硬件工程师EMC必备知识系列
- 格式:doc
- 大小:283.00 KB
- 文档页数:9
硬件工程师必会知识点一、知识概述《电路基础》①基本定义:电路嘛,简单说就是电流能跑的一个通路。
就像咱住的房子要有路才能进出一样,电也得有个道儿能走。
它由电源、导线、开关和用电器这些东西组成。
电源就像是发电站给电力来源,导线就是电走的路,开关就是控制电走不走的门,用电器就是用电干活儿的东西,像灯能照明。
②重要程度:在硬件工程师这行里,电路基础就像是建房的地基。
要是电路基础不牢,后面啥复杂电路、电路板设计都没法好好搞。
③前置知识:那得先知道基本的数学知识,像代数啊,能计算电阻、电压、电流之间的关系。
还有物理里的电学知识,啥是电,电的基本特性这些。
④应用价值:日常生活到处都是,就说家里头的电路,从电灯、电视到冰箱,哪一个离得开电路基础呢。
在电子设备制造上,设计手机、电脑主板啥的,也都得靠电路基础。
二、知识体系①知识图谱:在硬件这学科里,电路基础是最底层最基本的东西。
就像树根一样,从这上面生出各种分支,像模拟电路、数字电路这些。
②关联知识:和电磁场理论有关系,因为电场磁场和电路里的电有着千丝万缕的联系。
也和电子元器件知识分不开,毕竟元器件是电路的组成部分。
③重难点分析:- 掌握难度:对于初学者来说,理解电路里那些抽象的概念是个难点,像电压降、电势差这些。
就拿我刚学的时候,死活想不明白为啥电流从高电势往低电势跑。
- 关键点:得把电流、电压、电阻间的关系搞明白,特别是欧姆定律。
这个关系理顺了,分析简单电路就很容易。
④考点分析:- 在考试中的重要性:超级重要,大部分硬件工程相关的考试都会考到电路基础。
- 考查方式:选择题可能会出计算电阻值的题,简答题可能让你分析一个简单电路里某些点的电压情况。
三、详细讲解- 理论概念类①概念辨析:- 电流:可以看成是电的水流,就是电子在导线里定向移动。
想象一群小蚂蚁排着队在一根小管道里往前走。
单位是安培。
- 电压:这就像是水管里水的压力,电有个推动电子跑的力量叫电压。
电压单位是伏特。
EMC基础培训资料一、什么是 EMCEMC 即电磁兼容性(Electromagnetic Compatibility),指的是设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
简单来说,就是电子设备在运行过程中,既不会受到外部电磁环境的干扰,也不会对外界产生过多的电磁干扰。
电磁兼容性包括两个方面:一方面是设备要有一定的抗干扰能力,能够在复杂的电磁环境中稳定运行;另一方面,设备自身产生的电磁辐射要控制在一定范围内,不能影响其他设备的正常工作。
二、EMC 问题的产生电子设备在工作时,会通过电路中的电流变化产生电磁波。
当多个设备同时工作时,这些电磁波就可能相互干扰。
例如,手机在通话时会发出电磁波,如果附近的电子设备对这种电磁波过于敏感,就可能出现工作异常。
同时,外部的电磁环境,如雷电、电力系统的电磁辐射等,也可能对电子设备造成干扰。
三、EMC 标准与规范为了确保电子设备的电磁兼容性,各国和国际组织都制定了相应的标准和规范。
这些标准规定了电子设备在不同频段内允许产生和承受的电磁干扰水平。
常见的 EMC 标准包括国际电工委员会(IEC)制定的标准,以及各个国家和地区自己制定的标准,如我国的 GB 标准。
企业在生产电子设备时,必须按照相关标准进行设计和测试,以确保产品能够通过 EMC 认证,进入市场销售。
四、EMC 测试项目EMC 测试主要包括两个方面:电磁干扰(EMI)测试和电磁抗扰度(EMS)测试。
电磁干扰测试是测量电子设备向外发射的电磁能量,常见的测试项目有:1、传导干扰测试:检测设备通过电源线、信号线等导体向外传播的干扰。
2、辐射干扰测试:测量设备通过空间向外辐射的电磁波。
