九类常见递推数列求通项公式方法
- 格式:doc
- 大小:730.22 KB
- 文档页数:16
1数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强 的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
笔者总结出九种求解 数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法, 类型的题目.2例1 .等差数列{an}是递增数列,前n 项和为S1,且引,*3,a9成等比数列,S 5^*5.求 数列{a n}的通项公式 解:设数列{an}公差为d(d >0)2•/a1,a 3,a 9 成等比数列,••• a 3 =a1a9 ,2 2即 @1 +2d)=印@1 +8d),得 d =a 1d...d H0 a1=d--S s = a](n -1)n ,1a3 -a2 = ---这种方法适应于已知数列5a 1 +5*4d =⑻ +4d)2a1=3 —5 =3 -5 由①②得:3 •••an —5点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再 写出通项。
二、累加法求形如a n -a n 」= f(n) (f(n)为等差或等比数列或其它可求和的数列)的数列通项, …n — 1得到n — 1个式子累加求得通项。
+ (n-1)3 =-n 5可用累加法,即令 n=2, 3,例2.已知数列{a n }中, an _an4解:由已知得a 1=1,对任意自然数 1an = an4 中n 都有n(n+1),求 an .—n(n+1),an ~ an-2 1a 2y,13^4 ,丄+ an_ q _ 2x3+■(n-2)(n —1) (n —1)n n(n+1)31…a=2 n +1 ,点评:累加法是反复利用递推关系得到n —=丄n(n+1) nn +1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n—1项的和,要注意求和的技巧.三、迭代法求形如a n* =q a n +d(其中q,d为常数)的数列通项,可反复利用递推关系迭代求出。
常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
数列通项九种求解方法类型一:1n n a pa q+=+(1p ≠)思路(构造等比数列法):设()1n n a p a μμ++=+,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列。
例1、已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。
解:(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。
3(a a ++-21n a n =+类型三:1()n n a f n a +=⋅ (累乘法) 思路(累乘法):=n a 13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式 例3、已知11a =,111n n n a a n --=+,求n a 。
解:,2≥n 111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a =,即12311n n n n a n n n ---=⋅⋅⋅+-…21243(1)n n ⋅⋅=+,11=a 也符合。
类型四:1()n n a pa f n +=+ (0p ≠且1p ≠)思路(转化法):1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n n a a f n p p p ---=+,我们令nn na b p =,那么问题就可以转化为类型二进行求解了。
例4 、已知12a =,1142n n n a a ++=+,求n a 。
解:142nn n a a -=+,式子两边同时除以4n得111442nn n n n a a --⎛⎫=+ ⎪⎝⎭,令4n n n a b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,由累加法得nn b )21(1-= 1441422n n n n n n n a b ⎡⎤⎛⎫∴=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
数列求通项公式方法总结数列是数学中的一种常见概念,它在很多应用领域中发挥着重要作用。
数列的通项公式是指能够通过一个公式来表示数列的每一项的方法。
在数学中,求解数列的通项公式是一种重要的技巧和思维训练。
本文将总结一些常见的数列求通项公式的方法。
方法一:递推法递推法是数列求解的一种常见方法。
它基于数列中每一项与前一项之间的关系,通过逐项递推来找到通项公式。
例如,考虑一个等差数列 2,5,8,11,14......,我们可以observe 最终一项与前一项之间的关系,即 +3。
因此,我们可以推断出该数列的通项公式为 2+3(n-1),其中 n 为项数。
通过递推法,我们可以求解出许多常见的数列。
方法二:代数法代数法是一种通过代数方程来表示数列通项的方法。
对于一些特殊的数列,我们可以通过数学运算和等式推导来找到通项公式。
例如,考虑一个等比数列 2,4,8,16,32......,我们可以发现每一项与前一项之间的关系都是乘以2。
因此,我们可以写出等式an = a(n-1) * 2,其中 a(n-1) 表示前一项。
通过解这个等式,我们可以得到通项公式 an = 2^(n-1)。
