线性分组码的基本性质
- 格式:pptx
- 大小:1.37 MB
- 文档页数:50
线性分组码与循环码1.线性分组码的概念线性分组码是指信息位和监督位满足一组线性代数方程式的分组码。
其中分组码(n,k)满足条件式中,r=n-k为监督位数。
2.线性分组码的原理(1)监督矩阵①监督矩阵的表示形式式中,H为r×n阶监督矩阵;A为分组码构成的1×n阶矩阵。
②监督矩阵的典型式式中,P为r×k阶矩阵;I r为r×r阶单位方阵。
(2)生成矩阵式中,G为k×n阶生成矩阵;Q为k×r阶矩阵,是P的转置,即由生成矩阵可以产生整个码组式中,A0为由分组码的信息位构成的1×k阶矩阵。
3.线性分组码的检验(1)检验计算式中,S称为校正子;B为接收码组。
(2)检验规则①若为0,代表该位无错码;②若为1,代表该位有错码。
4.线性分组码的性质(1)封闭性线性分组码的任意两个码组之和仍为这种码中的一个码组。
(2)最小码距最小码距就是码组的最小重量(全“0”码组除外)。
六、循环码1.循环码的原理(1)循环码的定义循环码是指除了具有线性码的一般性质外,还具有循环性的码,即任一码组循环一位以后,仍为该码中的一个码组的编码方式。
(2)循环码的特点a.编码和解码设备简单;b.检(纠)错的能力较强。
(3)循环码的运算①循环码的代数表示将码组中各码元当作是一个多项式的系数,即把一个长度为n的码组表示成式中,x仅是码元位置的标记,该多项式称为码多项式。
②码多项式的按模运算一个长为n的循环码必为按模(x n+1)运算的一个余式,即式中,的作用是将代表的许用码组向左循环移位次得到许用码组。
③循环码的生成矩阵循环码的生成矩阵G可以写成式中,g(x)为循环码的生成多项式。
④循环码的生成多项式(n,k)循环码的生成多项式g(x)必须是一个常数项不为“0”的(n-k)次多项式且是的一个因子。
如(7,3)循环码的生成多项式g(x)为2.循环码的编解码方法(1)循环码的编码方法①用x n-k乘信息码元多项式m(x);②用g(x)除x n-k m(x),得到商Q(x)和余式r(x),即③令编出的码组为(2)循环码的解码方法①检错a.检错方法在接收端将用原生成多项式g(x)除接收码组B(x)。
线性分组码一、原理:监督矩阵:线性分组码()k n ,中许用码组为k 2个。
定义线性分组码的加法为模二加法,乘法为二进制乘法。
即011=+、101=+、110=+、000=+;111=⨯、001=⨯、000=⨯、010=⨯。
且码组与码组的运算在各个相应比特位上符合上述二进制加法运算规则。
线性分组码具有如下性质()k n ,的性质:1. 封闭性。
任意两个码组的和还是许用的码组。
2. 码的最小距离等于非零码的最小码重。
对于码组长度为n 、信息码元为k 位、监督码元为k n r -=位的分组码,常记作()k n ,码,如果满足n r ≥-12,则有可能构造出纠正一位或一位以上错误的线性码。
下面我们通过(7,4)分组码的例子来说明如何具体构造这种线性码。
设分组码()k n ,中,4=k ,为能纠正一位误码,要求3≥r 。
取3=r ,则7=+=r k n 。
该例子中,信息组为()3456a a a a ,码字为()0123456a a a a a a a 。
用1S ,2S ,3S 的值与错码位置的对应关系可以规定为如表1所列。
由表中规定可知,当已知信息组时,按以下规则得到三个校验元,即:⎪⎩⎪⎨⎧⊕⊕⊕=⊕⊕⊕=⊕⊕⊕=034631356224561aa a a S a a a a S a a a a S (式1.1)表1 错码位置示意表。
在发送端编码时,信息位6a ,5a ,4a 和3a 的值决定于输入信号,因此它们是随机的。
监督位2a ,1a 和0a 应根据信息位的取值按监督关系来确定,即监督位应使上三式中1S ,2S 和3S 的值为零(表示编成的码组中应无错码)。
由上式经移项运算,解出监督位:⎪⎩⎪⎨⎧⊕⊕=⊕⊕=⊕⊕=346035614562aa a a a a a a a a a a (式1.2)给出信息位后,可直接按上式算出监督位,其结果见表2。
接收端收到每个码组后先按式(1.1)计算出1S ,2S 和3S ,再按表1判断错码情况。