电磁抗扰度测试是评估电子设备在受到外部电磁干扰时的工作性能,常见的测试项目有:1、静电放电抗扰度测试:模拟人体静电放电对设备的影响。
2、射频电磁场辐射抗扰度测试:考察设备在射频电磁场中的抗干扰能力。
EMC工程师必须具备以下八大技能:1、EMC的基本测试项目以及测试过程掌握;2、产品对应EMC的标准掌握;3、产品的EMC整改定位思路掌握;4、产品的各种认证流程掌握;5、产品的硬件硬件知识,对电路(主控、接口)了解;6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;7、产品结构屏蔽设计技能掌握;8、对EMC设计如何介入产品各个研发阶段流程掌握。
EMC工程师的前途问题现在企业无论电子产品出口还是销售国内,都需要EMC认证,都需要解决EMC问题,因此EMC工程师是一个比较有前途与发展的职业。
有公司在网上名码标价年薪20万招EMC安规工程师,但很久没人敢问津。
和EMC有关的人各大猎头公司都会去不至去一次电话!至到觉的实在没招才罢手!要么就求着介绍行业人士认识。
但要成为合格的EMC工程师,需要具备以下几个方面知识:1、电磁兼容的标准知识,如产品测试项目参照那些标准,如何测试的;2、对于产品的电路需要了解,对一个产品电路都不了解的工程师根本无法进行整改,更无从进行设计;如对一些电源接口电路,信号接口电路了解。
3、具有电磁兼容整改知识,了解产品出现问题如何定位,如何整改的思路;4、具有EMC元器件的知识,知道如何使用这些器件,就像你目前所学习电感知识。
其他还有电容、磁珠、瞬态抑制器件方面等方面。
5、一定的产品接地、PCB设计知识。
一般新人根据目前具体情况,可以先熟悉EMC元器件,然后一定要结合你们设计产品的设计与测试问题进行,从解决问题方面进步与体会是最大的,另外注意学习使用一些PCB设计软件、熟悉一些产品常用接口电路,最终向EMC整改、EMC设计方面发展。
我想只要你多实践、多思考分析,在EMC方面一定会大有收获,同时自己也会有一条比较好的职业发展之路。
硬件工程师需要掌握的知识点一、知识概述《硬件工程师需要掌握的知识点》①基本定义:硬件工程师就是搞硬件相关设计、开发、测试、维护的技术人员。
简单说,就像盖房子时负责砌墙、铺管道那些基础活儿的人,只不过硬件工程师摆弄的是电子元件之类的东西。
②重要程度:硬件工程师在电子信息学科里那可太重要了。
没有他们,你手机就没法生产出来,电脑也只能是个概念。
他们就像大厨后面的配菜员,少了配菜再好的厨师也做不出菜来。
整个电子产品能不能正常工作,很大程度上就看硬件工程师的活儿好不好。
③前置知识:像基本的数学知识,像代数、几何之类的,因为硬件设计里好多计算。
还有电路原理得懂吧,就像了解水在水管里咋流动一样,你得知道电在电路里咋跑的。
电子元件的基本特性也要掌握,这就像建筑工人要知道砖头有多结实、水泥怎么混合一样。
④应用价值:比如说你想做个智能手环,硬件工程师就能把传感器、电池、显示屏这些硬件设备组合起来,让这个手环能监测心率、显示时间。
应用场景多得很,家里的智能电器、汽车的控制系统,到处都有硬件工程师的功劳。
二、知识体系①知识图谱:硬件工程师的知识体系就像一张蜘蛛网。
电路知识是中心的一大块,周围延伸出微控制器知识、硬件描述语言、信号完整性分析等好多分支。
②关联知识:硬件工程师和软件工程师关系密切。
软件运行得有硬件支持,就像演员得有舞台一样。
还和工业设计有关联,一个漂亮实用的电子产品得硬件和外观设计相匹配。
还有测试工程师,硬件做完了得测试,看有没有问题。
③重难点分析:- 掌握难度:掌握像高速电路设计这种知识就比较难。
比如说要处理高速信号的布线、信号完整性这些问题的时候,就像在高速路上既要保证所有车能按规则跑,又不能碰撞到一起,需要考虑好多因素。