方法三:配方法配方法是一种通过把数列分解成两个已知数列的和或差的方法,从而找到通项公式的方法。
这种方法常用于一些复杂的数列。
例如,考虑一个斐波那契数列 1,1,2,3,5,8......,我们可以发现每一项都是前两项之和。
通过设定两个已知数列 a(n) 和b(n),满足 a(1) = a(2) = 1,b(1) = 2,b(2) = 3,并通过递推求解出 a(n) = a(n-1) + a(n-2) 和 b(n) = b(n-1) + b(n-2)。
因此,我们可以得到数列通项公式 F(n) = a(n) + b(n)。
方法四:生成函数法生成函数法是一种利用生成函数来表示数列的方法。
生成函数是一个形式化的工具,用于处理数列和序列的问题。
例如,考虑一个斐波那契数列 1,1,2,3,5,8......,我们可以将该数列转变为一个生成函数来表示。
递推数列求通项公式的常见类型及方法递推数列求通项即依据给出数列中相邻两项或几项的关系式,n a 与n S 的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.1. )(1n f a a n n +=+.方法:叠加法. 令1,2,1-=n n,得21321(1)(2)(1)n n a a f a a f a a f n -=+=+=+-以上1-n 个式子相加,得111().n ni a a f i -==+∑ 例1.数列{}n a 中,)2(1,1211≥-+==-n n n a a a n n ,求数列{}n a 的通项. 解: 令n n ,,3,2 =,得212322121221331n n a a a a a a n n -=+-=+-=+-n n a a n -++-+-+=∴22211331221 11111223(1)111111(1)()()223112.a n n n n n =+++⨯⨯-=+-+-++--=- 2. )(1n f a a n n =+. 方法:累积法. 令1,2,1-=n n,得21321(1)(2)(1).n n a a f a a f a a f n -===-以上1-n 个式子求积,得)(111i f a a n i n-=∏+=. 例2. 数列{}n a 中,)2()11(,2121≥⋅-==-n a na a n n ,求数列{}n a 的通项.解: 由题1212)1)(1()11(--+-=-=n n n a nn n a n a ,令1,2,1-=n n ,得 21232212132243(1)(1)n n a a a a n n a a n -⨯=⨯=-+= 2221)1)(1(342231n n n a a n +-⋅⋅⨯⋅⨯⋅=∴ 11121.n a n n n +=⋅⋅+= 3. )0,1(1≠≠+=+q p q pa a n n . 方法一:配凑法.1().n n a p a λλ+-=-方法二:待定系数法.令)(1λλ-=-+n n a p a 比较已知得,.1q p q pλλλ-==- λ是方程q px x +=的根. q px x +=是特征方程.方程三: 两根同除以1+n p ,得111++++=n n n n n p q p a p a 转化为类型1. 例3(07.全国) 数列{}n a 中, ,3,2,1),2)(12(,21=+-==n a a a n n ,求数列{}n a 的通项. 解法一: )2)(12(1+-=+n n a a {}为公比的等比数列为首项,是以数列122222)2)(12(211--=--∴--=-∴+a a a a n n nn n na )12(2)12)(22(21-⨯=--=-∴- 故 2)12(2+-⨯=n n a解法二:令))(12(1λλ--=-+n n a a)12(2)12(-=--∴λλ 解得2=λ下同解法一.解法三:)12(2)12()2)(12(1-+-=+-=+n n n a a a两边同除以1)12(+-n ,得nn n n n a a )12(2)12()12(11-+-=-++ 令n n n n n a a b )12()12(+=-= 则n n n b b )12(21++=+.令.1,2,1-=n n 得11223112)12(2)12(2)12(2--++=++=++=n n n b b b b b b1211)12(2)12(2)12(2-+++++++=∴n n b b2)12(2)12(1])12(1)[12(2)12(21++=+-+-+⋅++=-n nn n n n b a )12(22)12(-⨯+=-=∴.4. )0,1(,1≠≠+=+q p q pa a n n n .方法一:两边同除以1+n p ,得111++++=n nn n n n p q p a p a 转化为类型一.方法二:待定系数法.令)(11-+-=-n n n n q a p q a λλ比较已知得p q q -=λ. 例4.数列{}n a 中,)1(,23,111≥+==+n a a a n n n ,求数列{}n a 的通项. 解法一:两边同除以13+n ,得1113233++++=n nn n n n a a . 令n n n a b 3=,则1132+++=n nn n b b . 令.1,2,1-=n n 得n n n n b b b b b b 323232113223212--+=+=+= n n n b b 32323213221-++++=∴ nn n n )32(1321])32(1[31323232311322-=--=++++=- n n n a 23-=∴.解法二:令)2(3211-+⋅-=-n n n n a a λλn n n 22321=-⋅∴-λλ解得2-=λ.即)2(3211n n n n a a +=+++,所以数列{}n n a2+是以321=+a 为首项,3为公比的等比数列. .23,32n n n n n n a a -==+∴故5. )1).