第四篇电磁学
- 格式:pptx
- 大小:1.94 MB
- 文档页数:73
高考物理电磁学部分详解高考物理:电磁学部分详解物理是高考中的一门重要科目,而电磁学又是物理中的关键领域之一。
本文将详细解析高考物理电磁学的相关知识,希望能够帮助考生更好地掌握和理解这一部分内容。
第一章电场与电势电场是一个重要的概念,它代表了电荷周围的空间中存在的一种场。
而电荷之间的相互作用力,则是由电场引起的。
电场的强弱用电场强度表示,电场强度的方向则是电荷所受力的方向。
电势则是描述电场能量分布的物理量,它是单位正电荷所具有的电势能。
第二章磁场与磁感应强度磁场是描述磁现象的一种物理场,它是由磁荷所产生的。
磁感应强度则表示磁场的强弱,它的方向由正向北磁极指向正向南磁极。
磁力是磁场作用在带电粒子上所产生的力,它的大小与磁感应强度、带电粒子的电荷和速度有关。
第三章电磁感应电磁感应是指通过磁场的变化引起的电场的产生,或者通过电场的变化引起的磁场的产生。
当磁通量发生变化时,会产生感应电动势。
根据法拉第电磁感应定律,电磁感应效应的大小与磁通量变化的速率成正比。
第四章电磁波电磁波是一种由电场和磁场相互耦合产生的波动现象。
根据电磁波的频率,可以将其划分为不同的波段,如射频波、微波、红外线、可见光等。
电磁波在真空中的传播速度是一个常数,即光速。
第五章光的反射与折射光的反射是光线从一种介质射向另一种介质界面时,发生方向改变的现象。
根据反射定律,入射角和反射角相等。
而光的折射是光线从一种介质射向另一种介质时,由于介质的密度不同而发生方向改变的现象。
根据折射定律,入射角和折射角之间存在一个比例关系。
第六章光的色散与光的干涉光的色散是光波在通过介质时,由于不同频率的光波传播速度不同,导致不同波长的光波被分离的现象。
光的干涉是光波相互叠加产生干涉条纹的现象。
根据干涉现象的特点,可以将干涉分为等厚干涉和薄膜干涉。
第七章电磁场与电磁波电磁场是指电荷和电流所产生的电场和磁场的综合效应。
电磁场理论是描述电磁现象的基本理论,它由麦克斯韦方程组组成。
电磁学笔记(全)第一章 静电场库仑定律物理定律建立的一般过程观察现象; 提出问题; 猜测答案; 设计实验测量;归纳寻找关系、发现规律;形成定理、定律(常常需要引进新的物理量或模型,找出新的内容,正确表述); 考察成立条件、适用范围、精度、理论地位及现代含义等 。
库仑定律的表述: (p5)在真空中,两个静止的点电荷q1和q2之间的相互作用力大小和q1 与q2的乘积成正比,和它们之间的距离r 平方成反比;作用力的方向沿着他们的联线,同号电荷相斥,异号电荷相吸。
电场强度电荷q 所受的力的大小为:场强 E = F/q场强叠加原理:点电荷组:连续带电体:的电量大小、正负有关激发的电场有关q Q r Qq F 与与2041πε=∑=iiE ∧⎰⎰⎰==r rdq d d 2041,πε受的力的方向一致方向:与单位正电荷所小场中受到的电场力的大大小:单位正电荷在电E高斯定理任意曲面:高斯定理:环路定理电荷间的作用力是有心力 —— 环路定理在任何电场中移动试探电荷时,电场力所做的功除了与电场本身有关外,只与试探电荷的大小及其起点、终点有关,与移动电荷所走过的路径无关 静电场力沿任意闭合回路做功恒等于零两点之间电势差可表为两点电势值之差静电场中的导体导体:导体中存在着大量的自由电子 电子数密度很大,约为1022个/cm3d EdS d S E ⋅==θcos Φ的通量通过d ∑⎰⎰=⋅=Φ内S iSE qS d E 01ε⎰⎰⋅=ΦSE Sd E 020204141επεπεqdS r qdS r qEdS S d E SS SS E ====⋅=⎰⎰⎰⎰⎰⎰⎰⎰Φ)()(Q U P U l d E l d E l d E U QPQ PPQ -=⋅+⋅=⋅=⎰⎰⎰∞∞静电平衡条件电容和电容器第二章 恒磁场奥斯特实验奥斯特实验表明:长直载流导线与之平行放置的磁针受力偏转——电流的磁效应 磁针是在水平面内偏转的——横向力突破了非接触物体之间只存在有心力的观念——拓宽了作用力的类型毕奥—萨筏尔定律B-S 定律:电流元对磁极的作用力的表达式:由实验证实电流元对磁极的作用力是横向力整个电流对磁极的作用是这些电流元对磁极横向力的叠加由对称性,上述折线实验结果中,折线的一支对磁极的作用力的贡献是H 折的一半'0E E E +=内 0导体储能能力与q、U无关关与导体的形状、介质有⎪⎩⎪⎨⎧⎭⎬⎫=Uq C ⎰⎰∑∑==iS e ii n i i i e dSU U Q W σ2121构成的平面B 成反比与r 成正比与B 2r l d d Idl r l d I d ,sin )(413110⊥⨯=,、θπμ2tanαr I k H =折k k 21=磁感应强度B :电场E 定量描述电场分布 磁场B 定量描述磁场分布 引入试探电流元安培环路定理表述:磁感应强度沿任何闭合环路L 的线积分,等于穿过这环路所有电流强度的代数和的0倍磁高斯定理 磁矢势,)ˆ(12212122112r r l d l d I I kF d ∧⨯⨯=⎰∧⨯⨯=112212122102)ˆ(4L r r l d l d I I F d πμ⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=⎰∧112212110222)ˆ(4L r r l d I l d I F d πμ22l d I 11l d I ⎰∑=⋅L L I l d B 内0μ∑-=内L I II 212rIB I I R r πμ2,,0==>∑内∑==<20222,,R Ir B r R I I R r πμππ内磁场的“高斯定理” 磁矢势 :磁通量任意磁场,磁通量定义为 :磁感应线的特点:环绕电流的无头无尾的闭合线或伸向无穷远:磁高斯定理 :通过磁场中任一闭合曲面S 的总磁通量恒等于零 证明:单个电流元Idl 的磁感应线:以dl 方向为轴线的一系列同心圆,圆周上B 处处相等;考察任一磁感应管(正截面为),取任意闭合曲面S ,磁感应管穿入S 一次,穿出一次。
