常见递推数列的几个模型
- 格式:ppt
- 大小:4.03 MB
- 文档页数:39
数列的递推公式和通项公式数列是数学中的一种常见概念,它由一系列按照一定规律排列的数所组成。
数列的递推公式和通项公式是数列的两种重要表示方式,它们可以帮助我们更好地理解和计算数列。
一、数列的递推公式数列的递推公式是指通过前一项或多项来推导出后一项的公式。
一般来说,递推公式可以分为线性递推和非线性递推两种。
1.1 线性递推公式线性递推公式是指数列中的每一项都可以通过前一项乘以一个常数再加上另一个常数得到。
一般可以用如下的形式表示:an = a(n-1) * r + b。
其中an表示数列中的第n项,a(n-1)表示数列中的第(n-1)项,r和b 为常数。
例如,如果数列的前两项分别为a1和a2,且每一项都等于前一项乘以2再加上1,则该数列的递推公式为:an = a(n-1) * 2 + 1。
利用这个递推公式,我们可以轻松求解数列中的任意一项。
1.2 非线性递推公式非线性递推公式是指数列中的每一项不能通过前一项乘以一个常数再加上另一个常数得到。
非线性递推公式的形式较为多样,常见的有多项式递推和递归递推等。
以多项式递推为例,假设数列的前两项分别为a1和a2,而后续项满足如下规律:an = an-1^2 + an-2^2。
在这种情况下,我们无法仅仅通过前一项或多项来计算后一项。
此时,我们需要借助递归或其他更复杂的方法来求解数列中的每一项。
二、数列的通项公式数列的通项公式是指通过数列的位置n来计算该位置上的数值。
通项公式可以直接给出数列前n项的数值,而不需要通过递推关系一步步推导。
通项公式也常被称为数列的一般项公式。
2.1 等差数列的通项公式等差数列是最常见的数列之一,它的通项公式为an = a1 + (n-1)d,其中an表示数列中的第n项,a1表示数列的首项,d表示公差。
例如,如果一个等差数列的首项为3,公差为2,则它的通项公式为an = 3 + (n-1)2。
通过这个通项公式,我们可以轻松计算出等差数列中的任何一项。
递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
数列的递推关系数列是由一组按照一定规律排列的数所组成的序列。
在数学中,常常需要通过递推公式来确定数列中的每一项。
递推关系是指根据前几项的值,通过某种规律来计算下一项的值。
1. 递推关系的概念递推关系是指通过前几项的值来计算下一项的值的数学关系。
通常表示为an+1 = f(an, an-1, ..., a1),其中an表示第n项的值,f表示递推函数或递推公式。
递推关系可以是线性的、多项式的、指数的等等。
2. 线性递推关系线性递推关系是指数列中的每一项都可以通过前一项和前几项的线性组合来计算得到。
具体来说,对于线性递推关系an = c1*an-1 +c2*an-2 + ... + ck*an-k,其中c1, c2, ..., ck为常数,且k为一个固定的正整数。
常见的线性递推关系有斐波那契数列等。
3. 多项式递推关系多项式递推关系是指数列中的每一项的计算都涉及前面若干项的多项式函数。
具体来说,对于多项式递推关系an = p(n) = a(n-1) + a(n-2) + ... + a(n-k),其中p(n)为一个多项式函数,a(n-1), a(n-2), ..., a(n-k)为前面的若干项。
多项式递推关系常用于描述一些复杂的数学问题,如组合数学中的排列、组合等。
4. 指数递推关系指数递推关系是指数列中的每一项的计算都涉及指数函数。
具体来说,对于指数递推关系an = a(n-1) ^ k,其中k为常数。
指数递推关系常用于描述一些增长速度非常快的数列,如幂数列等。
5. 递推关系的应用递推关系在数学中具有广泛的应用。
它可以帮助研究数列的性质、推导数列的通项公式,甚至可以用来解决一些实际问题。
例如,在物理学中,递推关系可以用来描述物体的运动轨迹;在计算机科学中,递推关系可以用来描述算法的时间复杂度。
总结:数列的递推关系是通过前几项的值来计算下一项的数学关系。
它可以是线性的、多项式的、指数的等等。
递推关系在数学中起到了重要的作用,帮助研究数列的性质、推导数列的通项公式,以及解决实际问题。
五种典型的递推关系1.Fibonacci数列在所有的递推关系中,Fibonacci数列应该是最为⼤家所熟悉的。
在最基础的程序设计语⾔Logo 语⾔中,就有很多这类的题⽬。
⽽在较为复杂的Basic、Pascal、C语⾔中,Fibonacci数列类的题⽬因为解法相对容易⼀些,逐渐退出了竞赛的舞台。
可是这不等于说Fibonacci数列没有研究价值,恰恰相反,⼀些此类的题⽬还是能给我们⼀定的启发的。
数列的代表问题是由意⼤利著名数学家Fibonacci于1202年提出的“兔⼦繁殖问题”(⼜Fibonacci数列称“Fibonacci问题”)。
问题的提出:有雌雄⼀对兔⼦,假定过两个⽉便可繁殖雌雄各⼀的⼀对⼩兔⼦。
问过n个⽉后共问题有多少对兔⼦?解:设满x个⽉共有兔⼦Fx对,其中当⽉新⽣的兔⼦数⽬为Nx对。
第x-1个⽉留下的兔⼦数 解⽬设为Fx-1对。
则:Fx=Nx+ Fx-1 Nx=Fx-2 (即第x-2个⽉的所有兔⼦到第x个⽉都有繁殖能⼒) ∴ Fx=Fx-1+Fx-2 边界条件:F0=0,F1=1由上⾯的递推关系可依次得到: F2=F1+F0=1,F3=F2+F1=2,F4=F3+F2=3,F5=F4+F3=5,……。
数列常出现在⽐较简单的组合计数问题中,例如以前的竞赛中出现的“⾻牌覆盖”问Fabonacci数列题。
在优选法中,Fibonacci数列的⽤处也得到了较好的体现。
2.Hanoi塔问题问题的提出:Hanoi塔由n个⼤⼩不同的圆盘和三根⽊柱a,b,c组成。
开始时,这n个圆盘由⼤到问题⼩依次套在a柱上,如图3-11所⽰。
要求把a柱上n个圆盘按下述规则移到c柱上: (1)⼀次只能移⼀个圆盘; (2)圆盘只能在三个柱上存放; (3)在移动过程中,不允许⼤盘压⼩盘。
问将这n个盘⼦从a柱移动到c柱上,总计需要移动多少个盘次?解:设hn为n个盘⼦从a柱移到c柱所需移动的盘次。
显然,当n=1时,只需把a 柱上的盘⼦直接移动到c柱就可以了,故h1=1。
第12讲 数列的递推本节主要内容两个基本递推:a n +1=a n +d ,a n =qa n ;线性递推,二阶或高阶递推的特征方程与特征根;其他递推.1.基本概念:①递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(nk <)的关系式称为递归式.②递归数列:由递归式和初始值确定的数列成为递归数列. 2.常用方法:累加法,迭代法,代换法,代入法等. 3.思想策略:构造新数列的思想. 4.常见类型: 类型Ⅰ:⎩⎨⎧=≠+=+为常数)a aa n p n q a n p a n n ()0)(()()(11(一阶递归)其特例为:(1))0(1≠+=+p q pa a n n (2))0()(1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n解题方法:利用待定系数法构造类似于“等比数列”的新数列.①形如)(1n q a a n n +=+的递归式,其通项公式求法为:1111111()()n n n k k k k a a a a a q k --+===+-=+∑∑②形如n n a n p a)(1=+的递归式,其通项公式求法为: 3211121(1)(2)(1)n n n a a a a a a p p p n a a a -=⋅⋅⋅=⋅⋅-③形如)1()(1≠+=+p n q pa a n n 的递推式,两边同除以1+n p 得111)(++=+=n nn n n pn q pa pa ,令n nn b pa =则句可转化为①来处理. 