求b 和c 的值;(2)平移过程中,原点O 恰好是木棒m 的中点时,求t 的值;(3)平移过程中,木棒m 、n 重叠部分的长为2个单位长度时,求t 的值;(4)直接写出木棒m 、n 重叠部分的长为4个单位长度时的时长.2023~2024学年度第一学期学业水平终期评价七年级数学参考答案3m 10x ≤0.75a +AB 130BOC ∠=︒OM AOC ∠AOM ∠OP BOP ∠AOM ∠COP ∠5a =-8d =()2130b c ++-=()t s说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分参考按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.一、选择题(本大题有12个小题,每小题2分,共24分)题号123456789101112答案AACBADBDDCCB二、填空题(本大题有4个小题,每小题3分,共12分)13.; 14.; 15.<; 16.2或4.三、解答题(本大题有8个小题,共64分)17.解:(1)原式,;(2)原式,.18.解:去分母得:,去括号得:,移项合并得:,解得:.19.解:原式,,当,时,原式,.20.解:(1)如图1;(2)∵点B 是线段的三等分点,,∴,∵,∴,∴.21.解:(1)由题得:第二组的人数为:,第三组的人数为:,所以第四组的人数为:,;57.210⨯3-13749=-++-11=-()9212=⨯--30=()32621x x -=--32622x x -=-+510x =2x =22226322x y xy x y xy =--+224x y xy =-2=1y =-()()2242121=⨯⨯--⨯-18=-AC 12AC =1112433AB AC ==⨯=CD AB =4CD =12416AD AC CD =+=+=152a +135522a a a ++=+13445522a a a ⎛⎫⎛⎫--+-+⎪ ⎪⎝⎭⎝⎭343a =-答:第四组的人数为人.(2)同意,当时,第四组的人数为:,不符合题意,所以第一组不可能有12人,即夕夕发现是正确的.22.解:(1)由题得:,解得:,答:a 的值为2.3;(2)设用户用水量为x 立方米,∵当用水10立方米时,水费为:,∴,∴,解得:,答:该用户用水12立方米.23.解:(1)∵,∴,∵是的平分线,∴;(2)由(1)知,∵与互余,∴,∴,①当射线在内部时(如图2-1),;②当射线在外部时(如图2-2),,综上所述,的度数为65°或165°.24.解:(1)∵,()343a -12a =343122-⨯=-818.4a = 2.3a =10 2.32329.1⨯=<10x >()()10 2.310 2.30.7529.1x ⨯+-⨯+=12x =130BOC ∠=︒180********AOC BOC ∠=-∠=-︒=︒︒︒OM AOC ∠11502522AOM AOC ∠=∠=⨯︒=︒25AOM ∠=︒BOP ∠AOM ∠90BOP AOM ∠+∠=︒90902565BOP AOM ∠=︒-∠=︒-︒=︒OP BOC ∠1306565COP BOC BOP ∠=∠-∠=︒-︒=︒OP BOC ∠36036013065165COP BOC BOP ∠=︒-∠-∠=︒-︒-︒=︒COP ∠()2130b c ++-=∴,,∴,;(2)木棒m 一半的长:,平移前木棒m 的中点到原点O 的距离:,∴;(3)①当木棒m 在n 后面时,根据题意,得,解得,②当木棒m 在n 前面时,根据题意,得,解得,综上所述,或.(4)10b +=30c -=1b =-3c =()1522---÷=⎡⎤⎣⎦213+-=34t s =4342t t -=+6t =43132t t -=-11t =6s t =11s 1s。
浙江省温州市苍南县2018-2019学年度七年级上学期期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣22.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×10103.8的立方根为()A. B.C.2 D.±24.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=05.与无理数最接近的整数是()A.5 B.6 C.7 D.86.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3C.4x4y D.x2y27.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是.12.已知∠1=30°,则∠1的补角的度数为度.13.若x﹣3与1互为相反数,则x=.14.用代数式表示“a的2倍与b的的和”.15.计算:(﹣)×(﹣6)=.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是.(直接写出答案)23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.浙江省温州市苍南县2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣2【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 600 000 000用科学记数法表示为:4.6×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.8的立方根为()A. B.C.2 D.±2【考点】立方根.【专题】计算题.【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.4.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=0【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、x+1是代数式,故A错误;B、3x+2y=2是二元一次方程,故B错误;C、3x﹣3=4x﹣4是一元一次方程,故C正确;D、x2﹣6x+5=0是一元二次方程,故D错误;故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.与无理数最接近的整数是()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:<<,得49与51接近,与无理数最接近的整数是7,故选:C.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大是解题关键.6.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3C.4x4y D.x2y2【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得答案.【解答】解:A、字母项相同且相同字母的指数也相同,故A正确;B、相同字母的指数不同,故B错误;C、相同字母的指数不同,故C错误;D、相同字母的指数不同,故D错误;故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b【考点】实数与数轴.