【好题】高三数学上期末试卷含答案
- 格式:doc
- 大小:1.52 MB
- 文档页数:19
丰台区2023~2024学年度第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,则()U A B ⋃=ð()A.{3,2}-- B.{3,2,1,2}--C.{3,2,1,0,1}--- D.{3,2,1,0,2}---【答案】A【解析】【分析】由补集和并集的定义求解即可.【详解】因为{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,所以{}1,0,1,2A B ⋃=-,U ð(){}3,2A B ⋃=--.故选:A .2.若(1i)1i z -=+,则||z =()A.iB.1C. D.2【答案】B【解析】【分析】根据复数的运算法则进行运算,继而直接求模即可.【详解】因为(1i)1i z -=+,所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,所以i 1z z =-=,,故选:B .3.在6(2)x y -的展开式中,42x y 的系数为()A.120- B.120C.60- D.60【答案】D【解析】【分析】求出6(2)x y -的通项,令2r =即可得出答案.【详解】6(2)x y -的通项为:()()66166C 2C 2r rr r r r r r T x y x y --+=-=-,令2r =可得:42x y 的系数为()226C 215460-=⨯=.故选:D .4.在中国文化中,竹子被用来象征高洁、坚韧、不屈的品质.竹子在中国的历史可以追溯到远古时代,早在新石器时代晚期,人类就已经开始使用竹子了.竹子可以用来加工成日用品,比如竹简、竹签、竹扇、竹筐、竹筒等.现有某饮料厂共研发了九种容积不同的竹筒用来罐装饮料,这九种竹筒的容积129,,,a a a L (单位:L )依次成等差数列,若1233a a a ++=,80.4a =,则129a a a +++= ()A.5.4B.6.3C.7.2D.13.5【答案】B【解析】【分析】利用等差数列的性质及求和公式求解.【详解】∵129,,,a a a L 依次成等差数列,1233a a a ++=,∴233a =,即21a =,又80.4a =,则()()()81912299910.49 6.3222a a a a a a a +⨯+⨯+⨯+++==== .故选:B.5.已知直线y kx =与圆221x y +=相切,则k =()A.1± B.C. D.2±【答案】B【解析】【分析】根据题意可得圆心(0,0)O 到0-=kx y 的距离等于半径1,即可解得k 的值.【详解】直线y kx =+即0-=kx y ,由已知直线y kx =+与圆221x y +=相切可得,圆221x y +=的圆心(0,0)O 到0kx y -=的距离等于半径1,1=,解得k =,故选:B .6.如图,函数()f x 的图象为折线ACB ,则不等式π()tan 4f x x >的解集是()A.{|20}x x -<< B.{|01}x x <<C.{|21}x x -<< D.{|12}x x -<<【答案】C【解析】【分析】利用正切型函数的图象与性质结合分段函数性质即可得到解集.【详解】设()πtan4h x x =,令π242k x k ππππ-<<+,且k ∈Z ,解得4242k x k -<<+,k ∈Z ,令0k =,则22x -<<,则()h x 在()2,2-上单调递增,()00h =1,1BC AC k k =-=,则2,02()2,20x x f x x x -+≤<⎧=⎨+-<<⎩,则当20x -<≤时,()0h x ≤,()0f x >,则满足()()f x h x >,即π()tan 4f x x >,当02x <<时,()11f =,且()f x 单调递减,()11h =,且()h x 单调递增,则()0,1x ∈时,()()f x h x >,即π()tan4f x x >;()1,2x ∈时,()()f x h x <,即()πtan 4f x x <;综上所述:π()tan4f x x >的解集为()2,1-,故选;C.7.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC 折起,使得二面角A BC D --为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据题意,结合线面位置关系的判定定理和性质定理,逐项判定,即可求解.【详解】对于①中,因为二面角A BC D --为直二面角,可得平面ABC ⊥平面BCD ,又因为平面ABC ⋂平面BCD BC =,DC BC ⊥,且DC ⊂平面BCD ,所以DC ⊥平面ABC ,所以①正确;对于②中,由DC ⊥平面ABC ,且AB ⊂平面ABC ,可得AB CD ⊥,又因为AB AC ⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以AB ⊥平面ACD ,所以②正确;对于③中,由AB ⊥平面ACD ,且AB ⊂平面ABD ,所以平面ABD ⊥平面ACD ,所以③正确;对于④,中,因为DC ⊥平面ABC ,且DC ⊂平面BCD ,可得平面ABC ⊥平面BCD ,若平面ABD ⊥平面BCD ,且平面ABD ⋂平面ABC AB =,可得AB ⊥平面BCD ,又因为BC ⊂平面BCD ,所以AB BC ⊥,因为AB 与BC 不垂直,所以矛盾,所以平面ABD 和平面BCD 不垂直,所以D 错误.8.