类型Ⅱ:⎩⎨⎧==≠≠+=++为常数)b a b a a a q p qa pa a nn n ,(,)0,0(2112(二阶递归)解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα+=,代入初始值求得B A ,. ①若p+q=1时,有q a a n n -=-+1)(1--n n a a 可知}{1n n a a -+是等比数列,先求得n n a a -+1,再求出n a . ②若p+q ≠l ,则存在α,β满足=α-+n n a a 1)(1--βn n a a 整理得11)(-+αβ-β+α=n n n a a a 从而α+β=p , αβ=q ,可解出α、β,这样可先求出}{1n n a a α-+的通项表达式,再求出n a .注意α、β实质是二次方程q px x +=2的两个根,将方程q px x +=2叫做递归式n n n qa pa a +=++12的特征方程. 在数列{n a }中,给出a 1, a 2,且n n n qa pa a +=++12 ,它的特征方程q px x +=2的两根为α与β.如果α≠β,则n n n B A a βα+=;如果α=β则nnB An aα+=)(,其中A 与B 是常数,可由初始值a 1,a 2 求出.类型Ⅲ. 如果递归数列{a n }满足 a n+1dca b aa n n ++=,其中c ≠0,ad -bc ≠0,以及初始值a 0≠f (a 1),则称此数列为分式线性递归数列.我们称方程dcx b ax x ++=的根为该数列的不动点.若该数列有两个相异的不动点p 、q ,则}{qa p a n n --为等比数列;若该数列仅有惟一的不动点p ,则}1{pa n -是等差数列·5.求递归数列通项的常用方法有:换元法、特征根法、数学归纳法等.A 类例题例1 一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)N (*1∈>+n a a n n ,则该函数的图象是( )(2005年辽宁卷)(A ) (B) (C)(D) 分析 利用递推式意义及数形结合,分析清楚函数值与自变量的关系,即可判断. 解 由)(1n n a f a =+,n n a a >+1,得n n a a f >)(,即x x f >)(,故选A . 例2已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. (2004年全国高考题)分析 由于给出两个递推关系与奇数项、偶数项有关,因此因从奇数项或偶数项之间的关系入手. 解(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k = a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k, 同理a 2k -1-a 2k -3=3k -1+(-1)k -1, …… a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1) =(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++kka 2k = a 2k -1+(-1)k=2123+k(-1)k -1-1+(-1)k=2123+k(-1)k =1.{a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nnna说明 这种给出递推关系,求通项公式问题,一般是转化为等差数列或等比数列,或者通过观察、归纳,或者通过顺次迭代,以求通项公式.情景再现1.已知数列{a n }满足a 1=1,a n =2a n -1+n -2(n ≥2),求通项a n . (2004年四川省高中数学联赛) 2.设cbx x x f +=)((c b ,为常数),若21)2(=f ,且02)(=-x x f 只有唯一实数根(1)求)(x f 的解析式(2)令)(,111-==n na f a a 求数列{}na 的通项公式.B 类例题例3 (1)一次竞赛在n(n >1)轮中共发了m 枚奖章.第一轮发了1枚及余下的m -1枚的71,第2轮发了2枚及余下的71,…,直至第n 轮正好发了n 枚而没有余下奖章.这个竞赛共包括几轮?一共发了多少枚奖章?(第9届国际数学奥林匹克)(2)把一个圆分成n 个不同的扇形(n ≥2),依次记为S 1,S 2,…, S n ,每个扇形都可以用红、蓝、白三种颜色中任一种涂色,要求相邻的扇形颜色互不相同,问有多少种涂法?分析 第(1)题,每一轮发的奖章数具有一定规律,因而可以建立每一轮发的奖章数的关系或每一轮余下的奖章数的关系.第(2)题,设法建立涂法总数的递推关系和求得初始值,进而求得涂法总数. 解 (1)设竞赛进行了k 轮后,余下a k 枚奖章.因为第k 轮发出奖章数k+17(a n -1 -k )具有a k =a k -1- [k+17(a k -1 -k )]即a k = 67a k -1-67 k 且a 0=m, a n =0.进一步变形为a k +6k -36= 67[a k -1+6(k -1)-36]从而a n +6n -36= (a 0-36)n)76(= (m -36)n)76(即a n = (m -36)n)76(-(6n -36),又因为a n =0,故(m -36)=(n -6)167-n n而n -6<6n -1,且7n 与6n -1互质,m,n ∈N +,故n=6,m=36. 因此,这个竞赛共包括6轮,一共发了36枚奖章.(2)设涂法总数为a n (n ≥2)当n=2时,先对S 1涂法色,有3种涂法,继而得S 2只有两种涂法,因而a 2=6.当时n ≥3, S 1有3种涂法, S 2有2种涂法, S 3有2种涂法,…, S n -1有2种涂法, S n 仍有2种涂法. (不论是否S 1与同色),这样共有3×2n -1种涂法,但这3×2n -1种涂法分为两类:一类是S n 与S 1同色,认为S n 与S 1合为一个扇形,此时涂法有a n -1种涂法;另一类是S n 与S 1不同色,此时涂法有a n 种涂法.因而有a n + a n -1=3×2n -1(n ≥3)令p n =a n2n , 则2p n +p n -1=3 (n ≥3)于是有1-np =)1(211---n p , (n ≥3) p 2=a 222从而有1-n p =)1()21(22---p n =121-⎪⎭⎫ ⎝⎛--n于是1=n p 121-⎪⎭⎫⎝⎛--n 得a n =2n p n =2n +(-1)n ·2 (n ≥3)但当n=2时也适合上式,故得a n =2n +(-1)n ·2 (n ≥2) 故共有种a n =2n +(-1)n ·2 (n ≥2)涂法说明 这类试题经常在全国高中数学联赛及国际数学奥林匹克中出现.这两个问题都是用递推方法解决计数问题,希望读者对这类问题能够进行较为深入的钻研. 例4 数列{a n }定义如下:a 1=1,a n+1 =161(1+4 a n +na 241+),求它的通项公式.分析 带根号的部分不好处理,平方会导致较繁的关系式,容易想到作代换:令=nbn a 241+解 设=nb n a 241+,则2412-=n n b a ,.51=b 于是原递推式可化为41(16124121+=-+n b 2412-⋅n b +)nb即(2b n+1)2=(b n +3)2,由于b n 、b n+1非负,所以2b n+1=b n +3. 故b n+1-3=21(b n -3).所以b n+1-3= (b n -3)(21)n -2即2)21(3-+=n nb所以2412-=n nb a=nn 212313112+⋅+-说明 这是1981年IMO 的预选题,解题的关键是换元、转化.例5设{x n }、{y n }为如下定义的两个数列:x 0=1,x 1=1,x n+1=x n +2 x n -1,y 0=1,y 1=7,y n+1=2y n +3y n -1,(n=1,2,3…),于是这两个数列的前n 项为x n :1,1,3,5,11,21…, y n :1,7,17,55,161,487,….证明:除了“1”这项外,不存在那样的项,它同时出现在两个数列之中. (第二届美国中学生数学竞赛试题) 分析 本题题均属于线性递归数列问题,可用特征根的方法来解决.