数学物理方程(谷超豪) 第三章 调和方程习题解答
- 格式:pdf
- 大小:255.20 KB
- 文档页数:36
第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程第三版答案谷超豪【篇一:数学物理方程_答案_谷超豪】/p> 1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明u(x,t)满足方程???u????u????x????e? ?t??t??x??x?其中?为杆的密度,e为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x与x??x。
现在计算这段杆在时刻t的相对伸长。
在时刻t这段杆两端的坐标分别为:x?u(x,t);x??x?u(x??x,t)其相对伸长等于令?x?[x??x?u(x??x,t)]?[x?u(x,t)]??x?x?ux(x???x,t),取极限得在点x的相对伸长为ux(x,t)。
由虎克定律,张力t(x,t)等于t(x,t)?e(x)ux(x,t)其中e(x)是在点x的杨氏模量。
设杆的横截面面积为s(x),则作用在杆段(x,x??x)两端的力分别为e(x)s(x)ux(x,t);e(x??x)s(x??x)ux(x??x,t).于是得运动方程 ?(x)s(x)??x?utt(x,t)?esu利用微分中值定理,消去?x,再令?x?0得??(x)s(x)u?(esux)?x若s(x)?常量,则得?u?t22x(x??x)|x??x?esux(x)|x?(x)即得所证。
=(e(x)?u?x)2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在x?0,x?l两点则相应的边界条件为u(0,t)?0,u(l,t)?0.(2)若x?l为自由端,则杆在x?l的张力t(l,t)?e(x)的边界条件为?u?x?u?x|x?l等于零,因此相应|x?l=0?u同理,若x?0为自由端,则相应的边界条件为?x(3)若x?l端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的∣x?0?0偏移由函数v(t)给出,则在x?l端支承的伸长为u(l,t)?v(t)。
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。