【分析】根据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得a<﹣1,0<b<1.A、﹣b<0,故A错误;B、﹣a>0是正数,故B正确;C、a﹣b<a<0,故C错误;D、a+b<0,故D错误;故选:B.【点评】本题考查了实数与数轴,利用点的坐标得出a、b的值是解题关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人【考点】一元一次方程的应用.【分析】设男生有x人,女生有人,根据男生每人种3棵,女生每人种2棵,共种了52棵树苗,求出男生和女生的人数,再两者相减即可得出答案.【解答】解:设男生有x人,女生有人,根据题意得:3x+2=52,解得:x=12,女生的人数是:20﹣12=8人,则其中男生人数比女生人数多12﹣8=4(人);故选D.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31【考点】两点间的距离.【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,可以解答本题.【解答】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,线段AB的长度是一个正整数,AB>CD,∴当AB=8时,3AB+CD=3×8+2=26,当AB=9时,3AB+CD=3×9+2=29,当AB=10时,3AB+CD=3×10+2=32.故选B.【点评】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是4.【考点】绝对值.【专题】计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知∠1=30°,则∠1的补角的度数为150度.【考点】余角和补角.【专题】计算题.【分析】若两个角的和等于180°,则这两个角互补.根据已知条件直接求出补角的度数.【解答】解:∵∠1=30°,∴∠1的补角的度数为=180°﹣30°=150°.故答案为:150.【点评】本题考查了补角的定义,解题时牢记定义是关键.13.若x﹣3与1互为相反数,则x=2.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣3+1=0,解得:x=2,故答案为:2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.用代数式表示“a的2倍与b的的和”.【考点】列代数式.【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求倍数,然后求和.【解答】解:用代数式表示“a的2倍与b的的和”为:,故答案为:【点评】此题考查代数式问题,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.15.计算:(﹣)×(﹣6)=﹣1.【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣4+3=﹣1,故答案为:﹣1【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于5.【考点】代数式求值.【分析】根据题意得出x﹣4y=3,再变形后代入求出即可.【解答】解:根据题意得:x﹣4y=3,所以2x﹣8y﹣1=2(x﹣4y)﹣1=2×3﹣1=5,故答案为:5.【点评】本题考查了求代数式的值的应用,能整体代入是解此题的关键.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是72°.【考点】对顶角、邻补角;角平分线的定义.【分析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,∠AOE=144°,可求∠BOE,从而可求∠BOD,根据对顶角的性质即可得到结论.【解答】解:∵AB、CD相交于O,∴∠AOC与∠DOB是对顶角,即∠AOC=∠DOB,∵∠AOE=144°,∴∠BOE=180°﹣∠AOE=36°,又∵OE平分∠BOD,∠BOE=30°,∴∠BOD=2∠BOE=2×36°=72°,∴∠BOD=∠AOC=72°,故答案为:72°.【点评】本题主要考查对顶角的性质以及角平分线的定义、邻补角,解决本题的关键是求出∠BOE.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是64cm.【考点】列代数式.【专题】应用题.【分析】设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,根据图示可得两块阴影部分长的和为20cm,宽表示为(16﹣3y)cm和(16﹣x)cm,再求周长即可.【解答】解:设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.【点评】此题主要考查了列代数式,关键是正确理解题意,根据图示表示出阴影部分的长和宽.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及算术平方根运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=3﹣1+5=8﹣1=7;(2)原式=2+9×(﹣)=2+(﹣3)=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣8=1﹣x,移项合并得:3x=9,解得:x=3;(2)去分母得:2x+3x﹣6=6,移项合并得:5x=12,解得:x=2.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a﹣2ab+2ab﹣b﹣a=a﹣b,当a=3,b=﹣2时原式=3﹣(﹣2)=3+2=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)【考点】垂线;角平分线的定义.【分析】(1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,由平角的定义可得5x+90°﹣2x=180°,解得x,即得结果.【解答】解:(1)∵∠DOF=25°,OF平分∠COD,∴∠DOC=50°,∵OB⊥OD,∴∠BOC=90°﹣50°=40°,∵OA⊥OC,∴∠AOB=90°﹣∠BOC=50°;(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,∴∠COD=∠AOB,设∠DOF=∠COF=x,∵OA平分∠BOE,∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,∴5x+90°﹣2x=180°,解得:x=30°,即∠DOF=30°.故答案为:30°.【点评】本题主要考查了角平分线的定义和垂直的定义,利用定义得出各角的度数是解答此题的关键.23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处31人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有6个.