《定义与命题》习题
- 格式:docx
- 大小:20.53 KB
- 文档页数:2
定义与命题练习题1及答案一木培训教学资料定义与命题知识盘点】1.能清楚规定某一名称或术语的句子称为该名称或术语的定义。
2.对某一事物作出判断的句子称为命题。
每个命题由条件和结论两部分组成。
3.如果两条直线平行,那么对应角相等。
4.将命题“对顶角相等”改写为“如果两条直线相交,那么对顶角相等”。
5.命题“同角的余角相等”的条件是角的和为180度,结论是这两个角相等。
6.命题“同底等高的两个三角形面积相等”的条件是这两个三角形的底相等,高相等,结论是这两个三角形的面积相等。
基础过关】7.下列描述不属于定义的是(D)含有未知数的等式叫做方程。
8.下列语句不是命题的为(B)作直线AB的垂线。
9.命题“垂直于同一条直线的两条直线互相平行”的题设是(D)两条直线垂直于同一条直线。
10.下列语句中,属于命题的是(D)连结A,B两点。
11.已知下列语句:①天是蓝的;②两点之间线段的长度,叫做这两点间的距离;③是无理数;④对顶角相等,其中是定义的有(A)1个。
12.已知下列语句:①平角都相等;②画两个相等的角;③两直线平行,同位角相等;④等于同一个角的两个角相等吗?⑤邻补角的平分线互相垂直;⑥等腰三角形的两个底角相等。
其中是命题的有(B)3个。
应用拓展】13.将下列命题改写为“如果……那么……”。
1)如果两条直线平行,那么同位角相等。
2)如果在同一个三角形中,那么等角对等边。
3)如果两边一夹角对应相等的话,那么这两个三角形全等。
一木培训教学资料题目:四种改法中正确的个数是?如果a>b>0,则a²>b²;如果a>b且a+b>0,则a²>b²;如果ab²;如果ab²。
正确的改法个数是()A.1个B.2个C.3个D.4个应用拓展13.判断下列命题是真命题还是假命题,并说明理由。
1)如果ab>0,那么a>0,b>0.2)内错角相等。
7.2 定义与命题一.选择题1.下列命题是真命题的是()A.如果a2=b2,那么a=bB.在同一平面内,平行于同一条直线的两直线平行C.两直线相交,其中相等的两个角是对顶角D.如果两个角是同位角,那么这两个角相等2.下列命题与它的逆命题均为真命题的是()A.内错角相等B.对顶角相等C.如果ab=0,那么a=0D.互为相反数的两个数和为03.下列命题中,假命题是()A.直角三角形的两个锐角互余B.三角形的外角和等于360°C.同位角相等D.三角形的任意两边之差小于第三边4.下列命题:①同旁内角互补,两直线平行;②两个锐角互余的三角形是直角三角形;③如果一个角的两边与另一个角的两边互相平行,那么这两个角相等,其中真命题的序号是()A.①②B.①③C.②③D.①②③5.下列命题中的真命题是()A.在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a∥cB.在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a⊥cC.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥cD.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a⊥c6.下列命题中,是真命题的是()A.三角形的一条角平分线将三角形的面积平分B.同位角相等C.如果a2=b2,那么a=bD.是完全平方式二.填空题7.下列关于反比例函数y=(k≠0)的命题:①若函数图象经过点(2,1),则k=2;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,若△ABC的面积为2,则k=4;③当k>0时,y随x的增大而减小;④函数图象关于原点中心对称.其中所有真命题的序号是.8.用举反例的方法说明命题“若a<b,则ab<b2”是假命题,这个反例可以是a=,b=.9.写出命题“互为倒数的两个数乘积为1”的逆命题:.10.命题“对顶角相等”的逆命题是.11.写出命题“直角三角形的两个锐角互余”的逆命题:.12.命题“对顶角相等”的逆命题是命题(填“真”或“假”).13.用“如果…,那么…”形式,写出“对顶角相等”的逆命题:.14.对于下列命题:①若a>b,则a2>b2;②在锐角三角形中,任意两个内角和一定大于第三个内角;③无论x取什么值,代数式x2﹣2x+2的值都不小于1;④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,至少有一个角小于61°.其中,真命题的是.(填所有真命题的序号)三.解答题15.如图,从①∠1=∠2②∠C=∠D③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论可以组成3个命题.(1)这三个命题中,真命题的个数为;(2)择一个真命题,并且证明,(要求写出每一步的依据)如图,已知,求证:证明:16.如图,B、A、E三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.已知:求证:证明:参考答案一.选择题1.解:A、如果a2=b2,那么a=±b,本选项说法是假命题;B、在同一平面内,平行于同一条直线的两直线平行,本选项说法是真命题;C、两直线相交,其中相等的两个角不一定是对顶角,本选项说法是假命题;D、如果两直线平行,两个角是同位角,那么这两个角相等,本选项说法是假命题;故选:B.2.解:A、内错角相等,是假命题,故本选项不符合题意;B、对顶角相等,是真命题,它的逆命题是:相等的角是对顶角,是假命题,故本选项不符合题意;C、如果ab=0,那么a=0,是假命题,故本选项不符合题意;D、互为相反数的两个数和为0,是真命题,它的逆命题是:和为0的两个数化为相反数,是真命题,故本选项符合题意.故选:D.3.解:A、直角三角形的两个锐角互余,所以A选项为真命题;B、三角形的外角和等于360°,所以B选项为真命题;C、两直线平行,同位角相等,所以C选项为假命题;D、三角形的任意两边之差小于第三边,所以D选项为真命题.