- 关键点:我觉得关键是理解各个硬件组件之间的相互关系。
就拿电脑主板来说,CPU、内存、硬盘这些组件如何高效协同工作,这要是搞混了,电脑就容易出问题。
④考点分析:- 在硬件工程师考试里,电路设计原理相关的题目肯定是重点。
2006-4-26 19:08:00硬件工程师需要了解的一些EMC小知识(中)2surge:浪涌试验浪涌试验用来模拟自然雷击或者电网中接入大容性负载时所产生的脉冲对设备的影响。
包含电源端和信号端测试。
•电源端测试包括L和N线间、L对保护地、N线对保护地、L&N对保护地,其中第一种属于差模干扰,后三种为共模干扰。
•信号端测试如果是屏蔽线,干扰加在屏蔽层上,如果是地线,干扰加在信号线上,例如对用户线,直接加在A B线上。
surge:浪涌波形浪涌波形有:1.2/50(8/20)组合波,10/700电压波,其中1.2 1.2/50(8/20)波形用在电源端和室内信号端的试验上,而10/700电压波用在室外信号端的浪涌试验上。
上述波形中的1.2、8和10都是指波形的波前时间,单位为us,50、20和700指得是波形的脉宽,单位也为us,可见浪涌波形的能量远大于EFT/B和静电,但是干扰频宽却要窄得多。
抑制SURGE的原则对策•防护设计电源端口的压敏、热敏、空气放电管以及熔断器构成的防护电路已经非常成熟。
信号端口则需要根据其接口类型以及工作在室内还是室外进行设计区分,如网口电路和调试串口电路的防护设计就不同。
•信号电缆的屏蔽信号电缆外面的屏蔽层是解决信号端容易耦合感应雷的重要方法。
PMS:Power-frequency magnetic susceptibility•PMS:工频磁场试验主要模拟50Hz工频电力线所构成的磁场(如大型变压设备附近的磁场等)对设备的影响,对此项试验较敏感的主要是带线圈的设备如CRT等。
•试验示意抑制PMS的原则对策•屏蔽对于场干扰来说,壳体屏蔽是主要办法,当然这里的屏蔽也包含信号电缆的屏蔽。
•滤波对于电源端口或者没有条件作成屏蔽的信号端口,使用滤波是唯一的办法。
•接地接地是为涡流提供泄放途径。
电力线感应:Power lines induction•电力线感应试验主要针对户外走线、线长大于500m且为非屏蔽的平衡线进行,如用户口,该项试验主要模拟该类室外走线线缆因走线距离长且有可能和供电电力线长距离平行走线,从而受到电力线的感应干扰。
EMC基础必学知识点
1. 什么是EMC? EMC是电磁兼容的缩写,指的是电子设备在电磁环境中正常工作,不产生不可接受的干扰,也不受其他设备的干扰。
2. 电磁辐射和电磁感应:电磁辐射是指电磁波在空间中的传播,而电磁感应是指电磁波对接收器件产生的电磁场效应。
3. 电磁兼容测试:包括辐射发射测试、辐射抗干扰测试、传导发射测试、传导抗干扰测试、静电放电测试、浪涌电流测试等测试方法。
4. 电磁波频谱:电磁波频谱是指电磁波在频率上的分布,从低频到高频分别是直流、低频、射频、微波、红外线、可见光、紫外线、X射线和伽马射线。
5. 辐射发射:是指电子设备在工作过程中通过电磁波在空间中传播,例如无线电、电视、手机等无线通信设备。
6. 辐射抗干扰:是指电子设备在电磁环境中受到其他设备的干扰时仍能正常工作,例如家用电器受到电信号干扰而不受影响。
7. 传导发射:是指电子设备在工作过程中通过电源线、信号线等传导方式将电磁波传递到其他设备上。
8. 传导抗干扰:是指电子设备在电磁环境中受到其他设备的传导干扰时仍能正常工作,例如高频电磁场对电子设备的传播线进行干扰。
9. 静电放电:是指电子设备在操作过程中由于电荷的不平衡而引起的电流突然释放,例如人体静电放电对电子元件造成的损坏。
10. 浪涌电流:是指电子设备在电源启动、断电、过电压等情况下突然产生的大电流脉冲,容易对电子设备造成损坏。