解 数列{x n }的通项公式形如nnnC C x β+α=21,其中βα、是数列的特征方程x 2=x +2的两根,即1,2-=β=α,故nnnC C x )1(221-+=.由x 0=1,x 1=1得C 1=23,C 2=13,所以 =nx 23×2n +13(-1)n = 13[2n+1+(-1)n ]同理可得数列的{y n }通项公式为 y n =2×3n -(-1)n .用反证法证明两个数列无其它公共项. 假设 x m =y n ,即13[2m+1+(-1)m ]= 2×3n -(-1)n ,则 2(3n+1-2m )=(-1)m +3(-1)n ①若奇偶性相同,则①式右边为4或-4.左边=2(奇-偶)=2×奇数,故左边不是4的倍数,因此左边不等于右边.同理若m 、n 奇偶性不相同时左边也不等于右边.说明 在求得特征方程的根以后,要依据根的重数正确写出数列通项的一般表达式,再根据初始值求得待定系数的值.例6 数列{a n }满足a 0=1,23645721-+=+n n n a a a,N n ∈,证明:(1)对于任意N n ∈,a 为整数;(2)对于任意N n ∈,11-+n n a a 为完全平方数. (2005年高中数学联赛) 证明:(1)由题设得a 1=5,且数列{a n }严格单调递增,将条件变形得36457221-=-+n n n a a a ,两边平方法整理得0972121=++-++n n n n a a a a①∴0972112=++---n nn na a a a ② ①-②得0)7)((111=-+--++n n n n n a a a a a∵1+<n na a , ∴0711=-+-+nn n a a a , 117-+-=n nn a a a ③由③及a 0=1, a 1=5可得a n 为正整数.(2)将①两边配方得=++21)(n na a )1(91-+n n a a∴11-+n n a a =21)3(nn a a ++④因为是n a 整数,故11-+n n a a 为整数,故④右边是整数的平方.即为为完全平方数. 所以对于任意N n ∈,11-+n n a a 为完全平方数.情景再现3.小伟和小明来到咖啡店,他们买了一杯咖啡和一杯牛奶各150ml,每个杯子的容积为200ml,甲杯盛牛奶,乙杯盛咖啡,想将二者混合,兑换成近乎相同的奶咖啡,没有其它的容器,只得利用二个杯子中的剩余空间倒来倒去,使其混合.规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使甲、乙杯中的饮料相等.这叫做一次操作.请你回答下列四个问题: Ⅰ、一次操作后甲杯里的饮料中牛奶的体积百分比为多少?Ⅱ、求第n 次操作后甲杯里的饮料中牛奶的体积百分比的数学表达式. Ⅲ 至少几次操作后甲杯里的饮料中牛奶的体积百分比不超过51%?Ⅳ、你能否设计新操作,得到更优的方案以减少操作次数? (2003年北京应用知识竞赛题) 4. 已知a 1=1,a 2=3,a n+2=(n+3)a n+1-(n+2)a n ,若当m ≥n ,a m 的值都能被9整除,求n 的最小值.(湖南省2002年高中数学竞赛)C 类例题例7 数列{a n }按如下法则定义:a 1=1nn n a a a 41211+=+, 证明:对n >1,1222-n a 均为正整数·(1991年全苏数学冬令营)分析 因为结论中涉及到根号及a 2n项,因而令1222-=n na b ,并对已给递推关系两边平方就容易找到解题思路. 解 令1222-=n na b , 则12222-=n na b ,因此221nnb a=+12,因为++=+222116141nn n a a a14于是++211n b 12 = 14 (++211n b12)+⎪⎪⎭⎫ ⎝⎛+2111612n b +14即 )2(22221+=+n n n b b b①所以]2)2((2[22121221++=--+n n n n b b b b=2212)1(4+-n n b b . ②4122222=-=a b ,24122233=-=a b ,由②及b 2 、b 3∈N*, 知道对n >1,1222-n a 均为正整数.说明 这道试题,通过换元,将关于如的问题转化为关于b n 的问题,得到①式后,再用)2(221212+=--n n n b b b 代入可证明21+n b是一个完全平方数的关键一步,通过这一步代入可使问题得到顺利解决.例8. 设a 1=1,a 2=3,对一切正整数n 有 a n+2=(n+3)a n+1-(n+2)a n ,求所有被11整除的如的值. 分析 先根据给定的递推关系,通过换元,把问题转化,最后求得a n 的通项公式,进而完成本题. 解 由已知条件得(a n+2-a n+1)= (n+2)(a n+1-a n )设b n+1=a n+1-a n (n ≥1),则由条件有b n+1=(n+1)(a n -a n -1)=(n+1) b n (n ≥2),故b n = nb n -1=n(n -1) b n -2= n(n -1)(n -2)…3 b 2 =n !(n ≥2) 所以a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=b n + b n -1 +…+b 2+1=1nk k =∑!由此可以算出a 4=41k k =∑!=33=11×3,a 8=81k k =∑!=46233=11×4203,a 10=101k k =∑!=4037913=11×367083.当n ≥11时,注意到11nk k =∑!能被11整除,因而a n =101k k =∑!+11nk k=∑!也能被11整除.故当n=4,n=8或当n ≥10时, a n 均被11整除.说明 这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.这是阿贝尔求和法.情景再现5.3个数列{a n }、{ b n }、{ c n }存在下列关系:a 1=1, b 1=21,b n =a n+1-a n , c n =b n+1-b n =np n --13(n=1,2,3…)这里的p 为正常数. (1)求a n ;(2)证明:若c n ≥0,则c n+1>0;(3)若数列{b n }的最小项为b 4,求p 取值范围.6.数列{a n }、{ b n }满足0<a 1<b 1,nnn b a a 21111+=+nn n b a b +=+2121 (n=1,2,3…)证明下列命题:(1) a 2<b 2<b 1;(2) 对任何正整数n 有b n > a n+1; (3) 对任何整数n ≥2,有b n <b 1.习题12A 类习题1. 已知数列{a n }满足a 1=1,a n +1=a n +n 2(n ≥2),求通项a n .2.(2003年全国高考题)已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足(Ⅰ)求;,32a a (Ⅱ)证明.213-=nn a3.(2001上海春季高考)某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金. (1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明); (2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义; (3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞→n P n (b ).4.已知点的序列A n (x n ,0),n ∈N*,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明; (3) 求lim ∞→n x n .5.已知+++∈-===N n a a aa a n n n ,22,4,01221求数列{a n }的通项公式.6.