大学物理东南大学第七版上册第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理r适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为e S dS方向为外法线方向1E dS⑸真空中的高斯定理:e S o E dSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面E Q4r20(r R)(r R)均匀带电的球体Qr40R3E Q240r(r R)(r R)轴对称:无限长均匀带电线E2or0(r R)无限长均匀带电圆柱面E(r R)20r面对称:无限大均匀带电平面E E⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UA AP E dl(UP0)B电势差的定义式:UAB UA UB A电势能:Wp qo PP0E dlE dl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:S D dS q0,int E0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为C rC0★重点:静电场的能量计算①电容:②孤立导体的电容UU U举例:平行板电容器C圆柱形电容器 C4oR1R2os球形电容器CR2R1d2oL R2ln(R1Q211Q U C(U)2 ③ 电容器储能公式We2C22④静电场的能量公式We wedV E2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小B F方向:小磁针的N极指向的方向 qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
第四章 习题2、平行板电容器(面积为S,间距为d )中间两层的厚度各为d 1和d 2(d 1+d 2=d ),介电常数各为1ε和2ε的电介质。
试求:(1)电容C ;(2)当金属板上带电密度为0σ±时,两层介质的分界面上的极化电荷密度'σ;(3)极板间电势差U;(4)两层介质中的电位移D ; 解:(1)这个电容器可看成是厚度为d 1和d 2的两个电容器的串联:12210212121d d SC C C C C εεεεε+=+=(2)分界处第一层介质的极化电荷面密度(设与d 1接触的金属板带正电)1111011111εσεεεσ)(E )(P n P '-=-=-=⋅=分界处第二层介质的极化电荷面密度:21222022211εσεεεσ)(E )(P n P '--=--=-=⋅=所以, 21021211εεσεεσσσ+-=+=)('''若与d 1接触的金属板带负电,则21021211εεσεεσσσ+--=+=)('''(3)2101221202010102211εεσεεεεσεεσ)d d (d d d E d E U +=+=+= (4)01101σεε==E D ,02202σεε==E D4、平行板电容器两极板相距3.Ocm ,其间放有一层02.=ε的介电质,位置与厚度如图所示,已知极板上面电荷密度为21101098m /c .-⨯=σ,略去边缘效应,求: (1)极板间各处的P 、E 和D 的值; (2)极板间各处的电势(设正极板处00=U );(3)画出E-x ,D-x ,U-x 曲线;解:(1)由高斯定理利用对称性,可给出二极板内:2111098m /c .D e -⨯==σ(各区域均相同),在0与1之间01==P ,r ε,m /V DE 20101⨯==ε在1与2之间210000010454112m /c .D)(E )(P ,r r r -⨯=-=-==εεεεεεε,m /V D E r500==εε 在2与3之间,01==P ,r ε,m /V DE 20101⨯==ε(2)0=A V :0-1区:,x dx E V xD 100=⋅=⎰1-2区:),x x (dx E V xx 1501-=⋅=⎰)x x x ,.x x )x x (V 2111505010050≤≤+=+-=2-3区:),x x (dx E V xx 2100021-=⋅=⎰∆)x x x (,.x ).x (,x x x x x )x x (V 3212221501000050100505010010010050≤≤-=-=+-=-++=题4图6、一平行板电容器两极板相距为d,其间充满了两种介质,介电常数为1ε的介质所占的面积为S 1, 介电常数为2ε的介质所占的面积为S 2。