以上是EMC的基础必学知识点,有助于了解电磁兼容的相关概念和测试方法。
牛人总结的EMC知识大全(从基础设计到整改方法)电子万花筒平台核心服务电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!传导与辐射电磁干扰(Electromagnetic Interference),简称EMI,有传导干扰和辐射干扰两种。
传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。
为了防止一些电子产品产生的电磁干扰影响或破坏其它电子设备的正常工作,各国政府或一些国际组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准,符合这些规章或标准的产品就可称为具有电磁兼容性EMC(Electromagnetic Compatibility)。
电磁兼容性EMC 标准不是恒定不变的,而是天天都在改变,这也是各国政府或经济组织,保护自己利益经常采取的手段。
EMC标准及测试国际标准1、国际电工委员为IEC2、国际标准华组织ISO3、电气电子工程师学会IEEE4、欧盟电信标准委员会ETSI5、国际无线电通信咨询委员CCIR6、国际通讯联盟ITU6、国际电工委员会IEC有以下分会进行EMC标准研究-CISPR:国际无线电干扰特别委员会-TC77:电气设备(包括电网)内电磁兼容技术委员会-TC65:工业过程测量和控制国际标准化组织1、FCC联邦通2、VDE德国电气工程师协会3、VCCI日本民间干扰4、BS英国标准5、ABSI美国国家标准6、GOSTR俄罗斯政府标准7、GB、GB/T中国国家标准EMI测试1、辐射骚扰电磁场(RE)2、骚扰功率(DP)3、传导骚扰(CE)4、谐波电路(Harmonic)5、电压波动及闪烁(Flicker)6、瞬态骚扰电源(TDV)EMS测试1、辐射敏感度试验(RS)2、工频次次辐射敏感度试验(PMS)3、静电放电抗扰度(ESD)4、射频场感应的传导骚扰抗扰度测试(CS)5、电压暂降,短时中断和电压变化抗扰度测试(DIP)6、浪涌(冲击)抗扰度测试(SURGE)7、电快速瞬变脉冲群抗扰度测试(EFT/B)8、电力线感应/接触(Power induction/contact)EMC测试结果的评价A级:实验中技术性能指标正常B级:试验中性能暂时降低,功能不丧失,实验后能自行恢复C级:功能允许丧失,但能自恢复,或操作者干预后能恢复R级:除保护元件外,不允许出现因设备(元件)或软件损坏数据丢失而造成不能恢复的功能丧失或性能降低。
EMC基础知识及要求一、EMC:Electromagnetic Compatibility 电磁兼容性(包括两个方面) EMC = EMI + EMS电磁兼容定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
a)EMI:Electromagnetic Interference 电磁干扰系统产生的电磁扰动的程度低于一定的标准要求,不致妨碍其他电器装置的正常工作。
b)EMS:Electromagnetic Susceptibility 电磁敏感度(抗扰性)系统具有一定的抗电磁扰动的能力,在电磁扰动的环境下能正常工作。
二、国际、国内电磁兼容标准体系1. 国际标准——IEC/CISPR标准国际电信联盟、国际大电网工作会议、国际电工委员会(IEC)及无线电干扰特别委员会(CISPR)等单位从事电磁兼容的协调、管理和技术标准的制定。
IEC下属的TC77组织主要负责制订电磁环境标准、电磁兼容基础标准、较低频率范围和电磁脉冲的电磁兼容标准.而CISPR主要负责制订有关电磁兼容的产品标准及较高频率范围的电磁兼容标准。
2. 欧盟标准——EN标准欧洲电工标准化委员会制定EN标准。