已知++++∈-+====N n a a a aa a a n n n n ,22,6,2,0123321求数列{a n }的通项公式.B 类习题7.已知++++∈+-====N n a a a aa a a n n n n ,8126,8,2,1123321求数列{a n }的通项公式. 8.已知++++∈+-=-===N n a a a aa a a n n n n ,12167,13,1,2123321求数列{a n }的通项公式.9.有一条n 级楼梯,如果每步只能跨上一级或两级,问欲登上去,共有几种走法?10.(1)是否存在正整数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2. (2)是否存在正无理数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2.(首届中国东南地区数学奥林匹克试题)C 类习题11.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有nnnn a a 111+≥+ (湖南省2004年高中数学竞赛)12.求所有a ∈R,使得由a n+1=2n -3a n (n ∈N)所确定的数列a 0, a 1, a 2,…是递增数列.(1980年英国中学生数学竞赛试题)本节“情景再现”解答:1.解:由已知可得:a n +n =2(a n -1+n -1)(n ≥2)令b n =a n +n ,则b 1=a 1+1=2,且b n =2b n -1(n ≥2) 于是b n =2·2n -1=2n ,即a n +n =2n 故a n =2n -n (n ≥2), 因为a 1=1也适合上述式子, 所以a n =2n -n (n ≥1) 2.解:(1)bc cb f 242122)2(-=∴=+=,又cbx bx c x x x f 22)2(2)(+--=-令02)(=-x x f 得0)2(=--bx c x当0≠b 时得方程的实数根0=x 和bc x -=2 于是1,2==b c , 当0=b 时4=c 方程有唯一实数根0=xxx x f +=∴2)(或4)(x x f =(2)当xxx f +=2)(时,211+=--n n n a a a ,令,1nna b =则121+=-n nbb ,)1(211+=+∴-n n b b 12112-=∴-=∴nn nn a b 当4)(x x f =时,141-=n n a a {}n a ∴为等比数列,1)41(-=n n a 121-=∴nn a 或nn a -=143.解:Ⅰ.设 p=150 , %pp p a 7543311==+=Ⅱ. 设n 次操作前、后甲杯里的饮料中牛奶的体积百分比分别为、a n 1-n a ,则n 次操作前、后乙杯里的饮料中牛奶的体积百分比分别为、a n 11--n a -1,pp pa p a a n n n 3131)1(11+⋅-+=--=41211+-n a , ∴法 ①)(21211----=-n n n n a a a a ∴12121++=n n a∴ 法②)21(21211-=--n n a a∴12121++=n naⅢ. ∴1005121211≤++n ∴n ≥6.Ⅳ. 规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使乙杯盛满饮料,充分搅匀.这叫做一次操作.设n 次操作后甲杯里的饮料中牛奶的体积百分比分别为n a ,乙杯里的饮料中牛奶的体积百分比为n b .43311=+=p p pa , 83323232431=+⨯=p p pb . 1693232328332432=+⨯+⨯=pp p p a 321532323283321692=+⨯+⨯=pp p p b∴ppb p a a n n n 34323211⨯+⨯=-- 第n 次操作后甲杯里的饮料p 32,乙杯里的饮料p 34.∴p b p a p n n =⨯+⨯3432∴343=+n n b a .n a =83411+-n a , ∴nn n a 212212+=-∴10051212212≤+-nn , ∴n ≥4.至少4操作后甲杯里的饮料中牛奶的体积百分比不超过51%.4.解:由)(12++-n n a a=11)2()3(-+-+-+n n n a a n an ))(2(1n n a a n -+=+))(1)(2(1--++=n n a a n n)(34)1)(2(12a a n n n -⋅⋅⋅⋅++=)2(+=n !故++-+-+= )()(23121a a a a a a n)(1--n na a=1+2!+3!+…+n !(n ≥1),由于153,33,9,3,154321=====a a a a a ,此时153被9整除.当m ≥5时∑=+=mk m ka a 15!而k ≥6时6!被9整除.于是当m ≥5时a n 被9整除,故所求的n 的最小值为55. (1)因为c n =b n+1-b n =3n -1-np,故b n =b 1+ (b 2-b 1)+ (b 3-b 2)+ …+(b n -b n -1) =12 +(1+3+…+3n -2)-[1+2+3+…+(n -1)]p=12 [3n -1-n(n -1)p], 即b n =a n+1-a n =12[3n -1-n(n -1)p]故a n =a 1+ (a 2-a 1)+ (a 3-a 2)+ …+(a n -a n -1)= 3n -1+34- p6-1)(n -2)(2)若c n =b n+1-b n =3n -1-np ≥0, 则3n -1≥np,c n+1=b n+2-b n+1=3n -(n+1)p ≥3np -(n+1)p =(2n -1)p >0.(3)因为b n =12 [3n -1-n(n -1)p]≥b 4,故应有c 3=b 4-b 3≤0,c 4=b 5-b 4≥0,即c 3=9-3p ≤0, c 4=27-4p ≥0,故3≤p≤274.利用(2)的结论验算可知,当3≤p ≤274时,对一切正整数n,均有b n ≥b 4.故p 的取值范围是[3,274] 6.(1)⎪⎪⎩⎪⎪⎨⎧+=+=++nn n n n n ba b b a a 212211111②① 因为110b a <<由①②可知n n b a ,皆正.①×②得242142121211=⋅+≥+++=++nn nn nn nn n n b a a b b a a b a b ,所以,11++≥n n a bn=1时,22a b ≥但若2111224b a a b a b =⇔=112b a =⇔,这与110b a <<矛盾,故只可能有,22a b >又由②可得1111122321212b b b b a b =+<+=,即 11243b b b <<,因此122b b a <<.(2)由(1)可知,11++≥n n a b即nna b ≥,由②得n n n b a b241+=+nn n n b a b b 2)(41-=-+=nnnb b a --)(<0,故nn b b<+1,即nn n b b a <≤++11所以n n b a<+1.(3)由(2)知nn b b<+1故{b n }卓单调递减,从而121b b bb n n<<<<- ,因此1b b n<.本节“习题12”解答: 1.∵a n +1=a n +n 2,∴a n +1-a n =n 2,故a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=-1+16n(n-1)(2n-1)= 16(n 3-3n 2+n-6)2.(Ⅰ)∵a 1=1 . ∴a 2=3+1=4, a 3=32+4=13 .(Ⅱ)证明:由已知a n -a n -1=3n -1,故.2131333)()()(21112211-=++++=+-++-+-=-----nn n n n n n n a a a a a a a a所以证得213-=nn a .3.