故选:C.4.解:①同旁内角互补,两直线平行,是真命题;②两个锐角互余的三角形是直角三角形,是真命题;③如果一个角的两边与另一个角的两边互相平行,那么这两个角相等或互补,原命题是假命题,故选:A.5.解:A、在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a⊥c,原命题是假命题;B、在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a∥c,原命题是假命题;C、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,是真命题;D、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,原命题是假命题;故选:C.6.解:A、三角形的一条角中线将三角形的面积平分,故错误,是假命题;B、两直线平行,同位角相等,故错误,是假命题;C、如果a2=b2,那么a=±b,故错误,是假命题;D,正确,是真命题,故选:D.二.填空题7.解:①若函数图象经过点(2,1),则k=1×2=2,①说法是真命题;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,设点A的坐标为(x,y),∵△ABC的面积为2,∴xy=2,则k=xy=4,②说法是真命题;③当k>0时,在每个象限,y随x的增大而减小,③说法是假命题;④函数图象关于原点中心对称,④说法是真命题;故答案为:①②④.8.解:当a=﹣1,b=0时,﹣1<0,而ab=0,b2=0,ab=b2,∴“若a<b,则ab<b2”是假命题,故答案为:﹣1;0(答案不唯一).9.解:命题“互为倒数的两个数乘积为1”的逆命题为:如果两个数的乘积为1,那么这两个数互为倒数,故答案为:如果两个数的乘积为1,那么这两个数互为倒数.10.解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.11.解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.故答案为:两个锐角互余的三角形是直角三角形.12.解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.13.解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.故答案为:如果两个角相等,那么它们是对顶角.14.解:①若a>b,当a=﹣1,b=﹣2时,则a2<b2;原命题是假命题;②在锐角三角形中,任意两个内角和一定大于第三个内角,是真命题;③无论x取什么值,代数式x2﹣2x+2=(x﹣1)2+1≥1,所以其值都不小于1,是真命题;④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,至少有一个角小于61°,是真命题.故答案为:②③④.三.解答题15.解:(1)由①②,得③;由①③,得②;由②③,得①;均正确,故答案为3(2)如图所示:∵∠1=∠2,∠1=∠3(已知),∴∠3=∠2(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠D=∠4(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠4=∠C(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:①∠1=∠2,②∠C=∠D;∠A=∠F;16.解:命题:已知:AD∥BC,∠B=∠C,求证:AD平分∠EAC.证明:∵AD∥BC,∴∠B=∠EAD,∠C=∠DAC.又∵∠B=∠C,∴∠EAD=∠DAC.即AD平分∠EAC.故是真命题.故答案为:AD∥BC,∠B=∠C,AD平分∠EAC.。
定义与命题练习一、选择题1.以下四个命题: ①如果一个数的相反数等于它本身,则这个数是0; ②一个数的倒数等于它本身,则这个数是1; ③一个数的算术平方根等于它本身,则这个数是1或0; ④如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有()A. 1个B. 2个C. 3个D. 4个2.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=33.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线4.下列正确的选项是()A. 命题“同旁内角互补”是真命题B. “作线段AC”这句话是命题C. “对顶角相等”是定义D. 说明命题“若x>y,则a2x>a2y”是假命题,只能举反例a=05.下列语句不是命题的是()A. 两直线平行,同位角相等B. 面积相等的两个三角形全等C. 同旁内角互补D. 作线段AB=CD6.下列命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②内错角相等;③在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;④相等的角是对顶角.其中,真命题有()A. 1个B. 2个C. 3个D. 4个7.下列命题是真命题的是()A. 两直线平行,同位角相等B. 面积相等的两个三角形全等C. 同旁内角互补D. 相等的两个角是对顶角8.对假命题“若a>b,则a2>b2”举反例,正确的反例是()A. a=−1,b=0B. a=−1,b=−1C. a=2,b=1D. a=−1,b=−29.下列命题正确的是()A. 有一个角是直角的平行四边形是矩形B. 四条边相等的四边形是矩形C. 有一组邻边相等的平行四边形是矩形D. 对角线相等的四边形是矩形10.要说明命题“两个无理数的和是无理数”,可选择的反例是()A. 2,−3B. √2,√3C. √2,−√2D. √2,√211.