它与IEC/CISPR关系密切,其过去颁布的标准经常是引用IEC/CISPR标准。
但现在其新制订或修订的EN标准反过来影响IEC/CISPR标准。
CE认证需采用EN标准。
3. 美国FCC法规美国联邦通信委员会FCC制订的法规FCC Rules(即联邦法典第47卷)涉及电磁兼容。
FCC主要是电磁发射方面的限制要求。
4. 中国国家标准——GB、GB/T及GB/Z标准我国的标准化工作正在积极与国际接轨,包括标准接轨、规范程序协调、承担国际义务和国际互认。
近些年我国制订或修订的电磁兼容标准一般都等同或等效于IEC/CISPR标准。
现已发布实施的EMC国家标准有三类:字头为GB的强制性标准,GB/T推荐性标准,GB/Z 专业指导性标准。
1 硬件工程师EMC必备知识系列(一)接地的基本概念1.1 引言接地,是个很复杂的问题,一篇帖子很难说的清楚,同时还想从例子说起,以便能够让大家认识到事物的本质,对我这样一个工科出身的硬件工程师来说还是有些难度,总怕表达不清楚或不到位,把大家引入歧途。
尽力吧,讲的不当的地方,希望大家体谅。
1.2 基本概念接地,比较直观的就是接大地。
实际上,接地是一个系统级的概念,接大地已经不能清晰地描述系统接地的概念了。
为了清楚表达接地的概念,可以引用亨利.奥特的定义:“接地是为电流返回其源提供的低阻抗通道”。
对于不同的应用,有不同的理解,对于线路工程师来说,接地的含义通常是线路电压的参考点;对于系统设计师来说,它常常是机柜或机架;而对电气工程师来说,它却是绿色安全地线或接到大地的意思。
1.3 接地的作用设计中接地往往基于各种理由,例如电力配电、安全、信号综合、防雷、EMI和静电放电等等。
接地设计时,电流幅度和频率是两项关键因素,他们决定着接地应采用何种方式以及系统对接地质量要求的高低。
根据接地需求的不同,接地的主要作用有:(1)防雷接地把可能受到雷击的物体和大地相接,以提供泄放大电流的通路称之为防雷地。
这种接地的目的很明确,就是防止人及物体遭到雷击,这些物体可以是天线、大楼、电子或电气设备等。
由于雷电放电电流一般是脉冲性的大电流(可高达上百千安),其上升沿可达到微秒量级(1-10 微秒,持续时间100 微秒以下),因此要求防雷接地的接地阻抗要小。
为了避免雷击电流引发机房设备之间的高电位差,要求设备之间特别是有电气联系或距离较近的设备进行低电感和电阻搭接。
(2)保护接地保护接地就是为了保护设备、装置、电路及人身的安全。
因此,在设备、装置、电路的底盘及机壳端一定要采取保护接地。
因保护接地和人身安全相关,保护接地的方式在配电的标准规范中以及安全规范都有严格规定。
保护地主要用以保护工频故障电压对人身造成的危害,其保护原理是:通过把带故障电压的设备外壳短路到大地或地线端,保护过程中产生的短路电流使熔丝或空气开关断开。
保护地的工频电阻要求较小,同时要求保护地的可靠性很高。
从电源频率的角度来看,如仅对人身安全的保护接地而言,可以不对保护地提出低电感的要求。
(3)工作接地工作地线是单板、母板或系统之间信号的等电位参考点或参考平面,它给信号回流提供了低的阻抗通道。
信号质量很大程度上依赖于工作接地质量的好坏。
由于受接地材料特性和其他技术因素的影响,接地导体的连接或搭接无论做的如何好,总有一定的阻抗,信号的回流会在工作地线上产生电压降,形成地纹波,对信号质量产生影响;信号越弱,信号频率越高,这种影响就越严重。
尽管如此,在设计和施工中最大限度地降低工作接地导体的阻抗仍然是非常重要的。
(4)屏蔽接地屏蔽接地是和结构息息相关的措施。
电磁屏蔽时并不要求与大地连接,屏蔽结构接到大地上更多的是安全等方面的需要。
为了防止电磁辐射和干扰,系统设计中常采用结构屏蔽的方法。
为了使结构有较好的屏蔽效能,要求对结构箱体的开孔尺寸有一定限制,特别是通风孔。