(1)第1位职工的奖金a 1=nb ,第2位职工的奖金a 2=n1(1-n1)b ,第3位职工的奖金a 3=n1(1-n1)2b ,…,第k 位职工的奖金a k =n1 (1-n1)k -1b ;(2)a k -a k +1=21n(1-n1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设f k (b )表示奖金发给第k 位职工后所剩余数,则f 1(b )=(1-n1)b ,f 2(b )=(1-n1)2b ,…,f k (b )=(1-n1)k b .得P n (b )=f n (b )=(1-n1)nb ,故eb b P n n =∞→)(lim .4.(1)当n ≥3时,x n =221--+n n x x ;=-=--=-+=-==-=212212232121,21)(212,)2(a a x x x x x x x a a x x aaa x x x x x x x 41)21(21)(2122332334=--=--=-+=-=, 由此推测a n =(-21)n -1a (n ∈N . 证:因为a 1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n nn n n n n n n a x x x x x x x x x a (n ≥2)所以a n =(-21)n -1a .(3)当n ≥3时,有x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1=a n -1+a n -2+…+a 1,由(2)知{a n }是公比为-21的等比数列,所以32)21(1lim 1=--=∞→a x n n a .5.特征方程x 2=2x -2有两个相异实根x 1=1+i,x 2=1-i.则数列{a n }的通项公式为:n n n i C i C a )1()1(21-++=,代入前两项的值,得⎩⎨⎧=-++=-++4)1()1(0)1()1(222121i C i C i C i C解此方程组得:C 1=-1-i,C 2=-1+i, 故π+-=--+-=+++41cos2)1()1(2311n i i an n n n.6.特征方程x 3=2x 2+x -2有三个相异实根x 1=1,x 2=-1, x 2=2,则数列{a n }的通项公式为:nn n C C C a 2)1(321+-+=,代入前三项的值,得⎪⎩⎪⎨⎧=+-=++=+-,68,24,02321321321C C C C C C C C C解此方程组得:C 1=-2,C 2=0,C 3=1 故22-=nna.7.特征方程x 3=6x 2-12x +2有三重实根x =2,则数列{a n }的通项公式为:nn C n nC C a 2)(3221⋅++=,代入前三项的值,得⎪⎩⎪⎨⎧=++=++=++,872248,21684,1222321321321C C C C C C C C C解此方程组得:C 1=1,C 2=43-,C 3=41 故222)34(-+-=n nn n a.8.特征方程x 3=7x 2-16x +12有x 1=x 2=2, x 3=3,,则数列{a n }的通项公式为:32132)(C nC C a nn n +⋅+=,代入前三项的值,得⎪⎩⎪⎨⎧-=++=++=++,1327248,1984,2322321321321C C C C C C C C C 解此方程组得:C 1=4,C 2=23,C 3=-3, 故.3232112+-+-⋅+=n n n n n a9. 由于登上n 级台阶可以从第n -2直接上来,也可以通过第n -1级分步上来,这样登上n 级台阶的走法不仅与登上n -1级走法有关,且也与登上n -2级台阶的走法有关,故这里可以考虑通过二阶递推式来进行求解.登上第一级只有一种走法,记a 1=1,登上第二级,有两种走法,记a 2=2,如果要登上第n 级,那么可能是第n -1级走上来,也可能是第n -2级跨上两级上来的,故有a n =a n -1+a n -2, 显然这是缺了F 0项的Fibonacci 数列,它的通项为 F n =51[(251+)n+1-(251-)n+1]所n 级楼梯,共有F n 种不同的走法.10.假设存在正整数列{a n }满足条件. ∵2212++≥n n n a a a , a n >0∴211≤-n n a a 22121≤--n n a a 23221---≤≤n n n a a 12a a ,n=3,4,5,又∵12a a 122221a a ⋅≤-所以有≤-1n n a a 221-n 12a a ⋅,n=2,3,4,5,∴≤⎪⎪⎭⎫ ⎝⎛⋅=--112221n n n a a a a ≤⎪⎪⎭⎫ ⎝⎛--+-2212)3()2(21n n n a a a ≤⎪⎪⎭⎫⎝⎛≤-++-+-22121)3()2(21a a a n n n∴212122212---⋅⎪⎭⎫⎝⎛≤n n n n a a a设[)Z k a k k∈∈+,2,2122取N=k+3则有<⋅⎪⎭⎫ ⎝⎛≤---212122212N N N Na a a,1122112211≤⋅⎪⎭⎫⎝⎛++++k k k k a 这Na 与是正整数矛盾.所以不存在正整数列{a n }满足条件.11.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111=+=+-+k a a a a k k k k于是 ∑∑=+-=++=nk k k nk k k a a a a n 11111由算术-几何平均值不等式,可得 nn n a a a a a a 132211+⋅⋅⋅≥+nn n a a a a a a 113120+-⋅⋅⋅注意到 110==a a ,可知nn n nn a a a 11111+++≥,即nnnn a a 111+≥+12.令b n =a n 2n ,则b n+1=-32b n +12,两边减去 15 , 得b n+1-15=-32(b n -15),即数列{ b n -15}是公比为-32的等比数列,所以b n -15=(b 0-15)(-32)n =(a 0-15)(-32n ,a n =2n b n =2n (a 0-15)·(-32)n +15·2n , 即a n =(a 0-15)·(-3)n +15·2n (n ≥0),从而a n+1-a n = 2n10[ 403 (a 0-15)·(-32)n +1] ,设A=403 (a 0-15)则a n+1-a n = 2n10[ A(-32)n +1] ,若a 0>15, 则A >0,对充分大的奇数n 有(-32)n >1A a n <a n -1, 若a 0<15,则A <0. 对充分大的偶数n 有(32)n >-1A于是a n <a n -1.综上所述,当a 0≠15时,数列{a n }不是单调递增.仅当a 0= 15时a n+1-a n = 2n10>0,数列{a n }是单调递增.。
常见线性递推数列通项的求法对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。
这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。
一、一阶递推数列1、q pa a n n +=+1型形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以11-+p qa 为首项以p 为公比的等比数列⎭⎬⎫⎩⎨⎧-+1p q a n 例1.在数列{a n }中,,13,111-⋅==+n n a a a 求n a .解:在131-⋅=+n n a a 的两边同加待定数λ,得n n n a a a (3131⋅=+-⋅=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-⋅=-∴-=+n n a a λ数列{}21-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32111+=∴⋅--n n n a2、 ()n g a c a n n +⋅=+1型(1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a .例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a .解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n ,把以上各式相加,得【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用2,3,4,,2,1 --n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。