下列说法:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个12.下列判断正确的是()A. 北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B. 一组数据6,5,8,7,9的中位数是8C. 甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D. 命题“既是矩形又是菱形的四边形是正方形”是真命题13.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A. x=−2B. x=−1C. x=1D. x=214.若命题“有两边分别相等,且_________的两个三角形全等”是假命题,则以下选项填入横线正确的是()A. 两边的夹角相等B. 周长相等C. 其中相等的一边上的中线也相等D. 面积相等二、填空题15.命题“全等三角形的面积相等”的逆命题是:______,它是______(填入“真”或“假”)命题.16.命题“如果a=b,那么|a|=|b|”的逆命题是______(填“真命题“或“假命题”).17.命题“若a=b,则−a=−b”的逆命题是______.18.用一组a,b的值说明命题“若ab>1,则a>b”是错误的,这组值可以是a=______,b=______.三、解答题19.(1)完成下面的推理说明:已知:如图,BE//CF,BE、CF分别平分∠ABC和∠BCD.求证:AB//CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=12∠______,∠2=12∠______(______ ).∵BE//CF(______ ),∴∠1=∠2(______).∴12∠ABC=12∠BCD(______).∴∠ABC=∠BCD(等式的性质).∴AB//CD(______ ).(2)说出(1)的推理中运用了哪两个互逆的真命题.20.在△ABC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,如有三个关系式①AE//DF②AB=CD③CE=BF(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确性.21.把下列命题改成“如果……那么……”的形式.(1)三角形内角和是180°.(2)同角的补角相等.(3)两个相反数的和为0.答案和解析1.【答案】B【解答】解:如果一个数的相反数等于它本身,则这个数是0,所以①正确;一个数的倒数等于它本身,则这个数是1或−1,所以②错误;一个数的算术平方根等于它本身,则这个数是1或0,所以③正确;如果一个数的绝对值等于它本身,则这个数是正数或0,所以④错误.故选B.2.【答案】B【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且−3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>−1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且−1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.3.【答案】D【解答】解:命题“垂直于同一条直线的两条直线互相平行”的条件是两条直线垂直于同一条直线;故选D.4.【答案】D【解答】解:A、因为只有两条线平行时形成的同旁内角才互补,所以“同旁内角互补”是假命题,故A错误;B.“作线段AC”这句话不是命题,故B错误;C.“对顶角相等”不是定义,是命题,故C错误;D.说明命题“若x>y,则a2x>a2y”是假命题,只能举反例a=0,正确,故D正确,故选D.5.【答案】D【解答】解:ABC都是命题,D.作线段AB=CD,是作图,没有对一件事情做出判断,所以不是命题.故选D.6.【答案】B【解析】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①为真命题;两直线平行,内错角相等,所以②为假命题;在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,所以③为真命题;相等的角不一定为对顶角,所以④为假命题.7.【答案】A【解析】解:A、两直线平行,同位角相等,所以A选项为真命题;B、面积相等的两个三角形不一定全等,所以B选项为假命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、相等的两个角不一定为对顶角,所以D选项为假命题.8.【答案】D【解析】解:用来证明命题“若a>b,则a2>b2是假命题的反例可以是:a=−1,b=−2,因为−1>−2,但是(−1)2<(−2)2,所以D符合题意;9.【答案】A【解析】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;10.【答案】C【解析】解:两个无理数的和是无理数是假命题,例如互为相反数的两个无理数和为0,0是有理数,11.【答案】A【解答】解:①负数有立方根,错误;②一个实数的立方根不是正数就是负数或0,错误;③一个正数或负数的立方根与这个数的符号一致,正确;④如果一个数的立方根等于它本身,那么它一定是±1或0,错误;其中正确的是③,有1个;故选A.12.【答案】D【解析】解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.13.【答案】A【解答】解:因为x=−2满足|x|>1,但不满足x>1,所以x=−2可作为说明命题“若|x|>1,则x>1”是假命题的反例.故选:A.14.【答案】D【解析】【试题解析】解;A.若命题“有两边分别相等,且两边的夹角相等的两个三角形全等”是真命题,B.若命题“有两边分别相等,且周长相等的两个三角形全等”是真命题,C.