【考点】一元一次方程的应用.【分析】(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数,根据等量关系列出方程,再解即可;(2)设调往甲处x人,则调往乙处(70﹣x)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×2,根据等量关系列出方程,再解即可;(3)设调往甲处z人,则调往乙处(70﹣z)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×n,根据等量关系列出方程,再求出整数解即可.【解答】解:(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得:14+y=6+(70﹣y),解得:y=31,故答案为:31;(2)解:设调往甲处x人,则调往乙处(70﹣x)人,由题意得:14+x=2(6+70﹣x),解得:x=46成人数:70﹣46=24(人),答:应调往甲处46人,乙处24人.(3)设调往甲处z人,则调往乙处(70﹣z)人,列方程得14+z=n(6+70﹣z),14+z=n(76﹣z),n=,解得:,,,,,,共6种,故答案为:6.【点评】此题主要考查了一元一次方程的应用以及二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为2.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题;压轴题;存在型;数形结合;分类讨论;方程思想;一次方程(组)及应用.【分析】(1)结合图形,表示出AP、AQ的长,可得PQ;(2)当P,Q两点第一次重合时,点P运动路程+点Q运动路程=AB的长,列方程可求得;(3)点Q落在线段AP的中点上有以下三种情况:①点Q从点B出发未到点A;②点Q到达点A 后,从A到B;③点Q第一次返回到B后,从B到A,根据AP=2AQ列方程可得.【解答】解:(1)根据题意,当x=3时,P、Q位置如下图所示:此时:AP=3,BQ=3×3=9,AQ=AB﹣BQ=10﹣9=1,∴PQ=AP﹣AQ=2;(2)设x秒后P,Q第一次重合,得:x+3x=10解得:x=2.5,∴BQ=3x=7.5;(3)设x秒后,点Q恰好落在线段AP的中点上,根据题意,①当点Q从点B出发未到点A时,即0<x<时,有x=2(10﹣3x),解得;②当点Q到达点A后,从A到B时,即<x<时,有x=2(3x﹣10),解得x=4;③当点Q第一次返回到B后,从B到A时,即<x<10时,有x=2(30﹣3x),解得;综上所述:当x=或x=4或x=时,点Q恰好落在线段AP的中点上.故答案为:(1)2.【点评】本题考查了数轴、一元一次方程的应用,解答(3)题,对x分类讨论是解题关键,属中档题.。
人教版度七年级数学上册期末检测试题及答案一、选择题1.下列运算正确的是() A .7259545--⨯=-⨯=- B .54331345÷⨯=÷= C .3(2)(6)6--=--=D .12(25)12(3)4÷-=÷-=-2.如图,数轴上表示数2的相反数的点是()A .点NB .点MC .点QD .点P3.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作() A .C 13︒-B .10C ︒-C .7C ︒-D .C 7︒+4.若8m x y 与36n x y 的和是单项式,则m n +的值为( ) A .-4B .3C .4D .85.若多项式22229(93)x y ax y -+--+的值与x 的取值无关,则(2)a -的值为() A .0B .1C .4-D .46.已知1639n x y 与41232m x y 的和是单项式,则m n +的值是() A .5B .6C .7D .87.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折; (3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款( ) A .288元 B .332元 C .288元或316元D .332元或363元8.我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,C .13x +4=14x +1 D .13x ﹣4=14x ﹣1 9.某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨价格为 2 元,当用水超过 4吨而不超过 7 吨时,超过部分每吨水的价格为 3 元,当用水超过 7 吨时,超过部分每吨水的价格为5 元,李老师 10 月份付了水费 32 元,则李老师用水吨数为( )A .7B .10C .11D .1210.如图,AOB ∠,以OB 为边作BOC ∠,使2BOC AOB ∠=∠,那么下列说法正确的是( )A . 3AOC AOB ∠=∠ B .AOB AOC ∠=∠或3AOC AOB ∠=∠ C .AOC BOC ∠>∠D . AOC AOB ∠=∠二、填空题 11.计算111112612209900++++⋯+的值为__________________. 12.已知2241A x ax y =+-+,234B x x by =++-,且对于任意有理数x 、y ,代数式2A B -的值不变,则ab 的值是_______.13.磁器口古镇,被赞誉为“小重庆”,磁器口的陈麻花更是重庆标志性名片之一.磁器口某门店从陈麻花生产商处采购了原味、麻辣、巧克力三种口味的麻花进行销售,其每袋进价分别是10元,12元,15元,其中原味与麻辣味麻花每袋的销售利润率相同,原味与巧克力味麻花每袋的销售利润相同.经统计,在今年元旦节当天,该门店这三种口味的麻花销量是2:3:2,其销售原味与巧克力味麻花的总利润率是40%,且巧克力味麻花销售额比原味麻花销售额多1000元,则今年元旦节当天该门店销售这三种口味的麻花的利润共_____元.14.小明沿街道匀速行走,他注意到每隔6分钟从背后驶过一辆1路公交车,每隔4分钟迎面驶来一辆1路公交车.假设每辆1路公交车行驶速度相同,而且1路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________ 分钟. 15.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.三、解答题 16.计算:(3)-27+(-32)+(-8)+72 (4)3222(4)(133⎡⎤-+---⨯⎣⎦)17.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____; (2)数轴上表示x 和﹣2的两点A 和B 之间的距离是_____;如果|AB|=4,则x 为_____; (3)当代数式|x+1|+|x ﹣2|+|x ﹣3|取最小值时,x 的值为_____.18.先化简,再求值(1)2(x 2-5xy)-3(x 2-6xy),其中x=-1,y=12.(2)()222231052xy x y xy yx ⎡⎤--+⎣⎦,其中x = 1010,y= -12.19.