已知,a b 是两个不共线的单位向量,向量c a b λμ=+r r r (,λμ∈R ).“0λ>,且0μ>”是“()0c a b ⋅+> ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】举例验证必要性,通过向量的运算来判断充分性.【详解】当0λ>,且0μ>时,()()()()()22cos ,c a b a b a b a a b b a b λμλλμμλμλμ⋅+=+⋅+=++⋅+=+++ ()0λμλμ>+-+=,充分性满足;当()0c a b ⋅+> 时,()()cos ,c a b a b λμλμ⋅+=+++ ,当0λ>,0μ=时,()cos ,c a b a b λλ⋅+=+ 是可以大于零的,即当()0c a b ⋅+> 时,可能有0λ>,0μ=,必要性不满足,故“0λ>,且0μ>”是“()0c a b ⋅+>”的充分而不必要条件.故选:A .9.在八张亚运会纪念卡中,四张印有吉祥物宸宸,另外四张印有莲莲.现将这八张纪念卡平均分配给4个人,则不同的分配方案种数为()A.18B.19C.31D.37【答案】B【分析】设吉祥物宸宸记为a ,莲莲记为b ,将这八张纪念卡分为四组,共有3种分法,再分给四个人,分别求解即可.【详解】设吉祥物宸宸记为a ,莲莲记为b①每人得到一张a ,一张b ,共有1种分法;②将这八张纪念卡分为()()()(),,,,,,,a a a a b b b b 四组,再分给四个人,则有2242C C 6=种分法③将这八张纪念卡分为()()()(),,,,,,,a b a a a b b b 四组,再分给四个人,则有2142C C 12=种分法共有:161219++=种.故选:B .10.已知函数2()||2||f x x a x =++,当[2,2]x ∈-时,记函数()f x 的最大值为()M a ,则()M a 的最小值为()A.3.5B.4C.4.5D.5【答案】C【解析】【分析】先利用函数的奇偶性,转化为求()f x 在[]0,2上的最大值;再根据a 的取值范围的不同,讨论函数()f x 在[]0,2上的单调性,求函数()f x 的最大值.【详解】易判断函数()f x 为偶函数,根据偶函数的性质,问题转化为求函数()22f x x a x =++,[]0,2x ∈上的最大值()M a .当0a ≥时,()22f x x x a =++,二次函数的对称轴为1x =-,函数在[]0,2上单调递增,所以()()288M a f a ==+≥;当10a -≤<时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,1≤,所以()f x在⎡⎣上递增,在2⎤⎦上也是递增,所以()()287M a f a ==+≥;当41a -<<-时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,因为12<<,所以()f x 在[]0,1上递增,在(上递减,在2⎤⎦上递增,所以()()11M a f a ==-或()()28M a f a ==+,若18a a -≥+⇒742a -≤≤-,则()()9112M a f a ==-≥;若18a a -<+⇒712a -<<-,则()()9282M a f a ==+>;当4a ≤-时,()22f x x x a =-+-,[]0,2x ∈2≥),所以函数()f x 在[]0,1上递增,在(]1,2上递减,所以()()115M a f a ==-≥.综上可知:()M a 的最小值为92.故选:C【点睛】关键点点睛:问题转化为二次函数在给定区间上的最值问题,然后讨论函数在给定区间上的单调性,从而求最大值.认真分析函数的单调性是关键.第二部分非选择题(共110分)二、填空题共5小题,每小题5分,共25分.11.双曲线2214x y -=的渐近线方程________.【答案】12y x =±【解析】【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214x y -=的a=2,b=1,焦点在x 轴上而双曲线22221x y a b-=的渐近线方程为y=±b x a ∴双曲线2214x y -=的渐近线方程为y=±12x故答案为y=±12x 【点睛】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想12.已知()44x x f x -=-,则11(()22f f -+=___.【答案】0【解析】【分析】由解析式直接代入求解即可.【详解】因为1122113()442222f -=-=-=,1122113()442222f --=-=-=-,所以11((022f f -+=.故答案为:0.13.矩形ABCD 中,2AB =,1BC =,且,E F 分为,BC CD 的中点,则AE EF ⋅= ___.