若命题“有两边分别相等,且其中相等的一边上的中线也相等的两个三角形全等”是真命题,D.若命题“有两边分别相等,且面积相等的两个三角形全等”是假命题.故选:D.15.【答案】面积相等的三角形是全等三角形;假【解答】解:“全等三角形的面积相等”的逆命题是:面积相等的三角形是全等三角形,它是假命题.故答案为面积相等的三角形是全等三角形;假.16.【答案】假命题【解析】【试题解析】解:如果a=b,那么|a|=|b|的逆命题是:如果|a|=|b|,则a=b是假命题.17.【答案】若−a=−b,则a=b【解析】解:命题“若a=b,则−a=−b”的逆命题是若−a=−b,则a=b,18.【答案】−2−1【解析】案不唯一,如解:当a=−2,b=−1时,满足ab>1,但a<b.19.【答案】ABC BCD角平分线的定义已知两直线平行,内错角相等等量代换内错角相等,两直线平行【解析】解:(1)∵BE、CF分别平分∠ABC和∠BCD(已知)∴∠1=12∠ABC,∠2=12∠BCD(角平分线的定义)∵BE//CF(已知)∴∠1=∠2(两直线平行,内错角相等)∴12∠ABC=12∠BCD(等量代换)∴∠ABC=∠BCD(等式的性质)∴AB//CD(内错角相等,两直线平行)故答案为:ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD,再根据平行线的判定,即可得出AB//CD;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.20.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE//DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,{∠E=∠F ∠A=∠D AC=DB,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE//DF,∴∠A=∠D,在△ACE和△DBF中,{∠E=∠F ∠A=∠D EC=FB,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC−BC=DB−BC,即AB=CD.21.【答案】解:(1)如果一个图形是三角形,那么这个图形的内角和是180°;(2)如果两个角是同一个角的补角,那么这两个角相等;(3)如果两个数互为相反数,那么它们的和为0.。
八年级上册定义与命题一、选择题。
1. 下列语句中,属于定义的是()A. 两点确定一条直线。
B. 同角的余角相等。
C. 两直线平行,内错角相等。
D. 三角形三条中线的交点叫做三角形的重心。
解析:定义是对于一个概念的特征性质的描述。
A选项是一个基本事实;B和C选项是定理。
而D选项是对三角形重心这个概念的定义,所以答案是D。
2. 下列命题中,是真命题的是()A. 相等的角是对顶角。
B. 若a > b,则-2a>-2bC. 两直线平行,同位角相等。
D. 若a^2 = b^2,则a = b解析:A选项,相等的角不一定是对顶角,所以A是假命题;B选项,若a > b,则-2a<-2b,所以B是假命题;C选项,两直线平行,同位角相等,这是定理,是真命题;D选项,若a^2 = b^2,则a=± b,所以D是假命题。
答案是C。
3. 下列命题是假命题的是()A. 对顶角相等。
B. -4是有理数。
C. 两直线平行,同旁内角互补。
D. 若| a|=| b|,则a = b解析:A、B、C选项都是正确的命题。
D选项,若| a|=| b|,则a = b或a=-b,所以D是假命题,答案是D。
4. 命题“垂直于同一条直线的两条直线互相平行”的条件是()A. 垂直。
B. 两条直线。
C. 同一条直线。
D. 两条直线垂直于同一条直线。
解析:命题写成“如果……那么……”的形式为:如果两条直线垂直于同一条直线,那么这两条直线互相平行。
所以条件是“两条直线垂直于同一条直线”,答案是D。
5. 下列语句不是命题的是()A. 两点之间,线段最短。
B. 不平行的两条直线有一个交点。
C. x与y的和等于0吗?D. 对顶角不相等。
解析:命题是可以判断真假的陈述句。
A、B、D都是命题,而C选项是疑问句,不是命题,答案是C。
二、填空题。
6. 把命题“同角的补角相等”改写成“如果……那么……”的形式为:如果______,那么______。
定义与命题练习题1、下列命题中,正确的命题是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直且相等的四边形是菱形D.相似图形一定是位似图形2、下列命题正确的是(A.对角线垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.一组对边平行,一组邻角互补的四边形是平行四边形D.对角线相等的梯形是等腰梯形3、下列命题中,正确的命题是(A.一组对边平行但不相等的四边形是梯形B.对角线相等的平行四边形是正方形C.有一个角相等的两个等腰三角形相似D.一组对边相等,另一组对边平行的四边形是平行四边形4、下列命题,错误的命题是(A.对角线相等的四边形是矩形B.矩形的对角线相等C.平行四边形的两组对边分别相等D.两组对边分别相等的四边形是平行四边形5、下列命题中,不正确的是(A. —组邻边相等的矩形是正方形.等腰梯形的对角线相等C.直角三角形斜边上的高等于斜边的一半.圆既是轴对称图形,又是中心对称图形6、下列命题为真命题的是(A.同位角相等.如果/ A+/B+/C=180,那么/ A,Z B,ZC 互补C .邻补角是互补的角.两个锐角的和是锐角7、 下列命题中,为假命题的是() C.圆周角等于圆心角的一半 .在同圆或等圆中等弧所对的圆周角相等8、下列各命题中,属于假命题的是9、下列命题是假命题的是(对于所有非零的自然数 n , 4n 2+4n+4 不可能是某个自然数的平方 在同一平面内的三条直线两两相交把这个平面分成四部分13、用一个2倍的放大镜照一个△ ABC 下列命题中正确的是(14、 下列命题中,是真命题的是(.平分弦的直径平分弦 A.