((1≠+=+p n f pa a n n .方法:两边同除以1+n p ,得111)(++++=n n n n n pn f p a p a 转化为类型一. 例5. 数列{}n a 中,)1(,223,111≥-+==+n n a a a n n ,求数列{}n a 的通项.解: 两边同除以13+n ,得11132233+++-+=n n n n n n a a 令n nn a b 3=,得11322++-+=n n n n b b . 利用叠加法及错位相减法,以求得2123+-=n a n n . 6.)()(1n g a n f a n n +=+.方法: 两边同除以)()2()1(n f f f ,得)()2()1()()()2()1()()2()1(1n f f f n g n f f f a n f f f a n n +=+转化为类型一 例6. (2008年河南省普通高中毕业班教学质量调研考试)数列{}n a 中,)1(2)1(22,111≥++++==+n n n a n n a a n n ,求数列{}n a 的通项. 解: 令,2)(+=n n n f 则)2)(1(2211534231)()2()1(++=+⨯+-⨯⨯⨯⨯=n n n n n n n f f f 两边同除以)()2()1(n f f f ,得)2)(1(22)1(2)1(2)2)(1(21++++++=+++n n n n n n a n n a n n 即21)1(2)1()1)(2(+++=+++n na n a n n n n 令n n na n b )1(+=,则21)1(2++=+n b b n n令.1,2,1-=n n 得2122321223222n b b b b b b n n +=⨯+=⨯+=-)32(22221n b b n +++⨯+=∴3)12)(1(]16)12)(1([212++=-++⨯+⨯=n n n n n n 312+=∴n a n . 7. )(1n f a a n n =+. 方法: 由已知)1(12+=++n f a a n n ,两式相除,得)()1(2n f n f a a n n +=+. 例7. 数列{}n a 中,)1(,)31(,211≥==+n a a a n nn ,求数列{}n a 的通项. 解: 由题2,31121==a a a ,得612=a n n n a a )31(1=+ ………..① 112)31(+++=n n n a a ……...② ②÷①得 312=+n n a a k k a a a a a a 2421231,,,,,,和+∴都是以31为公比的等比数列 当n 为奇数时,21211)31(2--⋅==n n n q a a 当n 为偶数时,22222)31(61--⋅==n n n q a a ⎪⎪⎩⎪⎪⎨⎧⋅⋅=∴--为偶数,为奇数n n a n nn 2221)31(61,)31(2. 8.n n n qa pa a +=++12. 方法一: 配凑法.)(112n n n n a a a a αβα-=-+++方法二: 待定系数法. 令)(112n n n n a a a a αβα-=-+++,比较已知得 ⎩⎨⎧==+q p αββα 得出βα, 其中βα,是方程q px x +=2的两根,方程q px x +=2是特征方程.例8. 数列{}n a 中,)1(,65,5,11221≥-===++n a a a a a n n n ,求数列{}n a 的通项.解: 令)(112n n n n a a a a αβα-=-+++比较已知得⎩⎨⎧==+65αββα 得出2,3==βα )3(23112n n n n a a a a -=-∴+++数列{}n n a a 31-+是以2312=-a a 为首项,2为公比的等比数列.则n n n a a 231=-+,即n n n a a 231+=+.下同例4. 9.)0(,1≠++=+ac b aa d ca a n n n . 方法: 不动点法. 令bax d cx x ++=………(*) 若(*)有两重根,021x x x ==,则⎭⎬⎫⎩⎨⎧-01x a n为等差数列. 若(*)有两根,21x x ≠,则⎭⎬⎫⎩⎨⎧--21x a x a nn 为等比数列. 例9.(08,洛阳三练)数列{}n a 中,n n a a a -==+21,2111,求数列{}n a 的通项. 解:令xx -=21,得1=x . 111121111111-=----=---+n n n n a a a a , 为公差的等差数列为首项,是以1-2121111111-=-=-⎭⎬⎫⎩⎨⎧-∴a a n . 1)1()1(211--=-⨯-+-=-∴n n a n 1+=∴n n a n . 例10.(07.全国)数列{}n b 中,)1(3243,211≥++==+n b b b b n nn ,求数列{}n b 的通项. 解: 令3243++=x x x ,解得2,221=-=x x , 则411)12(2223243232432222+=-+-+++++=-+-+++n n n n n n n n n n b b b b b b b b b b 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22n n b b 是以22222211-+=-+b b 为首项,4)12(+为公比的等比数列. 24)1(4)12()12(222222--+=+⋅-+=-+∴n n n nb b故1)12(1)12(22424-+++⋅=--n n nb .10. n n S a 与的关系.方法: ⎩⎨⎧-=-,,1n nn n S S S a 21≥=n n 可以向n a 转化,也可以向n S 转化.例11. 数列{}n a 的前n 项和,)1(12≥+=n a a S nn n ,求数列{}n a 的通项公式. 解法一: 1=n 时,1111212a a a S =+=,解得11=a )2(,1212111≥+=∴+=---n a a S a a S n n n nn n 两式相减得 11112---+-=n n n n n a a a a a ,)1(111--+-=-n n n n a a a a . 平方得 4)1()1(212122=+-+--n n n n a a a a . 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+221n n a a 是以212121=+a a 为首项,4为公差的等差数列。