【答案】74-##-1.75【解析】【分析】以A 为坐标原点,建立如下图所示的平面直角坐标系,求出,AE EF ,由数量积的坐标表示求解即可.【详解】以A 为坐标原点,建立如下图所示的平面直角坐标系,()()()()()10,0,2,0,2,1,0,1,2,,1,12A B C D E F ⎛⎫ ⎪⎝⎭,所以112,,1,22AE EF ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ,()11172122244AE EF ⋅=⨯-+⨯=-+=- .故答案为:74-.14.如图,在平面直角坐标系xOy 中,角(0π)αα<<的始边为x 轴的非负半轴,终边与单位圆O 交于点P ,过点P 作x 轴的垂线,垂足为M .若记点M 到直线OP 的距离为()f α,则()f α的极大值点为___,最大值为___.【答案】①.π4或3π4②.12##0.5【解析】【分析】根据三角函数的概念得(cos ,sin )P αα及,,OP OM MP ,利用面积法求得()f α,根据α的范围及三角函数的性质讨论()f α的单调性,进而求得答案.【详解】由题意(cos ,sin )P αα,1,cos ,sin OP OM MP αα===,由()1122OP f OM MP α⋅=⋅,得()1πsin 2,0122cos sin sin cos sin 21π2sin 2,π22f αααααααααα⎧<<⎪⎪=⋅===⎨⎪-<<⎪⎩,∴当π04α<<时,()f α单调递增;当ππ42α<<时,()f α单调递减;当π3π24α<<时,()f α单调递增;当3ππ4α<<时,()f α单调递减,则()f α的极大值点为π4或3π4,∵0πα<<,022πα<<,∴当sin 21α=±,即π4α=或3π4α=时,()f α取最大值为12.故答案为:π4或3π4;12.15.在平面直角坐标系内,动点M 与定点(0,1)F 的距离和M 到定直线:3l y =的距离的和为4.记动点M 的轨迹为曲线W ,给出下列四个结论:①曲线W 过原点;②曲线W 是轴对称图形,也是中心对称图形;③曲线W 恰好经过4个整点(横、纵坐标均为整数的点);④曲线W 围成区域的面积大于则所有正确结论的序号是___.【答案】①③④【解析】【分析】根据题目整理方程,分段整理函数,画出图象,可得答案.【详解】设(),M x y ,则MF =,M 到直线l 的距离3d y =-,34y +-=,222(1)(43)x y y +-=--,22221168369x y y y y y +-+=--+-+,224483x y y =---,当3y ≥时,2214812412x y y x =-=-+,,则2214312,12x x x -+≥≤-≤≤,当3y <时,22144x y y x ==,,则2134x <,212x <,x -<<可作图如下:由图可知:曲线W 过原点,且是轴对称图形,但不是中心对称图形,故①正确,②错误;曲线W 经过()()()()0,02,10,42,1O A C E -,,,4个点,没有其它整点,故③正确;由()B ,()D -,()0,3F ,四边形AFEO 的面积113462S =⨯⨯=,122ABF EFD S S ==⨯= ,112BCD S =⨯⨯= ,多边形ABCDEO 的面积626S =+⨯=+曲线W 围成区域的面积大于,故④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,a =,2π3A =.(1)求C 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出AC 边上的中线的长度.条件①:2a b =;条件②:△ABC 的周长为4+ABC 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π6(2【解析】【分析】(1)由正弦定理可解得;(2)条件②由余弦定理可得;条件③由三角形的面积公式和余弦定理可得.【小问1详解】在ABC 中,因为sin sin a cA C=,又a =,所以sin A C =.因为2π3A =,所以1sin 2C =.因为π03C <<,所以π6C =.【小问2详解】选择条件②:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为a =,所以24a b c b ++=+=+.所以2b =.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.选择条件③:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为ABC 的面积为312πsin 323ABC S bc ∆==,所以2b c ==.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.由题可知3a b =,故①不合题意.17.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,AD PA =,点E 为PA 中点.(1)求证:AD //平面BCE ;(2)点Q 为棱BC 上一点,直线PQ 与平面BCE 所成角的正弦值为515,求BQ BC 的值.