等腰梯形的对角线相等.一组对边平行,一组对角相等的四边形是平行四边形 C. 一组邻角互补的四边形是平行四边形D .平行四边形的对角线互相平分 A.若 m —n=0,贝Ll m=n=0 B.若 m — n > 0,贝Ll m> n C.若 m —n V 0,贝U mK nD m^nA. 互补的两个角不能都是锐角 .两直线平行,同位角相等 C.若 a//b, a//c,则 b//c .同一平面内,若 a 丄b , a 丄C ,贝U b 丄10、 下列命题 ?? 假命题的是(A.内错角相等.等角的补角相等 C.对顶角相等 .等腰三角形底角相等11、 下列四个命题是真命题的是(A.同位角相等 .如果两个角的和是 180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行 两条直线互相垂直 D .在同一平面内,垂直于同一条直线的12、 在下列命题中正确的是(A .有两边及其中一边的对角对应相等的两个钝角三角形全等 B .有一组对边相等且一对对角相等的四边形是平行四边形 C . D . A.A ABC 放大后角是原来的2倍 .△ ABC 放大后周长是原来的 2倍 C.A ABC 放大后面积是原来的 2倍D .以上的命题都不对A.三点确定一个圆15、下列命题是假命题的是( )17、下列命题中,正确命题是(•两条对角线相等的四边形是矩形18、下列命题中真命题的是(19、下列命题中,正确的是(20、下列四个命题中真命题是(21、下列命题是假命题的是(B. 北京是中华人民共和国的首都 22、下列命题中真命题是(A.任意两个等边三角形必相似B. 对角线相等的四边形是矩形C. 以40。
界说与命题【常识清点】1.能清晰地划定某一名称或术语的句子叫做该名称或术语的______.2.对某一件工作作出_______断定的句子叫做命题.•每个命题都是由______•和______两部分构成的.3.假如两条直线平行,那么_________角相等.4.把命题“对顶角相等”改写成“假如______________________,那么_________________”.5.命题“同角的余角相等”的前提是___________________,结论是_______________________.6.•命题“同底等高的两个三角形面积相等”的前提是__________________________________,••结论是_____________________________________.【基本过关】7.下列描写不属于界说的是()A.两组对边分离平行的四边形叫做平行四边形;B.正三角形是特别的等腰三角形;C.在统一平面内三条线段首尾按序衔接得到的图形叫做三角形;D.含有未知数的等式叫做方程8.下列语句不是命题的为()A.同角的余角相等 B.作直线AB的垂线C.若a-c=b-c,则a=b D.两条直线订交,只有一个交点9.命题“垂直于统一条直线的两条直线互相平行”的题设是()A.垂直 B.两条直线C.统一条直线 D.两条直线垂直于统一条直线10.下列语句中,属于命题的是()A.直线AB和CD垂直吗 B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不服行 D.贯穿连接A,B两点11.已知下列语句:①天是蓝的;②两点之间线段的长度,叫做这两点间的距离;•③是无理数;④对顶角相等,个中是界说的有()A.1个 B.2个 C.3个 D.4个12.已知下列语句:①平角都相等.②画两个相等的角.③两直线平行,•同位角相等.④等于统一个角的两个角相等吗?⑤邻补角的等分线互相垂直.•⑥等腰三角形的两个底角相等.个中是命题的有()A.2个 B.3个 C.4个 D.5个【运用拓展】13.把下列命题改写成“假如……那么……”.(1)两直线平行,同位角相等.(2)在统一个三角形中,等角对等边.(3)双方一夹角对应相等的两个三角形全等.14.对于统一平面内的三条直线a,b,c,给出下列5个断定:①a∥b②b∥c;•③a⊥b;④a∥c;⑤a⊥c.请以个中两个论断为前提,一个论断为结论,•构成一个你以为准确的命题(至少写两个命题).【分解进步】15.一个农妇要过河,随身携带一只小白兔.一篮萝卜和一只饥饿又爱追兔子的狗.她发明系在河畔的划子一次只能载她本身和兔子.狗.萝卜个中之一过河,她不克不及让狗和兔子呆在一路(狗会吓坏可怜的小兔),也不克不及让小兔和萝卜留在一路(兔子会把萝卜全吃失落),怎么办?请你帮农妇想办法:她如何往返渡河才干把三样器械安然带到对岸?【常识清点】1._________称为真命题;________称为假命题.2.经由长期实践后公以为准确的命题叫做________,__________________________叫做定理.3.“能被3整除的整数,它的末位数是3”是______命题(•填“真”或“假”).4.把“同旁内角互补,两直线平行”写成“假如________,那么________”.5.“两点之间线段最短”是_________(填“界说”或“正义”或“定理”).6.“一次函数y=kx-2,当k>0时,y随x的增大而增大”是一个_______命题(填“真”或“假”).【基本过关】7.下列命题中的真命题是()A.锐角大于它的余角 B.锐角大于它的补角C.钝角大于它的补角 D.锐角与钝角之和等于平角8.下列命题中,属于假命题的是()A.若a⊥b,b⊥c,则a⊥c B.若a∥b,b∥c,则a∥cC.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c9.有下列四个命题:(1)对顶角相等;(2)内错角相等;(3)有双方和个中一边的对角对应相等的两个三角形全等;(4)假如两条直线都垂直于第三条直线,•那么这两条直线平行.个中真命题有()A.1个 B.2个 C.3个 D.4个10.已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A.12 B.12或15 C.15 D.15或1811.下列说法准确的是()A.