如何总结高一数学的数列递推关系与应用在高一数学的学习中,数列递推关系及其应用是一个重要且具有一定难度的知识点。
要想学好这部分内容,我们需要深入理解其概念,掌握常见的递推关系类型,并能够灵活运用它们解决各种实际问题。
首先,我们来明确一下什么是数列递推关系。
简单来说,数列递推关系就是通过已知的项,按照一定的规则推出后续的项。
比如,对于数列{aₙ},如果给出了 a₁的值,以及一个关于 aₙ和 aₙ₋₁(或者其他前面的项)的关系式,那么就可以依次求出后面的项。
常见的数列递推关系类型有很多。
等差数列的递推关系是 aₙ =aₙ₋₁+ d(d 为公差),等比数列的递推关系是 aₙ = aₙ₋₁ × q(q为公比)。
除了这两种基本的数列,还有一些更复杂的递推关系,比如线性递推关系(形如 aₙ = paₙ₋₁+ q,其中 p、q 为常数)、非线性递推关系(如 aₙ = aₙ₋₁²+ 1 等)。
在学习数列递推关系时,理解其通项公式的推导过程是非常关键的。
以等差数列为例,我们知道 a₁的值,公差为 d,那么 a₂= a₁+ d,a₃= a₂+ d = a₁+ 2d,以此类推,可以得到 aₙ = a₁+(n 1)d。
这个通项公式就是通过对递推关系的不断累加得到的。
对于等比数列,同样可以通过类似的方法推导出通项公式 aₙ = a₁ × qⁿ⁻¹。
掌握了数列递推关系的类型和通项公式的推导,接下来就是要学会应用它们解决实际问题。
在数学竞赛或者高考中,经常会出现与数列递推关系相关的题目。
比如,让我们求数列的某一项的值,或者判断一个数列是否满足某种递推关系。
这时候,我们就需要根据已知条件,选择合适的递推关系类型,然后运用相应的方法进行求解。
例如,有这样一道题目:已知数列{aₙ}满足 a₁= 1,aₙ =2aₙ₋₁+ 1(n ≥ 2),求 a₅的值。
首先,我们可以根据递推关系依次求出 a₂、a₃、a₄,最后求出 a₅。
几类常见递推数列的解法几类递推数列通项公式的常见类型及解法江西省乐安县第二中学 李芳林 邮编 344300已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、a a d n n+=+1型形如d a a nn +=+1(d 为常数)的递推数列求通项公式,将此类数列变形得a a d n n+-=1,再由等差数列的通项公式()a a n d n =+-11可求得a n . 例1: 已知数列{}a n 中()a a a n N n n1123==+∈+,,求na 的通项公式. 解: ∵a a n n +=+13∴aa n n +-=13∴ {}a n是以a12=为首项,3为公差的等差数列.∴()an n n=+-=-21331为所求的通项公式.二、)(1n f a an n +=+型形如a 1+n =a n+ f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n)或可裂项成差的分式形式.——可移项后叠加相消.例2:已知数列{a n},a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n. 解:∵a 1+n =a n+(2n -1)∴a 1+n =a n +(2n -1) ∴a 2-a 1=1 、a 3-a 2=3 、…… a n -a 1-n =2n -3∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(an-a 1-n )=0+1+3+5+…+(2n -3)=21[1+(2n -3)]( n -1)=( n -1)2n ∈N +三、nn a q a⋅=+1型形如nn a q a ⋅=+1(q 为常数)的递推数列求通项公式,将此类数列变形得 q aann =+1,再由等比数列的通项公式11-⋅=n n q a a 可求得a n .例3 : 已知数列{}a n中满足a 1=1,nn a a21=+,求na 的通项公式.解:∵nn a a21=+ ∴21=+nn aa∴ {}a n是以11=a为首项,2为公比的等比数列.∴12-=n na 为所求的通项公式. 四、nn a n f a⋅=+)(1型形如nn a n f a⋅=+)(1可转化为)(1n f aa nn =+.其中f (n )=pp c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或nn a a 1+=kn (k ≠0)或nn a a 1+= km n( k ≠ 0, 0<m 且m ≠ 1).例4:已知数列{a n}, a 1=1,a n>0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n.解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n=0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n)= 0∵ a n >0 ∴ a 1+n +a n>0 ∴(n +1) a 1+n -na n=0∴11+=+n n aa nn∴nn n n n n n a a aa a a a a a an n n n n n n11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----ΛΛ五、a 1+n = f (a n) 型形如a 1+n = f (a n ),其中f (a n )是关于a n的函数.-—需逐层迭代、细心寻找其中规律. 例5:已知数列{a n },a 1=1, n ∈N +,a 1+n = 2a n+3 n ,求通项公式a n.解: ∵a 1+n = 2 a n+3 n∴ a n =2 a 1-n +3 n -1 =2(2 a 2-n +3 n -2)+3 n -1 = 22(2 a 3-n +3 n -3)+2·3 n -2+3 n -1=……=2 n -2(2 a 1+3 )+2 n -3·3 2+2 n -4·33+2 n-5·3 4+…+22·3 n-3+2·3 n -2+3 n-1=2 n -1+2 n -2·3 +2 n -3·3 2+2 n-4·3 3+…+22·3 n -3+2·3 n -2+3 n -1nn nn 2323123121-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=-六、a 1+n =pa n + q 型形如a 1+n =pa n+ q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列; 当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n+ q + x⇒a 1+n + x = p (a n+p x q +), 令x =p x q + ∴x =1-p q时,有a 1+n + x = p (a n+ x ),从而转化为等比数列 {a n+1-p q} 求解.例6:已知数列{a n}中,a 1=1,a n= 21a 1-n + 1,n = 1、2、3、…,求通项a n.