【答案】(1)证明见解析(2)12BQ BC =【解析】【分析】(1)根据线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用线面角的向量求法可得Q 的坐标,即可得解.【小问1详解】因为正方形ABCD 中,//BC AD .因为BC ⊂平面BCE ,AD ⊄平面BCE ,所以//AD 平面BCE .【小问2详解】因为PA ⊥底面ABCD ,正方形ABCD 中AB AD ⊥,分别以,,AB AD AP的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,如图不妨设2PA =,因为AD PA =,点E 为PA 的中点,点Q 为棱BC 上一点,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,0,1)E ,(0,0,2)P ,(2,,0)Q m (02)m ≤≤.所以(0,2,0)BC = ,(2,0,1)BE =- ,(2,,2)PQ m =-.设(,,)n x y z =为平面BCE 的法向量,则BCn ⊥ ,BE n ⊥.所以2020BC n y BE n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,得102x y z =⎧⎪=⎨⎪=⎩,所以(1,0,2)n = .设直线PQ 与平面BCE 所成角为θ,则sin cos ,15PQ n PQ n PQ n θ⋅==== ,解得21m =,因为02m ≤≤,所以1m =,所以12BQ BC =.18.2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值a ,将该指标小于a 的人判定为阳性,大于或等于a 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p a ;误诊率是将未患病者判定为阳性的概率,记为()q a .假设数据在组内均匀分布,用频率估计概率.(1)当临界值20a =时,求漏诊率()p a 和误诊率()q a ;(2)从指标在区间[20,25]样本中随机抽取2人,记随机变量X 为未患病者的人数,求X 的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记()f a 为该地诊断结果不符合真实情况的概率.当[20,25]a ∈时,直接写出使得()f a 取最小值时的a 的值.【答案】(1)(20)0.1p =,(20)0.05q =(2)分布列见解析;期望为65(3)20a =【解析】【分析】(1)由频率分布直方图计算可得;(2)利用超几何分布求解;(3)写出()f a 的表达式判单调性求解.【小问1详解】由频率分布直方图可知(20)0.0250.1p =⨯=,(20)0.0150.05q =⨯=.【小问2详解】样本中患病者在指标为区间[20,25]的人数是200.0252⨯⨯=,未患病者在指标为区间[20,25]的人数是200.0353⨯⨯=,总人数为5人.X 可能的取值为0,1,2.202325C C 1(0)10C P X ===,112325C C 3(1)C 5P X ===,022325C C 3(2)10C P X ===.随机变量X 的分布列为X012P11035310随机变量X 的期望为1336()012105105E X =⨯+⨯+⨯=.【小问3详解】由题,()()()95%5%f a q a p a =⨯+⨯,[20,25]a ∈时,令()20,0,1,2,3,4,5a t t =+=()()50.010.03,50.020.0255t t q a p a ⎛⎫⎛⎫=⨯+⨯=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭所以()()50.010.0395%50.020.025%55t t f a g t ⎛⎫⎛⎫==⨯+⨯⨯+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,关于t 的一次函数系数为()50.0319%0.021%0⨯-⨯>,故()g t 单调递增,则0=t 即20a =时()f a 取最小值19.已知函数2()e ()x f x x ax a =--.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求实数a 的值;(2)求函数()f x 的单调区间.【答案】(1)1(2)答案见解析【解析】【分析】(1)先求函数()f x 的导函数,若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,只需保证()01f '=,求实数a 的值即可;(2)求得()0f x '=有两个根“2x =-和x a =”,再分2a <-、2a =-和2a >-三种情况分析函数()f x 的单调性即可.【小问1详解】由题可得2()e [(2)2]x f x x a x a '=+--,因为()f x 在点(1,(1))f 处的切线平行于x 轴,所以()01f '=,即e(33)0a -=,解得1a =,经检验1a =符合题意.【小问2详解】因为2()e [(2)2]x f x x a x a '=+--,令()0f x '=,得2x =-或x a =.