命题必定是准确的 B.不准确的断定就不是命题C.真命题都是正义 D.定理都是真命题12.“a.b是实数,若a>b,则a2>b2”显然是错误的,若结论保持不变,如何转变前提,才干使之成立?以下四种改法:(1)若a>b>0,则a2>b2;(2)若a>b且a+b>0,则a2>b2;(3)•若a<b<0,则a2>b2;(4)若a<b且a+b<0,则a2>b2;个中准确的改法个数是()A.1个 B.2个 C.3个 D.4个【运用拓展】13.断定下列命题是真命题照样假命题,并解释来由.(1)假如ab>0,那么a>0,b>0.(2)内错角相等.14.A,B,C,D,E五逻辑学生介入某次数学单元检测,•在未颁布成绩前他们对本身的数学成绩进行了猜测.A说:“假如我得优,那么B也得优”;B说:“假如我得优,那么C也得优”;C说:“假如我得优,那么D也得优”;D说:“假如我得优,那么E也得优”.成绩揭晓后,发明他们都没说错,但只有三小我得优.请问:得优的是哪三位同窗?【分解进步】15.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜测,并解释来由.答案:1.界说 2.准确,题设,结论 3.内错角 4.两个角是对顶角,这两个角相等5.两个角是统一个角的余角,这两个角相等6.•两个三角形有公共边且该边上的高线相等,这两个三角形的面积相等7.B 8.B 9.D 10.C 11.A 12.C13.(1)假如两直线平行,那么内位角相等(2)在统一个三角形中,假如两个角相等,那么这两个角所对的两条边也相等(3)假如两个三角形有双方和它们的夹角对应相等,那么这两个三角形全等14.若a∥b,b∥c,则a∥c;若a∥b,a∥c则b∥c;若b∥c,a∥c,•则a∥b;若a⊥b,a⊥c则b∥c;若a⊥b,b∥c则a⊥c;若b∥c,a⊥c则a⊥b15.先把兔子带到对岸,放下兔子本身返回;再把萝卜(狗)带到对岸,放下萝卜(狗),再带上兔子返回;放下兔子,再带上狗(萝卜)到对岸,放下狗(萝卜),独自返回;最后再带上兔子到对答案:1.准确的命题,不准确的命题 2.正义,用推理的办法断定为准确的命题3.•假 4.同旁内角互补,两直线平行 5.正义 6.真7.C 8.A 9.A 10.C 11.D •12.D13.(1)假命题,当ab>0时,a<0,b<0也成立(2)假命题,绘图解释14.C.D.•E三人15.垂直且相等,可经由过程两个三角形全等证实.。
初二数学定义与命题试题1.已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b;③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的序号是.【答案】③④【解析】分别判断其原命题及逆命题的正确性,然后进行选择即可.解:①原命题正确,逆命题错误;②原命题正确,逆命题错误;③原命题和逆命题分别是菱形的判定定理和菱形的性质定理,均正确,是真命题;④原命题与逆命题均正确.故答案为:③④.点评:本题考查命题与定理,解题的关键是写出其逆命题并判断其真假.2.“若xy<0,则P(x,y)是第二象限内的点”是假命题,我们可以举出反例:.【答案】当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点【解析】利用两数之积小于0得到两数异号,可以举出x为正数,y为负数的情况均可.解:∵xy<0,∴x、y异号,∴当x=1,y=﹣2时,则P(x,y)是第四象限内的点,故答案为:当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点.点评:本题考查了命题与定理的知识,判断一个命题是假命题,可以举出反例.3.同旁内角互补是(填“真”或“假”)命题.【答案】假【解析】利用平行线的性质定理进行判断即可.解:只有两条平行线形成的同旁内角才互补,故这个命题是假命题.故答案为:假.点评:本题考查了命题与定理的知识,解题的关键是了解平行线的性质.4.“若m2=4,则m=2”是命题(填“真”或“假”).【答案】假【解析】据此反例即可判断该命题是假命题.解:若m2=4,则m=±2,故原命题是假命题,故答案为:假.点评:本题考查了命题与定理,判断一个命题是假命题时可以举出反例.5.“两直线被第三条直线所截,同位角相等”是命题(填真或假)【答案】假【解析】判定此命题的正误即可得到答案.解:∵当两条平行线被第三条直线所截,同位角相等,∴原命题错误,是假命题,故答案为:假.点评:本题考查了判断命题的真假的知识,解题的关键是根据命题作出正确的判断,必要时可以举出反例.6.“等腰梯形同一底上的两个角相等”这个命题的逆命题是,它是命题(填“真”或“假”).【答案】同一底上的两个角相等的梯形是等腰梯形,真【解析】将原命题的假设与结论反下就可得到其逆命题.解:“等腰梯形在同一底上的两个角相等”的条件是:有一梯形为等腰梯形,结论是:同一底上的两个角相等;则它的逆命题是:同一底上的两个角相等的梯形是等腰梯形,是真命题,故答案为:同一底上的两个角相等的梯形是等腰梯形,真.点评:考查了命题与定理,正确的写出一个命题的逆命题的关键是搞清楚原命题的条件和结论.7.举反例说明下列命题是假命题.(1)如果a+b>0,那么a>0,b>0;(2)无限小数是无理数;(3)两直线被第三条直线所截,同位角相等.【答案】见解析【解析】根据命题举出使得命题不成立的命题即可.解:(1)当a=3,b=﹣1时,满足a+b>0,但a>0,b>0不成立;(2)如为无限循环小数,但分数是有理数;(3)两条平行线被第三条直线所截,同位角才相等.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理、论证得到的真命题称为定理.8.将下列命题改写成“如果…那么…”的形式.(1)同位角相等,两直线平行;(2)在同一平面内,垂直于同一直线的两直线平行.