解:∵ a n= 21a 1-n + 1 ⇒ a n -2 =21(a 1-n -2) 又∵a 1-2 = -1≠0 ∴数列{ a n-2}首项为-1,公比为21的等比数列. ∴ a n -2 = -11)21(-⨯n 即 a n= 2 -2n-1 n ∈N +七、a 1+n =pa n + f (n )型 形如a 1+n =pa n+ f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n+ f (n ) 即类型二. 当p ≠1时,f (n )为关于n 的多项式或指数形式(a n).⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.例7:已知数列{ a n }满足a 1=1,a 1+n = 2a n+n 2,n ∈N +求a n.解:令a 1+n + x [a (n +1)2+ b (n +1) + c ] = 2(a n+ an 2+ bn + c )即 a 1+n = 2 a n+ (2a –ax )n 2+ (2b -2ax –bx )n +2c –ax –bx – cx 比较系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221 ⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a∴ a 1+n + (n +1)2+2(n +1) + 3 = 2(a n+ n 2+2n + 3) ∵ a 1+1+2×1+3 = 7令b n= a n+ n 2+2n + 3 则 b 1+n = 2b nb 1= 7 ∴数列{ b n}为首项为7,公比为2的等比数列 ∴ b n = 7× 21-n 即 a n+ n 2+2n + 3 = 7× 21-n ∴ a n= 7× 21-n -( n 2+2n + 3 ) n ∈N +⑵若f (n )为关于n 的指数形式(a n).①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例8:若a 1=1,a n = 2 a 1-n + 31-n ,(n = 2、3、4…) ,求数列{a n }的通项a n.解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n+ x ×3n= 2(a 1-n +x ×31-n ) 得 a n = 2 a 1-n -x ×31-n令-x ×3n = 3n ⇒x = -1 ∴ a n-3n=2(a 1-n -31-n ) 又 ∵ a 1-3 = - 2∴数列{nna 3-}是首项为-2,公比为2的等比数列.∴n n a 3-=-2·21-n 即a n = 3n -2nn ∈N +例9:数列{ a n }中,a 1=5且a n =3a 1-n + 3n-1 (n = 2、3、4…) 试求通项a n.解: a n =3a 1-n + 3n -1 ⇒ a n +-=--)21(3211n a 3n⇒132132111+-=---n n n n a a ⇒{n n a 321-}是公差为1的等差数列.⇒n n a 321-=3211-a +(1-n ) =3215-+(1-n ) = n +21 ⇒a n= (213)21+⨯+nn n ∈N +八、a 2+n = p a 1+n + q a n型解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a-=-+++其中s ,t 满足⎩⎨⎧-==+qst pt s 解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a给出的数列{}na ,方程2=--q px x ,叫做数列{}na 的特征方程。
几类递推数列通项公式的常见类型及解法江西省乐安县第二中学 李芳林 邮编 344300 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法.一、a a d n n +=+1型形如d a a n n +=+1(d 为常数)的递推数列求通项公式,将此类数列变形得a a d n n +-=1,再由等差数列的通项公式()a a n d n =+-11可求得a n .例1: 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式.解: ∵a a n n +=+13 ∴a a n n +-=13∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n)或可裂项成差的分式形式.——可移项后叠加相消.例2:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1)∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3)=21[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 三、n n a q a ⋅=+1型形如n n a q a ⋅=+1(q 为常数)的递推数列求通项公式,将此类数列变形得q a a nn =+1,再由等比数列的通项公式11-⋅=n n q a a 可求得a n . 例3 : 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴21=+nn a a∴ {}a n 是以11=a 为首项,2为公比的等比数列. ∴12-=n n a 为所求的通项公式.四、n n a n f a ⋅=+)(1型 形如n n a n f a ⋅=+)(1可转化为)(1n f a a n n =+.其中f (n ) =ppc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或nn a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1).例4:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0∴11+=+n n a an n∴nn n n n nn a a a a a a a a a a n n n n n n n 11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----五、a 1+n = f (a n ) 型形如a 1+n = f (a n ),其中f (a n )是关于a n 的函数.-—需逐层迭代、细心寻找其中规律.例5:已知数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n ,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n∴ a n =2 a 1-n +3 n -1 =2(2 a 2-n +3 n -2)+3 n -1 = 22(2 a 3-n +3 n -3)+2·3 n -2+3 n -1 =……=2 n -2(2 a 1+3 )+2 n -3·3 2+2 n -4·3 3+2 n-5·3 4+…+22·3 n-3+2·3 n -2+3 n-1 =2 n -1+2 n -2·3 +2 n -3·3 2+2 n-4·3 3+…+22·3 n -3+2·3 n -2+3 n -1 n n n n 2323123121-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=-六、a 1+n =pa n + q 型形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数. 当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n +p x q +), 令x =p x q + ∴x =1-p q时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +1-p q} 求解.