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数m ',记22()1111m m F m '+=为“双子数”m 的“双11数”.例如,1313m =,3131m '=,则2131323131(1313)81111F ⨯+⨯==.(1)计算2424的“双11数”(2424)F =______;(2)若“双子数”m 的“双11数”的()F m 是一个完全平方数,求()F m 的值;(3)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b ≤<≤,19c ≤≤,19d ≤≤,c d ≠且a 、b 、c 、d 都为整数,若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()2()(432)0F p F q a b d c +-+++=,令(,)101p qG p q -=,求(,)G p q 的值.20.甲、乙两个玩具的成本共300元,商店老板为获取利润,并快速出售玩具,决定甲玩具按60%的利润率标价出售,乙玩具按50%的利润率标价出售.在实际出售时,应顾客要求,两个玩具均按标价9折出售,这样商店共获利114元. (1)求甲、乙两个玩具的成本各是多少元?(2)商店老板决定投入1000元购进这两种玩具,且为了吸引顾客,每个玩具至少购进1个,那么可以怎样安排进货?21.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数. (1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.22.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)针对居民用水浪费现象,市政府将向每个家庭收取污水处理费,按每立方米1元收费.此外,市政府还将向市民收取自来水费,收费标准为:规定每个家庭每月的用水量不超过10立方米,则按每立方米2.5元收费;超过10立方米的部分,按每立方米3.2元收费.若我市某家庭某月用水量为x 立方米,产生的污水量也为x 立方米,则这个家庭在该月应缴纳的水费(包括污水处理费)W 1为多少钱?(用含x 的代数式表示)(2)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:不再收取污水处理费,每天6:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日6:00为用水低谷期,水价可定为每立方米3.2元,若某家庭高低峰时期都有用水,且高峰期的用水量比低谷期多20%.设这个家庭这个月用水低谷期的用水量为y 立方米,请计算该家庭在这个月按照此方案应缴纳的水费W 2为多少钱?(用含y 的代数式表示)(3)若某三口之家按照(1)问中的方案与(2)问中的方案所交水费都为392元,请计算表示哪种方案下的用水量较少?23.如图所示,两条直线AB ,CD 相交于点O ,且AOC AOD ∠=∠,射线OM (与射线OB 重合)绕点O 按逆时针方向旋转,速度为15/s ︒,射线ON (与射线OD 重合)绕点O 按顺时针方向旋转,速度为12/s ︒.两射线OM ,ON 同时运动,运动时间为()t s .(本题出现的角均指小于平角的角)(1)图中一定有________个直角;当3t =时,MON ∠的度数为________,BON ∠的度数为________MOC ∠的度数为________.(2)当012t <<时,若360AOM AON ︒∠=∠-,试求出t 的值. (3)当06t <<时,探究72COM BONMON∠+∠∠的值:在t 满足怎样的条件时是定值;在t 满足怎样的条件时不是定值.参考答案1.D2.A3.B4.C5.D6.D7.C8.A9.B10.B 11.9910012.-12 13.3800 14.4.8 15.4°或100°. 16.(1) 4;(2)113-;(3) 5;(4)32. 17.(1)56(2)|x+2|2或﹣6(3)2 18.(1)28x xy -+,-5;(2)28xy ,4020 19.(1)12;(2)4或16或36;;(3)51或17.20.(1)甲玩具的成本是100元,乙玩具的成本是200元;(2)购进乙玩具1个,购进甲玩具8个. 21.(1)1a =-,b=5,c=-2,数轴作图略;(2)6秒;(3)-3或7,22.(1)用水量不超过10立方米,应缴纳的水费3.5x ,用水量超过10立方米,应缴纳的水费4.2x ﹣7;(2)W 2=3.2y +4×(1+20%)y =8y ;(3)问题(2)中的方案下的用水量较少 23.(1)4,171︒,126︒,45︒;(2)107或10;(3)当1003t <<时,72COM BONMON ∠+∠∠不是定值,当1063t <<时,72COM BONMON∠+∠∠是定值,定值是3。
2022-2023学年七年级上学期数学期末检测试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.32.(3分)单项式x2yz2的次数为()A.B.6C.5D.33.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×1066.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.20229.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是.12.(4分)比较大小:﹣﹣.(用“>”“=”或“<”连接)13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=.14.(4分)已知a2+a=3,则2a2+2a+2020的值为.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要根火柴棍,第n个图形需要根火柴棍.三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE 的度数是.(直接写出结果)25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动秒追上点R,此时点P在数轴上表示的数是.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.3【解答】解:﹣是分数,且小于0,是负分数,故选:C.2.(3分)单项式x2yz2的次数为()A.B.6C.5D.3【解答】解:单项式的次数是:2+1+2=5.故选:C.3.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线【解答】解:2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是两点之间,线段最短,故选:B.4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c【解答】解:A、由3m﹣1=5得到3m=5+1,故A符合题意;B、由3x=﹣6得到x=﹣2,故B不符合题意;C、由ac=bc(c≠0)得到a=b,故C不符合题意;D、由a=b得到a+c=b+c,故D不符合题意;故选:A.5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×106【解答】解:36000000=3.6×107.