数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法例2 已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 已知数列满足,求的通项公式。
解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。
所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法例7已知数列满足,求数列的通项公式。
解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设⑥将代入⑥式,得整理得。
令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
递推数列通项求解方法类型一:1n n a pa q +=+(1p ≠)思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---⎡⎤=+=++=+++=⎣⎦ (12)1(1n p a q p p -=++++…211)11n n q qp a p p p--⎛⎫+=+⋅+ ⎪--⎝⎭。
思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n n q qa a p p p -⎛⎫=++ ⎪--⎝⎭。
例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。
解:方法1(递推法):()123232(23)3222333n n n n a a a a ---⎡⎤=+=++=+++=⎣⎦……1223(122n -=++++…211332)12232112n n n --+⎛⎫+=+⋅+=- ⎪--⎝⎭。
方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。
1n n +思路1(递推法):123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-=…111()n i a f n -==+∑。
思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑。
例2 已知11a =,1n n a a n -=+,求n a 。
解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1)(1)(2)(1)]2ni n n n n n n =++-+-+==∑。
方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、212a a -=,将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑。
1n n +思路1(递推法):123(1)(1)(2)(1)(2)(3)n n n n a f n a f n f n a f n f n f n a ---=-⋅=-⋅-⋅=-⋅-⋅-⋅=…(1)(2)(3)f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅。
思路2(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n af n a --=-、23(3)n n a f n a --=-、…、21(1)af a =,将各式叠乘并整理得1(1)(2)(3)n a f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅。
例3 已知11a =,111n n n a a n --=+,求n a 。
解:方法1(递推法):1231121231111n n n n n n n n n n a a a a n n n n n n ---------==⋅=⋅⋅=+++-…2(1)n n =+。
方法2(叠乘法):111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a =,将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+- (21)43⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+-…21243(1)n n ⋅⋅=+。
11n n n +-思路(特征根法):为了方便,我们先假定1a m =、2a n =。
递推式对应的特征方程为2x px q =+,当特征方程有两个相等实根时, ()12n n p a cn d -⎛⎫=+⋅ ⎪⎝⎭(c 、d 为待定系数,可利用1a m =、2a n =求得);当特征方程有两个不等实根时1x 、2x 时,1112n n n a ex fx --=+(e 、f 为待定系数,可利用1a m =、2a n =求得);当特征方程的根为虚根时数列{}n a 的通项与上同理,此处暂不作讨论。