【答案】见解析【解析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解:(1)可改写为:如果同位角相等,那么两直线平行;(2)可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.9.下列四个命题是真命题的是()A.同位角相等B.如果两个角的和是180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【答案】C【解析】利用学习过的有关的性质、定义及定理进行判断后即可得到正确的结论.解:A、只有两直线平行,同位角才相等,故选项错误;B、两个角的和是180度,只能是互补,不一定是邻补角,故选项错误;C、在同一平面内,平行于同一直线的两条直线互相平行,故选项正确;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故选项错误;故选C.点评:本题考查了命题与定理的知识,解题的关键是熟悉有关的性质、定理及定义.10.下列语句是命题的是()A.同旁内角互补B.在线段AB上取点CC.作直线AB的垂线D.垂线段最短吗?【答案】A【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:A是用语言可以判断真假的陈述句,是命题;B、C、D均不是可以判断真假的陈述句,都不是命题.故选A.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.。
浙教版八年级数学上册第一章三角形初步认识1.2《定义与命题》同步练习题一选择题1.下列说法错误的是(D)A. 错误的判定也是命题B. 命题有真命题和假命题两种C. 定理是命题D. 命题是定理2.下列语句中,不是命题的是(C)A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角3.有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的个数是(D)A.1 B.2C.3 D.44.下列命题中,是真命题的是(A)A.若互补的两角相等,则这两个角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角5.下列命题中,正确的命题是(A)A.3是9的算术平方根B.9的平方根是3C.16的算术平方根是4D.内错角相等6.下列命题中,是假命题的为(C)A.邻补角的平分线互相垂直B .平行于同一直线的两条直线互相平行C .如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等D .平行线的一组内错角的平分线互相平行二填空题7.基本事实是真命题,定理是真命题,定义是真命题.(填“真”或“假”.)8.已知∠1+∠2=90°,∠3+∠4=90°,当∠1=∠3时,∠2=∠4成立.9.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Exc el 将按指定行的值和指定的‘升序’或‘降序’排列次序重新设定行.”这段话是对名称按行排序进行定义.10.把命题“三角形的内角和等于180°”改写成“如果……那么……”的形式:如果三个角是三角形的内角,那么它们的和等于180°.三解答题11.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)若a >b ,则1a <1b; (2)如果一个数是偶数,那么这个数是4的倍数;(3)两个负数的差一定是负数.【解】 (1)假命题.如:+1>-2,1+1>1-2,故是假命题. (2)假命题.如:6是偶数,但6不是4的倍数,故是假命题.(3)假命题.如:(-5)-(-8)=+3,故是假命题.12.甲,乙,丙三位老师,他们分别来自北京,上海,广州三个城市,在中学教不同的课程:语文,数学,外语.已知:(1)甲不是北京人,乙不是上海人;(2)北京人不教外语,上海人教语文;(3)乙不教数学.你知道这三位老师各自的籍贯和所教的课程吗?【解】 甲是上海人,教语文;乙是广州人,教外语;丙是北京人,教数学.13.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.(第13题解)【解】假命题.如解图所示,AB⊥BD于点B,CD⊥BD于点D,AB=CD,但AC与BD相交.14.如图,已知BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,∠1+∠2=90°,则:(1)AB∥CD;(2)BE∥DG;(3)ED⊥GD.用推理的方法说明以上命题是真命题.(第14题)【解】(1)∵BE平分∠ABD,DE平分∠BDC,∴∠2=∠ABE,∠1=∠CDE.又∵∠1+∠2=90°,∴∠1+∠2+∠CDE+∠ABE=180°,即∠ABD+∠CDB=180°.∴AB∥CD.(2)∵AB∥CD,∴∠ABD=∠CDF.∵BE平分∠ABD,DG平分∠CDF,∴∠2=12∠ABD=12∠CDF=∠GDF.∴BE∥DG.(3)∵∠2=∠GD F,∠1+∠2=90°,∴∠1+∠GDF=90°,∴∠EDG=∠CDE+∠CDG=180°-(∠1+∠GDF)=90°.∴ED⊥DG.15.材料:把一个命题的条件和结论交换,并且同时否定,那么所得命题是原命题的逆否命题.判断下列命题的真假,并写出它的逆否命题,同时也判断逆否命题的真假,并观察(1)(2)(3)的结论,总结出原命题的真假与它的逆否命题的真假关系.(1)若a2>b2,则a>b;(2)若x,y为实数,且x2+y2=0,则x=0,y=0;(3)若m≥0或n≥0,则m+n≥0.【解】(1)假命题.它的逆否命题是:若a≤b,则a2≤b2,它是假命题.(2)真命题.它的逆否命题是:若x,y为实数,且x,y不全为0,则x2+y2≠0,它是真命题.(3)假命题.它的逆否命题是:若m+n<0,则m<0且n<0,它是假命题.观察(1)(2)(3)可知:原命题与它的逆否命题的真假是一致的,即原命题为真,则其逆否命题为真;原命题为假,它的逆否命题为假.16.把下列命题按要求进行改写:命题①:若x,y为实数,且x2+y2=0,则x,y全为0;命题②:两直线平行,同位角相等.(1)交换命题的条件和结论;(2)同时否定命题的条件和结论;(3)交换命题的条件和结论后,再同时否定新命题的条件和结论.【解】命题①:(1)若x,y为实数,且x,y全为0,则x2+y2=0;(2)若x,y为实数,且x2+y2≠0,则x,y不全为0;(3)若x,y为实数,且x,y不全为0,则x2+y2≠0.命题②:(1)同位角相等,两直线平行;(2)两直线不平行,同位角不相等;(3)同位角不相等,两直线不平行.。