故选:A.6.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y【解答】解:个位数字是y,十位数字是x,这个两位数可表示为10x+y.故选:D.7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“志”相对的字是“事”;“者”相对的字是“成”;“有”相对的字是“竟”.故选:A.8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2022=(﹣2+1)2022=1.故选:B.9.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)【解答】解:根据题意得20×0.8x=25(x﹣27).故选:B.10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2【解答】解:∵3AB=6,∴AB=2,∵B为原点,A,B,C三点在数轴上从左向右排列,∴点A在原点左侧,∴点A表示的数是﹣2,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是﹣2022.【解答】解:2022的相反数是:﹣2022.故答案为:﹣2022.12.(4分)比较大小:﹣>﹣.(用“>”“=”或“<”连接)【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=﹣2.【解答】解:把x=2代入方程得6﹣10=2a,解得a=﹣2.故答案是:﹣2.14.(4分)已知a2+a=3,则2a2+2a+2020的值为2026.【解答】解:当a2+a=3,2a2+2a+2020=2(a2+a)+2020=2×3+2020=6+2020=2026.故答案为:2026.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是115°.【解答】解:∵∠AOC=∠DOE=90°,∠AOE=65°,∴∠AOD=∠DOE﹣∠AOE=90°﹣65°=25°,∴∠COD=∠AOC+∠AOD=90°+25°=115°,故答案为:115°.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要9根火柴棍,第n个图形需要(2n+1)根火柴棍.【解答】解:设第n个图形需要a n(n为正整数)根火柴棒,观察发现规律:第1个图形需要火柴棍:3=1×2+1,第2个图形需要火柴棍:5=2×2+1;第3个图形需要火柴棍:7=3×2+1,第4个图形需要火柴棍:4×2+1=9,……,∴第n个图形需要火柴棍:2n+1.故答案为:9,(2n+1).三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.【解答】解:(1)原式=×(﹣63)﹣×(﹣63)﹣×(﹣63)=﹣7+18+12=23;(2)原式=﹣4×(﹣)﹣(﹣27)÷9=3+3=6.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.【解答】解:(1)6﹣3x=2(2﹣x),去括号,得6﹣3x=4﹣2x,移项,得2x﹣3x=4﹣6,合并同类项,得﹣x=﹣2,系数化为1,得x=2;(2)﹣1=,去分母,得3(3x﹣1)﹣6=2(4x﹣7),去括号,得9x﹣3﹣6=8x﹣14,移项,得9x﹣8x=3+6﹣14,合并同类项,得x=﹣5.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.【解答】解:3ab﹣2(ab﹣a2b)﹣3a2b=3ab﹣2ab+3a2b﹣3a2b=ab,当a=2,b=﹣1时,原式=2×(﹣1)=﹣2.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).【解答】解:从正面看从左面看从上面看21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.【解答】解:(1)10×5+(﹣0.25+0.15﹣0.05+0.2﹣0.1﹣0.2﹣0.1+0.05+0+0.1)=50+(﹣0.2)=49.8(千克),答:这10箱红阳猕猴桃的质量为49.8千克;(2)49.8÷10=4.98(千克),答:这10箱红阳猕猴桃的平均质量为4.98千克.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=2a﹣b.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.【解答】解:(1)由作图可知,AD=2a,DB=b,∴AB=AD﹣DB=2a﹣b.故答案为:2a﹣b;(2)∵E为线段AC的中点,F为线段BD的中点,a=10,b=8,∴AE=AC=a=5,FD=BD=b=4,由(1)可知,AD=2a=20,∴EF=AD﹣AE﹣DF=20﹣5﹣4=11.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?【解答】解:设计划调配36座的新能源客车x辆,则该校七年级共有(36x+2)名学生,根据题意得:36x+2=22(x+4)﹣2,解得:x=6,∴36x+2=36×6+2=218.答:计划调配36座的新能源客车6辆,该校七年级共有218名学生.24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE的度数是45°.(直接写出结果)【解答】解:(1)∵∠BOC=30°,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=30°+90°=120°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×120°=60°,∠COE=∠BOC=×30°=15°,∴∠DOE=∠COD﹣∠COE=60°﹣15°=45°;即∠DOE的度数是45°;(2)45°,理由如下:∵∠BOC=α,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=α+90°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×(α+90°)=α+45°,∠COE=∠BOC=α,∴∠DOE=∠COD﹣∠COE=α+45°﹣α=45°.故答案为:45°.25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.【解答】解:(1)0.5×220+0.55×(420﹣220)+0.8×(450﹣420)=0.5×220+0.55×200+0.8×30=110+110+24=244(元).答:小明家八月份应交244元电费;(2)根据题意得:该户居民该月应交电费0.5×220+0.55(a﹣220)=(0.55a﹣11)元.(3)根据题意得:0.55a﹣11=176,解得:a=340.答:小刚家该月用电340度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动3秒追上点R,此时点P在数轴上表示的数是2.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?【解答】解:(1)设点P、R运动时间是t秒,则运动后P表示的数是﹣4+3t,R运动后表示的数是2+t,根据题意得:﹣4+3t=2+t,解得t=3,∴点P运动3秒追上点R,此时点P在数轴上表示的数是﹣4+3×3=5,故答案为:3,5;(2)当点P、R运动时间为t秒时,点P在数轴上表示的数是﹣4+2t,点Q在数轴上表示的数是2﹣t,根据题意得:|(﹣4+2t)﹣(2﹣t)|=4,化简得:3t﹣6=4或3t﹣6=﹣4,解得t=或t=,答:当t=秒或秒时,点P、R两点间的距离为4个单位.。