例4 已知12a =、23a =,116n n n a a a +-=-,求n a 。
解:递推式对应的特征方程为26x x =-+即260x x +-=,解得12x =、23x =-。
设1112n n n a ex fx --=+,而12a =、23a =,即2233e f e f +=⎧⎨-=⎩,解得9515e f ⎧=⎪⎪⎨⎪=⎪⎩,即11912(3)55n n na --=⋅+⋅-。
类型五:1n n n a pa rq +=+ (0p q ≠≠)思路(构造法):11n n n a pa rq --=+,设11nn n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩。
那么n n a r q p q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,pq为公比的等比数列。
例5 已知11a =,112n n n a a --=-+,求n a 。
解:设1122n n n n a a μλμ--⎛⎫+=+ ⎪⎝⎭,则()121122n n λμλ-=-⎧⎪⎨-=⎪⎩,解得1213λμ⎧=-⎪⎪⎨⎪=-⎪⎩,123n n a ⎧⎫∴-⎨⎬⎩⎭是以111236-=为首项,12为公比的等比数列,即11112362n n na -⎛⎫-=⋅ ⎪⎝⎭,213n n a +∴=。
类型六:1()n n a pa f n +=+ (0p ≠且1p ≠)思路(转化法):1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型二进行求解了。
例6 已知12a =,1142n n n a a ++=+,求n a 。
解:142n n n a a -=+,式子两边同时除以4n得111442nn n n n a a --⎛⎫=+ ⎪⎝⎭,令4n n n a b =,则112n n n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭,各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********nnnnnn nn i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑1441422n nnn n n n a b ⎡⎤⎛⎫∴=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。
类型七:1r n n a pa += (0n a >)思路(转化法):对递推式两边取对数得1log log log m n m n m a r a p +=+,我们令log n m n b a =,这样一来,问题就可以转化成类型一进行求解了。
例7 已知110a =,21n n a a +=,求n a 。
解:对递推式21n n a a +=左右两边分别取对数得1lg 2lg n n a a +=,令lg n n a b =,则12n n b b +=,即数列{}n b 是以1lg101b ==为首项,2为公比的等比数列,即12n n b -=,因而得121010n n bn a -==。
思路(转化法):对递推式两边取倒数得11n n n pa d a c a ++=⋅,那么111n n d p a c a c+=⋅+,令1n nb a =,这样,问题就可以转化为类型一进行求解了。
例8 已知14a =,1221nn n a a a +⋅=+,求n a 。
解:对递推式左右两边取倒数得12112n n n a a a ++=即111112n n a a +=⋅+,令1n nb a =则1112n n b b +=+。
设()112n n b b μμ++=+,即2μ=-,∴数列{}2n b -是以17244-=-为首项、12为公比的等比数列,则1722n n b +-=-,即21272n n n b ++-=,12227n n n a ++∴=-。
思路(特征根法):递推式对应的特征方程为ax b x cx d+=+即2()0cx d a x b +--=。
当特征方程有两个相等实根12x x δ==时,数列1n a δ⎧⎫⎨⎬-⎩⎭即12n a d a c ⎧⎫⎪⎪⎨⎬-⎪⎪-⎩⎭为等差数列,我们可设11122n n a d a d a a c cλ+=+----(λ为待定系数,可利用1a 、2a 求得);当特征方程有两个不等实根1x 、2x 时,数列12n n a x a x ⎧⎫-⎨⎬-⎩⎭是以1112a x a x --为首项的等比数列,我们可设1111212n n n a x a x a x a x μ-⎛⎫--=⋅ ⎪--⎝⎭(μ为待定系数,可利用已知其值的项间接求得);当特征方程的根为虚根时数列{}n a 通项的讨论方法与上同理,此处暂不作讨论。
例9 已知112a =, 11432n n n a a a --+=+(2n ≥),求n a 。
解:当2n ≥时,递推式对应的特征方程为432x x x +=+即2230x x --=,解得11x =-、23x =。
数列13n n a a ⎧⎫+⎨⎬-⎩⎭是以1112212a x a x -==---为首项的等比数列,设()1113n n n a a μ-+=-⋅-,由112a =得22a =则3μ-=-,3μ∴=,即()11133n n n a a -+=-⋅-,从而13131n n n a --=+,11,1231,231n n n n a n -⎧=⎪⎪∴=⎨-⎪≥⎪+⎩。