《1.2 定义与命题》同步训练(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知:在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 30°D. 105°2、下列命题中,属于真命题的是()A. 如果x > 0,则x² > 0B. 如果x = 0,则x² = 0C. 如果x < 0,则x² < 0D. 如果x > 0,则x² < 03、在下列命题中,正确的是()A. 若(a>b),则(a+c>b+c)(其中(c)为任意实数)B. 若(a=b),则(a−c=b−c)(其中(c)为任意实数)C. 若(a<b),则(a+c<b+c)(其中(c)为任意实数)D. 若(a=b),则(ac=bc)(其中(c)为任意实数)4、下列命题中,属于假命题的是()A. 若(a=b),则(a2=b2)B. 若(a≠b),则(a2≠b2)C. 若(a=b),则(a⋅a=b⋅b)D. 若(a=b),则(a−b=0)5、下列命题中,是正确命题的是()A. 若a=2,则a>1B. 如果x=0,则x²=0C. 对于所有的正整数n,n²-n总是偶数D. 存在一个实数x,使得x²+1=06、下列关于命题“如果x>1,则x²>1”的逆命题、否命题和逆否命题中,正确的是()A. 逆命题:“如果x²>1,则x>1”B. 否命题:“如果x≤1,则x²≤1”C. 逆否命题:“如果x²≤1,则x≤1”D. 原命题:“如果x>1,则x²>1”7、下列哪个选项是命题?A. 今天的天气真好,可以去公园玩。
B. 圆的面积是半径的平方乘以π。
定义与命题练习题一、选择题1. 下列哪个选项是命题?()A. 请问今天天气怎么样?B. 2x + 3 = 7C. 同学们,加油学习!D. 这道题目的答案是什么?A. 太阳从东方升起B. 一个等边三角形的三条边相等C. 请你把书递给我D. 1 + 1 = 2二、填空题1. 命题“若a > b,则a b > 0”中,________是题设,________是结论。
2. 定义“平行线是在同一平面内,永不相交的两条直线”,其中________是种概念,________是属概念。
三、判断题1. 所有数学题都有唯一的解答。
()2. 定义是由内涵和外延组成的。
()3. “三角形的内角和等于180度”是一个命题。
()四、简答题1. 请简要说明命题与定义的区别。
2. 举例说明一个真命题和一个假命题。
1. 已知命题:“若一个数是偶数,则它是2的倍数”。
请写出该命题的逆命题、否命题和逆否命题。
2. 请给出“矩形”的定义,并说明矩形与正方形的区别。
六、匹配题将下列命题与对应的定义进行匹配:A. 命题:若x是整数,则x是实数。
B. 定义:圆是平面上到一个固定点距离相等的点的集合。
C. 命题:所有的素数除了2都是奇数。
D. 定义:无理数是不能表示为两个整数比的实数。
1. ________ 是命题。
2. ________ 是定义。
3. ________ 是命题。
4. ________ 是定义。
七、改写题1. 若一个整数能被4整除,则它是偶数。
2. 如果一个图形是正方形,那么它的四个角都是直角。
八、分类题将下列句子分为命题、定义和其他三类:1. 春天来了,花儿都开了。
2. 一个正方形的四条边长度相等。
3. 请你把作业做完。
4. 任意两个奇数之和是偶数。
5. 圆的半径是从圆心到圆上任意一点的线段。
1. 所有的猫都喜欢吃鱼。
2. 小白是一只猫。
3. 小黑不喜欢吃鱼。
请问:小黑可能是()。
A. 一只猫B. 一只狗C. 一只鸟D. 无法确定十、综合题1. 设有三个命题:P:所有的学生都勤奋学习。
《定义与命题》习题
1.下列语句中哪些是命题( )
A三角形的内角和是180度B画一条直线
C平行四边形的对角线相等D你喜欢跳舞吗E5是质数
2.判断下列句子中哪些是命题:
(1)动物都需要水( )
(2)猴子是动物的一种( )
(3)玫瑰花是动物( )
(4)美丽的天空( )
(5)三个角对应相等的两个三角形一定全等( )
(6)负数都小于零( )
(7)你的作业做完了吗( )
(8)所有的质数都是奇数( )
3.指出下列命题的条件、结论:
(1)如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等;
(2)如果一个三角形中有两个角相等,那么这个三角形是等腰三角形;
(3)直角三角形的两锐角互余;
(4)两直线平行,同位角相等;
(5)对顶角相等.
4.指出下列命题的题设、结论:
(1)如果两条直线相交,那么它们只有一个交点;
(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
5.把下列命题改写成“如果…,那么…”的形式:
(1)平行于同一直线的两条直线平行.
(2)同角的余角相等.
(3)绝对值相等的两个数一定相等.
6.下列命题中,是真命题的打“√”,不是真命题的打“×”:
A、锐角大于它的余角( )
B、锐角大于它的补角( )
C、钝角大于它的补角( )
D、锐角与钝角之和等于平角( )
E、两个直角三角形一定相似( )
F、相似三角形的对应边相等( )
G、两角相等的两个三角形一定相似( )
7.指出下面命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.。