但是电缆出线往往会破坏了这种屏蔽效能,因此要求电缆在出屏蔽体时与机柜连接。
(5)防静电接地静电的危害是众所周知的,当人手触摸电子装备时,由人体附带的数以千伏的静电电压,会对设备中的电子器件发生放电,虽然静电的能量不高,但产生的瞬时电流足够大,有可能造成电子器件的损坏。
人体产生的高电压静电通过没有接好大地的单板上安装的金属拉手条,会产生放电现象,如果单板上的电子器件绝缘处理的不好,瞬态“大电流”足以破坏绝缘造成单板上器件的永久性损坏。
如果在机箱上装了防静电手腕,在人体触摸设备之前,通过防静电手腕把静电泄放到大地,以使人体和设备之间的电位相等从而达到保护的目的。
由于防静电接地大多针对人和设备,因此在人体和设备之间增加保护电阻(如防静电手腕中的电阻)防止机柜带电对人身造成的可能伤害,当然也可限制人体对地产生的静电。
2.硬件工程师EMC必备知识系列(二)接地之目的接地根本目的就是改变共模电流的方向。
对于任何信号,都会选择最小阻抗的路径返回信号源端。
那么如何选择接地点硬件工程师必须认真考虑,产品的EMC问题和单点、多点接地关系不大,接地主要是为了改变共模电流方向;接地位置不对,不仅解决不了干扰,反而会加大干扰,不如不接地。
产品中的外接电缆和接地线都是天线(又一个知识点,这里就不讨论天线的问题,留着其他帖子讨论),对于干扰信号,即使没有直接相连,也会由这些天线自动接收外部干扰,以及对外产生干扰发射或传导。
所以接地点的选择依据就是避免这些干扰共模电流进入板卡内部,以下用一些图表来说明:图1就是比较好的接地选择点;图1 就近接地地图2避免这样的选择,这样的选择轻者板卡工作异常,重则烧毁板卡;图2 最差接地点对于一些浮地产品,同样存在问题,因为浮地阻止不了电流流入工作地。
所以不要认为浮地产品,特别是一些自带电池的产品,就不需要考虑EMC问题,也许问题更严重。
从图3可以看出,浮地对共模电流无能为力。
图3 浮地的影响3.硬件工程师EMC必备知识系列(三)接地的布局我们在做产品时,除了需要考虑完成的功能,同时需要考虑产品的RAMS要求,同样地EMC 分析也是一个好的产品必须具备的步骤。
什么是RAMS分析?怎样分析?我会在讨论完EMC问题后,为大家慢慢讲解。
今天重点说一说EMC设计中的布局。
一个产品,没有一个好的布局是不可相像的。
比如,机箱的每个面都有引线,暂不说带来的EMC问题,就是从美观和可安装性上来说,就不可能成为一个好的产品。
先从结构上说起,我们布局时尽量把引线放在机箱对称的两侧,最好的放在一侧,这样无论是外观,还是可安装性,都是上上之选。
下图是一种不好的布局图,也是最常见的。
不管是机笼,还是一块整板,只要你逻辑功能图都如上图一样,那么你就要注意了,右边的电缆到达一定长度时,不管你加不加C1,结果都是一样的:产品不可能通过测试。
如果根据下图修改,效果会好很多。
上图最大的特点,就是一侧布局。
但这样还是不够,如果有大能量共模干扰耦合到电源线上,虽然能量不会通过板卡内部,但干扰会在电缆接口部分形成局部电压差,很可能烧毁电缆接口芯片,所以需要在电缆与芯片之间的导线上串一个几十欧的电阻,并在电阻与接口芯片之间的信号线与信号参考地上加TVS 管。
4. 硬件工程师EMC必备知识系列(四)接地之浪涌试验时为什么只烧毁功放板有人问我:在做设备的浪涌试验时,其他的都没有损坏,为什么只有离电源输入端最远的功放板烧毁了?我也很纳闷,等看过了他的布局图,我乐了,因为我也犯过同样的错误。
设备布局图如下:在分析前,先明确接地的概念,这里的接地,不是指安全地,而是特指参考地。
因为EMC 测试所说的地就是参考地,是一个大面积的等电位的金属板,这个金属板接大地的线缆就是安全接地线。