10.3 线性分组码10.3.1 线性分组码的基本概念1. 线性分组码及其描述方法()k n ,线性分组码是把信息码元序列的每k 个码元(Symbol)分成一组,通过线性变换,映射成由n 个码元组成的码组,且每一码组仅与本码组的k 个信息位有关,与其他码组的信息无关。
对于线性分组码,码组中任一码元都是信息码元的线性组合。
例10.3.1 设某(7,4)二进制线性分组码编码器的输入信息组(又称信息段)是m ()0123m m m m =,编码输出是A ()0123456a a a a a a a =,已知输入、输出码元之间的关系式是36m a =,25m a =,14m a =,03m a =,1232m m m a ++=,0231m m m a ++=,0130m m m a ++=,这里,“+”指模二加。
求编码时“码组到信息”间的映射关系以及输出码组集合。
解 将题中所给输入、输出码元之间的线性变换关系用线性方程组描述如下:⎪⎩⎪⎨⎧++=++=++=⎪⎪⎩⎪⎪⎨⎧====o o oomm m a m m m a m m m a m a m a m a m a 1323112323142536监督位信息位 (10.3.1) 还可以将式(10.3.1)改写成矩阵形式: A []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00010110010101010011010001110123m m m m (模2加) = m G (10.3.2) 分别令信息组()0123m m m m 为(0000),(0001),…,(1111),代入上面的矩阵算式,不难算得各信息组对应的码组,列于表10.3.1 。
2. 线性分组码性质表10.3.1 反映出线性分组码所具备的基本性质:(1) 一个()k n ,线性分组码共有k 2个许用码组;(2) 对加法满足封闭性,即线性分组码中任意两个码组之和(模二加)仍是分组码中的一个码组;(3) 全零码是线性分组码中的一个码组;(4) 线性分组码各码组之间的最小码距,等于除全零码外的码组的最小重量。
线性分组码,卷积码,交织码原理MATLAB第六次预习报告研五队李振坤S201301104线性分组码1. 基本概念●系统码:编码后,信息码元本身不变,只在信息码元后加入监督码元。
●线性码:监督码元和信息码元成线性关系的码型。
●分组码:将信息码分组,并为每组信息码附加若干监督码的编码。
分组码一般用表示,为实际传送的码长,是信息码长,是监督码长。
●线性分组码:分组码的信息码元和监督码元,由一些线性代数方程联系起来。
分组是指编、译码过程是按分组进行的,而线性是指分组码中的监督码元按线性方程生成的。
【注】线性分组码的编码问题,就是要建立一组线性方程组,已知k个系数(即信息码),要求n-k个未知数(即监督码)。
2. 线性分组码的主要性质(1)封闭性封闭性是指码中任意两许用码组之和(逐位模2和)仍为一许用码组,这就是说,若A1和A2为码中的两个许用码组,则A1+A2仍为其中的一个许用码组。
(2)码的最小距离等于非零码的最小重量因为线性分组码具有封闭性,因而两个码组之间的距离(模2减)必是另一码组的重量。
为此,码的最小距离也就是码的最小重量,当然,除全“0”码组外。
3. 汉明码汉明码是用于纠正单个错误的线性分组码,其特点为:(1)最小码距(2)纠错能力(3)监督码长【注】(4)总码长()(5)信息码长()(6)编码效率(当r很大时,R趋向于1,效率高)因此,当r=3,4,5,6??时,分别有(7,4)、(15,11),(31,26),(63,57)等汉明码。
4. (7,4)汉明码在(7,4)汉明码中,码组为,其中为4个信息元,为3个监督码元。
监督码元与信息元之间的关系为:(9-4)生成矩阵G:编码时使用,用于产生整个码组,包括信息码和监督码。
改写为其中为阶单位矩阵;由生成矩阵为阶矩阵。
称为生成矩阵,它的各行是线性无关的。
可以产生整个码组,码组C是系统码(即信息码保持不变,监督码附加其后)。
【注】(1)上述生成矩阵为典型形式,保证能产生系统码。