例6:已知数列{a n }中,a 1=1,a n = 21a 1-n + 1,n = 1、2、3、…,求通项a n . 解:∵ a n = 21a 1-n + 1 ⇒ a n -2 =21(a 1-n -2)又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为21的等比数列.∴ a n -2 = -11)21(-⨯n 即 a n = 2 -2n -1 n ∈N +七、a 1+n =pa n + f (n )型形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数. 当p =1时,则 a 1+n =a n + f (n ) 即类型二.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n ).⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.例7:已知数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x [a (n +1)2+ b (n +1) + c ] = 2(a n + an 2+ bn + c )即 a 1+n = 2 a n + (2a –ax )n 2+ (2b -2ax – bx )n +2c –ax –bx – cx 比较系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221 ⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a ∴ a 1+n + (n +1)2+2(n +1) + 3 = 2(a n + n 2+2n + 3) ∵ a 1+1+2×1+3 = 7令b n = a n + n 2+2n + 3 则 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2的等比数列 ∴ b n = 7× 21-n 即 a n + n 2+2n + 3 = 7× 21-n∴ a n = 7× 21-n -( n 2+2n + 3 ) n ∈N +⑵若f (n )为关于n 的指数形式(a n).①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例8:若a 1=1,a n = 2 a 1-n + 31-n ,(n = 2、3、4…) ,求数列{a n }的通项a n .解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n + x ×3n= 2(a 1-n +x ×31-n ) 得 a n = 2 a 1-n -x ×31-n令-x ×3n= 3n⇒x = -1 ∴ a n -3n= 2(a 1-n -31-n ) 又 ∵ a 1-3 = - 2∴数列{nn a 3-}是首项为-2,公比为2的等比数列.∴n n a 3-=-2·21-n 即a n = 3n -2nn ∈N +例9:数列{ a n }中,a 1=5且a n =3a 1-n + 3n -1 (n = 2、3、4…) 试求通项a n . 解: a n =3a 1-n + 3n -1 ⇒ a n +-=--)21(3211n a 3n⇒132132111+-=---n n n n a a ⇒{n n a 321-}是公差为1的等差数列. ⇒n n a 321-=3211-a +(1-n ) = 3215-+(1-n ) = n +21 ⇒a n = (213)21+⨯+n n n ∈N +八、a 2+n = p a 1+n + q a n 型解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+q st pt s解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
递推数列的概念与性质数列是数学中重要的概念之一,而递推数列是数列中常见的一种形式。
本文将介绍递推数列的概念与性质,并通过例子来说明其应用。
一、递推数列的概念递推数列是一种由前一项或前多项推出后一项的数列。
其基本形式可以表示为:给定数列的首项$a_1$和递推关系$f(n)$,则数列的通项公式可以表示为:\[ a_n = f(a_{n-1}) \]其中$n$表示数列的位置。
递推数列常见的表示方法有三种:显式表示、隐式表示和递归定义。
显式表示是通过给定递推公式得到数列项的直接表达式,而隐式表示是通过给定递推公式得到数列项的关系式。
递归定义则是通过给定数列的首项和递推关系逐步推导后一项。
二、递推数列的性质1. 有界性:递推数列可以是有界或无界的。
有界数列是指存在一个实数$M>0$,使得对于所有的$n\in\mathbb{N}$,都有$|a_n|\leq M$。
无界数列则是相反的情况。
2. 单调性:递推数列可以是单调递增或单调递减的。
单调递增数列是指对于所有$n\in\mathbb{N}$,都有$a_n\leq a_{n+1}$。
单调递减数列则是相反的情况。
3. 整体性:递推数列可以是整体有序或整体无序的。
整体有序数列是指对于所有的$m,n\in\mathbb{N}$,如果$m<n$,则有$a_m\leq a_n$。
整体无序数列则是相反的情况。
4. 极限性:递推数列可以是收敛或发散的。
收敛数列是指存在一个有限的实数$L$,使得数列中的所有项都无限接近$L$。
发散数列则是相反的情况。
三、递推数列的应用举例1. 斐波那契数列斐波那契数列是一个经典的递推数列,其前两项为1,从第三项开始,每一项都是前两项之和。
其显式表示为:\[ a_n = a_{n-1} + a_{n-2} \]2. 几何数列几何数列是一个常见的递推数列,其首项$a_1$和公比$q$确定后,每一项都是前一项乘以公比。
其显式表示为:\[ a_n = a_{n-1} \cdot q \]递推数列在数学中有着广泛的应用,例如在金融领域的复利计算、物理学中的运动学问题等。
数列的概念与递推关系数列是数学中常见的一种数学对象,它由一系列按照一定规律排列的数字组成。
在数列中,每一个数字称为数列的项。
数列的概念与递推关系是数学中的重要内容,本文将介绍数列的概念以及递推关系的应用。
一、数列的概念数列可以通过将数字按照一定规律排列来表示。
通常情况下,我们用字母 a 来表示数列的每一项,用 n 来表示项的位置。
一个数列可以表示为 a1, a2, a3, ..., an, ...。
其中,a1 表示数列的第一项,a2 表示数列的第二项,以此类推。
数列可以是有限的,也可以是无限的。
有限数列的项数是有限的,无限数列的项数是无限的。
二、递推关系递推关系是指数列中每一项与它前面的某一项之间的关系。
递推关系可以用来确定数列中任意一项的值。
常见的递推关系有等差数列和等比数列。
1. 等差数列等差数列是指数列中每一项与它前面的一项之间的差值相等。
设数列为 a1, a2, a3, ..., an, ...,则它的递推关系为 an = an-1 + d,其中 d 为公差。
公差 d 表示数列中相邻两项之间的差值。
等差数列的通项公式为 an = a1 + (n-1)d。
通项公式可以用来直接计算数列中任意一项的值。
2. 等比数列等比数列是指数列中每一项与它前面的一项之间的比值相等。
设数列为 a1, a2, a3, ..., an, ...,则它的递推关系为 an = an-1 * r,其中 r 为公比。
公比 r 表示数列中相邻两项之间的比值。
等比数列的通项公式为 an = a1 * r^(n-1)。
同样可以利用通项公式计算数列中任意一项的值。
三、数列的应用数列的概念与递推关系在数学中有广泛的应用。
以下是数列应用的一些例子:1. 数列求和通过递推关系,我们可以得到数列的通项公式,从而可以计算数列的前 n 项和。
数列求和在实际生活中有很多应用,比如计算金融投资中的收益、计算物理学中的位移、速度等。
2. 等差数列与等差数列等差数列与等差数列都是常见的数学模型。