2022-2023年青岛版数学七年级上册期末考试测试卷及答案(一)一.单选题(共10题;共30分)1.一轮船从A地到B地需7天,而从B地到A地只需5天,则一竹排从B地漂到A地需要的天数是()A. 12B. 35C. 24D. 472.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. ﹣2xy2B. 3x2=C. 2xy3D. 2x33.下列各式计算正确的是()A. ﹣2a+5b=3abB. 6a+a=6a2C. 4m2n﹣2mn2=2mnD. 3ab2﹣5b2a=﹣2ab24.由方程组,可以得到x+y+z的值等于()A. 8B. 9C. 10D. 115.下列代数式书写规范的是()A. a×2B. 2aC. (5÷3)aD. 2a26.下列计算中,正确的是()A. ﹣2(a+b)=﹣2a+bB. ﹣2(a+b)=﹣2a﹣b2C. ﹣2(a+b)=﹣2a﹣2bD. ﹣2(a+b)=﹣2a+2b7.若x=1是关于x的方程ax+1=2的解,则a是()A. 1B. 2C. -1D. -28.甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的航速与水速分别是()A. 24千米/时,8千米/时B. 22.5千米/时,2.5千米/时C. 18千米/时,24千米/时D. 12.5千米/时,1.5千米/时9.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.则这款空调每台的进价()A. 1000B. 1100C. 1200D. 130010.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x人到甲队,列出的方程正确的是()A. 272+x=(196﹣x)B. (272﹣x)=196﹣xC. (272+x)=196﹣xD. ×272+x=196﹣x二.填空题(共8题;共24分)11.单项式a2b4c的系数是________ ,次数是_______12.如果x﹣y=3,m+n=2,则(x+m)﹣(y﹣n)的值是_______13.观察下列图形,若将一个正方形平均分成n2个小正方形,则一条直线最多可穿过________个小正方形14.已知一个两位数M的个位上的数字是a,十位上的数字是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则3M﹣2N=________(用含a和b的式子表示).15.某市出租车收费标准为:起步价为7元,3千米后每千米的价格为1.5元,小明乘坐出租车走了x千米(x>3),则小明应付________元.16.方程x+5= (x+3)的解是________.17.若x=﹣1是关于x的方程2x+3m﹣1=0的解,则m=________.18.某班发放作业本,若每人发4本,则还余12本;每人发5本,则还少18本,则该班有学生________人.三.解答题(共6题;共42分)19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)20.﹣7(7y﹣5)21.父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?22.说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab;(4)a2﹣b2.23.用方程描述下列实际问题中数量之间的相等关系:妈妈给小明25元钱,要他买每个2元和每个3元的面包共11个,小明该买这两种面包各几个?24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?参考答案:一.单选题1.B2.D3.D4.A5.D6.C7.A8.9.C 10.C二.填空题11.35π;7 12.5 13.(2n﹣1) 14.﹣17a+28b 15.(1.5x+2.5) 16.x=﹣7 17.1 18.30三.解答题19.解:(1)原式=5a2﹣5a2+3ab﹣2ab﹣4=.0+ab﹣4=ab﹣4(2)原式=﹣x+4x﹣4﹣9x﹣15=﹣6x﹣1920.解:﹣7(7y﹣5)=﹣49y+35.21.解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升一千米,温度降低6摄氏度,可得解析式为t=20﹣6h;(3)由表可知,距地面5千米时,温度为零下10摄氏度;(4)将t=6代入h=20﹣t可得,t=20﹣6×6=﹣16.22.解:(1)2a﹣3c表示甲车的速度是a,乙车的速度是b,甲车两小时比乙车三小时多行驶多少;(2)表示甲车的速度是a,乙车的速度是b,甲车三小时是乙车5小时行驶的多少倍;(3)ab表示矩形的宽是a,矩形的长是b。
人教版七年级上数学期末测试题(三)一.选择题(共12小题)1.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.路程最长,途经城市和国家最多的一趟专列全程长约13000km,将13000用科学记数法表示应为()A.0.13×105B.13×103C.1.3×105D.1.3×1042.下列计算正确的是()A.7a+a=7a2B.5y﹣3y=2C.x3﹣x=x2D.2xy2﹣xy2=xy23.已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,P A和PB.若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“巧分点”,线段AB 的“巧分点”的个数是()A.3B.6C.8D.94.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是()A.垂线段最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短5.若x=﹣1是关于x的方程3x+m﹣2=0的解,则m的值是()A.﹣5B.5C.﹣1D.16.已知关于x的方程8﹣3x=ax的解是x=2,则a的值为()A.1B.C.D.﹣27.下列四个图形中,不是正方体展开图的是()A.B.C.D.8.有理数a,b在数轴上的位置如图所示,则下列说法不正确的是()A.a+b>0B.b﹣a>0C.ab<0D.|a|>b9.