这只是个简图,原图上没有C1、C2、C3、C4和C5,是我后期为了分析容易补上去的,电源输入线的正负极之间肯定也有保护电路,如果大家感兴趣,我们可以在后续文章里再重点讨论。
同样,我们这里也不讨论差模干扰,因为对于浪涌,差模很容易解决。
在设备布局时,他考虑更多的是功能,对EMC设计考虑的太少。
EMC里的接地的主要目的是改变共模干扰传输路径,避免干扰电流流过敏感电路。
原图的设计中针对浪涌的处理,靠的是工作地和机箱间的空气间隙来保证。
但是,对于高频干扰信号,影响最大的是寄生参数,隔离电路只能阻断差模信号,对共模干扰没有阻隔能力。
从图上可以看出,相对于输入干扰信号,存在很多寄生通道,如C1、C2、C3、C4和C5,因为任何信号的传递,都是闭环的,干扰信号肯定会通过这些寄生通道流回到干扰源,只是流过不同寄生通道的电流大小不同罢了。
当电缆相对于参考地位10cm时,寄生电容为50pf/m,寄生电感是10nH/m。
对于长距离传输的电缆,功放和外设之间的距离超过100米,这个时候,如果C1和C2也是寄生电容,那么C3和C4就是一个低阻抗的通路,浪涌共模干扰电流就通过大面积的背板流向功放板,然后通过C3流向参考地,功放板能保住那就见鬼了。
为什么控制板没有问题呢?那是因为控制板没有对地泄放通路,准确地说对参考地的寄生电容太小,相对于功放板的输出电缆,可以忽略不计。
分析到这里,大家应知道怎么进行EMC改造了吧,那就是在电源板上加上C1和C2。
C5和机箱接地点对本文分析影响不大,但它在其他应用里影响相当可以。
本来想同时分析一下,但不知不觉,就写了这么多,只好打住,也不知道说明白了没有,呵呵。
5. 硬件工程师EMC必备知识系列(五)-数字地和模拟地如何接?概述:PCB模拟地和数字的接法在很多资料里都有论述,基本大部分是从信号完整性的角度来进行讲解。
既然这个帖子是属于EMC分析,所以,本帖子重点从EMC设计的角度进行论述。
接地的目的是为了引导干扰电流的方向,也就是说,一个好的结构布局保证设备对外干扰电流不流向电缆,外部对设备的干扰电流不流向核心电路。
设备的通用接地点一般靠近电源输入口。
对于静电测试,容易出现问题的地方一般出现在接口部分以及开口或接缝处,这里不讨论其他问题,只讨论模拟接地。
很多仪器仪表产品的基本结构如下图所示:上图是一个典型接法,模拟地与机箱之间不是直接电连接,采用一点接地。
在静电测试中,模拟接口不可避免的会把能量接入模拟地,再通过接地点流向机箱(上几篇文章详细地论述了PCB板直接接机箱或浮地,结果是一样的,只不过流过PCB的干扰电流大小的问题)。
在静电通过接地点时,在数字地和模拟地之间有一个△V的电压差,相对于模拟器件(A/D,D/A),这个压差就会影响到模拟器件的工作,A/D采集可能出现坏点,D/A输出可能就有一个阶跃,这在一些应用中就是致命的。
如果模拟地不是通过接地点与机箱相接,直接由螺钉连接,是不是就可以解决这个问题?结论是“可能”,不管你怎么连接,只能改变流向核心电路的能量大小,不可能完成避免。
如果改成下图的结构,结果要好很多:采用全铺地,并且在模拟器件的旁边,在两个地之间加两个接地螺钉,效果要好很多,能量就近泄放,不会像上图一样形成一个大的泄放环路,不会在两个地之间形成电压差(或非常小,在模拟器件的共模抑制能力范围内),模拟器件在外部干扰下可以正常工作,顺利通过各种针对信号线的测试。
这只是一个典型例子,其实,不管什么样的结构,都可以近似于上图的模型,进行EMC分析和改造,只要记得,接地的本质就没问题。
6. 硬件工程师EMC必备知识系列(六)--磁珠不要乱用在很多文章中都有磁珠的介绍,其中觉得写的比较透彻的是zjd01写的《电感和磁珠两兄弟的差别》。
本文主要是从EMC应用角度来说明。
磁珠通常推荐应用在电源或信号线上来增强去耦效果,但在地之间的使用时一定要小心,特别是会有大能量干扰信号流过磁珠的应用场合。