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②10.下列四个几何体中,是四棱锥的是()A.B.C.D.11.质检员抽查4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的足球是()A.B.C.D.12.已知有理数a,b满足:|a﹣2b|+(2﹣b)2=0.如图,在数轴上,点O是原点,点A 所对应的数是a,线段BC在直线OA上运动(点B在点C的左侧),BC=b,下列结论①a=4,b=2②当点B与点O重合时,AC=3;③当点C与点A重合时,若点P是线段BC延长线上的点,则PO+P A=2PB;④在线段BC运动过程中,若M为线段OB的中点,N为线段AC的中点,则线段MN的长度不变.其中正确的是()A.①③B.①④C.①②③④D.①③④二.填空题(共8小题)13.计算:=.14.若﹣2a5b与a m+2b是同类项,则m的值是.15.元朝数学家朱世杰著的《算法启蒙》中,有一道数学应用题.“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,问快马几天可以追上慢马?”设快马x天可以追上慢马,根据题意,列方程为.16.如图,①~④展开图中,能围成三棱柱的是.17.计算:35°15′+103°25′=.18.如图是小宁解方程7﹣2x=4x﹣5的过程.①代表的运算步骤为:,该步骤对方程进行变形的依据是.19.a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是;已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数.a4是a3的差倒数,……依此类推,则a2019=.20.若|y﹣3|+(x+2)2=0,则x y的值为.三.解答题(共10小题)21.计算:.22.计算:(1)(﹣﹣)×(﹣24);(2)﹣32+(﹣12)×||﹣6÷(﹣1).23.先化简,再求值:3(x﹣)﹣(6x﹣2y2),其中x=2,y=﹣.24.解方程:(1)4x﹣6=3(5﹣x);(2)=1.25.如图,货轮O在航行过程中,发现灯塔A在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C,仿照表示灯塔方位的方法,画出表示客轮B和海岛C方向的射线.26.如图所示,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1.设点A,B,C所对应的数之和是m,点A,B,C所对应的数之积是n.(1)若以B为原点,写出点A,C所对应的数,并计算m的值;若以C为原点,m又是多少?(2)若原点O在图中数轴上点C的右边,且CO=4,求n的值.27.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准量部分的水价为2.5元/吨,超过月用水标准量部分的水价为4.5元/吨.该市小强家8月份用水12吨,交水费34元.求该市规定的每户月用水标准量是多少吨?28.列一元一次方程解应用题:为了增强身体素质,提高班级凝聚力,某校初一年级师生在11月中旬集体乘车去青龙湖参加定向越野活动.学校租来大巴车若干辆,若按照每辆车载40名学生,则还有22名学生没有座位;若按照每辆车载43名学生,则前面的车辆都是载43名学生,只有最后一辆车载23名学生,求参加定向越野的学生共有多少人?29.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.5第二档大于200且小于或等于450时,超出200的部分0.7第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?30.如图1,在平面内,已知点O在直线AB上,射线OC、OE均在直线AB的上方,∠AOC =α(0°<α<30°),∠COE=2α,OD平分∠COE,∠DOF与∠AOC互余.(1)若∠AOE:∠BOE=1:5,则∠α=°;(2)当OF在∠BOC内部时,①若α=20°,请在图2中补全图形,求∠EOF的度数;②判断射线OF是否平分∠BOD,并说明理由;(3)若∠EOF=4∠AOC,请直接写出α的值.。
最新人教新版七年级上学期数学期末考试试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、据教育部统计,2023年高校毕业生约1086万人,用科学记数法表示1086万为()A.1086×104 B.1.086×107 C.1.086×108 D.0.1086×1082、某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3、下列哪个图形是正方体的展开图()A.B.C.D.4、如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°5、下列变形中,正确的是()A.若a=b,则a+1=b﹣1B.若a﹣b+1=0,则a=b+1C.若a=b,则D.若,则a=b6、若(m﹣1)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数7、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°8、《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为()A.15B.35C.39D.419、有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140B.142C.210D.21210、若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二、填空题(每小题3分,满分18分)11、比较大小:.12、数轴上,到原点距离为5的点表示的数是.13、已知单项式2a2b n+1与3a2m b m是同类项,则m+n=.14、一个正方体展开图如图所示,若相对面上标记的两个数均互为相反数,则xy的值为.15、如果关于x的方程2x+1=3和方程的解相同,那么k的值为.16、当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2).18、解下列方程:(1)4x﹣3=2﹣5x;(2).19、如图,某小纸盒的展开图如下,根据图中的数据解答如下问题.(1)请用含a和x的式子表示这个小纸盒的展开图的面积;(2)当a=6厘米时,面积为72平方厘米,求x的值;20、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.21、如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.22、如图,已知∠AOB=90°,∠BOC=60°.(1)求∠AOC的补角的度数;(2)若OE平分∠AOB,OF平分∠BOC,求∠EOF的度数.23、已知A=2x2+xy+3y,B=x2﹣xy.(1)若(x+2)2+|y﹣3|=0,求A﹣2B的值.(2)若A﹣2B的值与y的值无关,求x的值.24、在学习一元一次方程后,我们给一个定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=99,则称关于y的方程为关于x的一元一次方程的“久久方程”.例如:一元一次方程3x﹣2x﹣98=0的解是x0=98,方程|y|+1=2的所有解是y =1或y=﹣1,当y0=1,x0+y0=99,所以|y|+1=2为一元一次方程3x﹣2x﹣98=0的“久久方程”.(1)已知关于y的方程:①2y﹣2=4,②|y|=2,其中哪个方程是一元一次方程3(x﹣1)=2x+98的“久久方程”?请直接写出正确的序号.(2)若关于y的方程|2y﹣2|+2=4是关于x的一元一次方程x﹣的“久久方程”,请求出a的值.(3)若关于y的方程a|y﹣49|+a+b=是关于x的一元一次方程ax+50b =55a的“久久方程”,求出的值.25、如图,两条直线AB,CD相交于点O,且∠AOC=∠BOD=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为每秒15°,射线ON同时从OD 开始绕O点顺时针方向旋转,速度为每秒12°,运动时间为t秒(0<t<12,本题出现的角均不大于平角).(1)当t=2时,∠AOM的度数为度,∠NOM的度数为度.(2)t为何值时,∠AOM=∠AON.(3)当射线OM在∠BOC的内部时,探究是不是一个定值?若是,请求出这个定值.。
七年级(上)期末目标检测数学试卷(3)及答案一、选择题(每小题3分,共30分)1.a、b,在数轴上表示如图1,下列判断正确的是A.ab0B.b10C.b10D.a102.如图2,在下列说法中错误的是A.射线OA的方向是正西方向B.射线OB的方向是东北方向C.射线OC的方向是南偏东60°D.射线OD的方向是南偏西55°()()3.下列运算正确的是()A.5某3某2B.2a3b5abD.(ab)ba4.如果有理数a,b满足ab0,ab0,则下列说法正确的是()A.a0,b0B.a0,b0C.a0,b0D.a0,b05.若(1m)|n2|0,如mn的值为()A.1B.3C.3D.不确定6.若|a|0,那么()A.a0B.a0C.a0D.a为任意有理数7.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2条B.3条C.4条D.1条或3条8.将长方形的纸ABCD沿AE折叠,得到如图3所示的图形,已知∠CED′=60o.则∠AED的是()A.60oB.50oC.75oD.55o9.在正方体的表面上画有如图4a所示的粗线,图4b是其展开图的示意图,但只在A面上有粗线,那么将图4a中剩余两个面中的粗线画入图4b中,画法正确的是()2C.2abbaab10.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价4收费。
若这两家旅行社每人原价相同,5那么优惠条件是()A.甲比乙更优惠B.乙比甲更优惠C.甲与乙相同D.与原价有关二、填空题(每空3分,共30分)11.手枪上瞄准系统设计的数学道理是12.写出一个一元一次方程,使它的解是1:213.若代数式3某1与4某5互为相反数,则某=14.某2是方程m(某2)3某的解,那么m15.太阳的直径约为1.39210千米,这个近似数精确到位。
16.106°14′24″=°。
学校 班级 考号 姓名__________________________
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
七年级上学期期末数学检测题(三)
一、填空题.
1.﹣的倒数是 . 2.绝对值不大于3的整数的和是 .
3.一个数的相反数等于它本身,则这个数是 .
4.单项式﹣ab 2c 3
的次数是 6 ;系数是 .
5.若(m ﹣2)2
+|n+3|=0,则m ﹣n= . 6.若∠A 的补角为78°29′.则∠A= ′ .
7.上午8:30钟表的时针和分针构成的度数是 .
8.杏花村现有手机188部,比2004年底的3倍还多17部,则该村2004年底有手机 部. 二、选择题.
9.下列各数中,为负数的是( ) A . ﹣(﹣ ) B . ﹣| | C .
(﹣ )2
D . |
﹣ | 10.在下列式子
,﹣4x ,﹣abc ,a ,0,a ﹣b ,0.95,
中,单项式有( )
A .5个
B .6个
C .7个
D . 8个 11.一个长方形的长为,它的周长为3a+2b ,则它的宽为( ) A .
B .
C .a
D . 2a
12.如果∠AOB+∠BOC=90°,且∠BOC 与∠COD 互余,那么∠AOB 与∠COD 的关系为( ) A . 互余 B . 互补 C . 互余或互补 D .相等 13.﹣|﹣|的倒数是( )A .
B .﹣
C .
2
D .
﹣2
14.在18°、75°、90°、120°、150°、这些角中,不能用一副三角板拼画出来的是( )
A . 75°、90°、120°
B . 18°、90°、150°
C . 90°、120°、150°
D . 75°、90°、150°
15.某人以八折的优惠价购买一套服装省了15元,那么某人购置这套服装时,用了多少( )
A . 35元
B . 60元
C . 75元
D . 150元 16.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的( )
A.南偏西50° B.南偏西40° C.北偏东50° D.北偏东40°
17.小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面
展开图可能是( )
A. B. C. D. 三、解答题
18.计算:(1)|﹣4|﹣(﹣2)2+(﹣1)2013
﹣1÷2; (2)(﹣2)2+3×(﹣2)﹣1÷()2
.
(3)-10+5×(-6)-18÷( -6 ) (4) 2
2
2
1
83(2)(6)()3
-+⨯-+-÷-
19.解方程: (1) 3157146x x ---=. (2)5
.03-x -2.04
+x =16
20.先化简,再求值: 21a 2b-5ac-(3a 2c-a 2b)+(3ac-4a 2c),其中a=-1,b=2,c=-2.
五、解答题.
21.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.
(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置; (2)小明家与小刚家相距多远?
22.如图,∠A=50° ,∠ABC=60°. (1)若BD 为∠ABC 平分线,求∠BDC . (2)若CE 为∠ACB 平分线且交BD 于E ,求∠BEC .
23.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?
24.如图, 一艘客轮沿东北方向OC 行驶,在海上O 处发现灯塔A 在北偏西30°方向上, 灯塔B 在南偏东60°方向上.
(1)在图中画出射线OA 、OB 、OC ; (2)求∠AOC 与∠BOC 的度数,你发现了什么?
25.如图,∠AOB 为直角,∠AOC 为锐角,且OM 平分∠BOC ,ON 平分∠AOC . (1)如果∠AOC=50°,求∠MON 的度数. (2)如果∠AOC 为任意一个锐角,你能求出∠MON 的度数吗?若能,请求出来,若不能,说明为什么?
O
北 南 东 西。