当2a <-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,)a -∞a(,2)a -2-(2,)-+∞()f 'x +-+()f x 单调递增()f a 单调递减(2)f -单调递增所以()f x 在区间(,)a -∞上单调递增,在区间(,2)a -上单调递减,在区间(2,)-+∞上单调递增.当2a =-时,因为2()e (2)0x f x x '=+≥,当且仅当2x =-时,()0f x '=,所以()f x 在区间(,)-∞+∞上单调递增.当2a >-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,2)-∞-2-(2,)a -a(,)a +∞()f 'x +-+()f x 单调递增(2)f -单调递减()f a 单调递增所以()f x 在区间(,2)-∞-上单调递增,在区间(2,)a -上单调递减,在区间(,)a +∞上单调递增.综上所述,当2a <-时,()f x 的单调递增区间为(,)a -∞和(2,)-+∞,单调递减区间为(,2)a -;当2a =-时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当2a >-时,()f x 的单调递增区间为(,2)-∞-和(,)a +∞,单调递减区间为(2,)a -.20.已知椭圆22:143x y E +=.(1)求椭圆E 的离心率和焦点坐标;(2)设直线1:l y kx m =+与椭圆E 相切于第一象限内的点P ,不过原点O 且平行于1l 的直线2l 与椭圆E 交于不同的两点A ,B ,点A 关于原点O 的对称点为C .记直线OP 的斜率为1k ,直线BC 的斜率为2k ,求12k k 的值.【答案】(1)离心率为12,焦点坐标分别为(1,0)-,(1,0)(2)121k k =【解析】【分析】(1)根据椭圆方程直接求出离心率与焦点坐标;(2)根据直线1l 与椭圆E 相切求出P 坐标并得到134k k=-,法一:设直线2l 的方程为y kx n =+,由韦达定理求出234k k=-证得结论.法二:记1122(,),(,)A x y B x y ,由点差法求2k k ⋅可证得结论.【小问1详解】由题意得2222243a b c a b ⎧=⎪=⎨⎪=-⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆E 的离心率为12c e a ==,焦点坐标分别为(1,0)-,(1,0).【小问2详解】由22,143y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222()4384120k x kmx m +++-=①其判别式Δ0=得222(8)4(43)(412)0km k m -+-=,化简为2243m k =+.此时方程①可化为2228160m x kmx k ++=,解得4kx m=-,(由条件知,k m 异号).记00(,)P x y ,则04k x m=-,所以220443()k m k y k m m m m -=-+==,即点43(,)k P m m -.所以OP 的斜率13344m k k k m==--.法一:因为12//l l ,所以可设直线2l 的方程为(0,)y kx n n n m =+≠≠.由22,143y kx n x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222(43)84120k x knx n +++-=.当其判别式大于零时,有两个不相等的实根,设1122(,),(,)A x y B x y ,则21212228412,4343kn n x x x x k k -+=-=++.因为C 是A 关于原点O 的对称点,所以点C 的坐标为11(,)C x y --.所以直线BC 的斜率22121221212122243384443y y kx n kx n n n k k k k k kn x x x x x x k k k +++++===+=+=-=-+++-+.所以121k k =.法二:记1122(,),(,)A x y B x y ,因为点C 与点A 关于原点对称,所以11(,)C x y --.因为12//l l ,所以直线AB 的斜率为k ,所以22212121222212121y y y y y y k k x x x x x x -+-⋅=⋅=-+-.因为点,A B 在椭圆上,所以2211143x y +=,2222143x y+=.两式相减得:22222121043x x y y --+=.所以2221222134y yx x-=--,即234k k⋅=-,所以234kk=-.所以121kk=.【点睛】方法点睛:将P视为1l与椭圆相交弦中点,由中点弦定理得212bk ka⋅=-,设AB中点为M,由中点弦定理得22OMbk ka⋅=-,由2OMk k=得222bk ka⋅=-,故12k k=.21.对于数列{}n a,如果存在正整数T,使得对任意*()n n∈N,都有n T na a+=,那么数列{}na就叫做周期数列,T叫做这个数列的周期.若周期数列{}n b,{}n c满足:存在正整数k,对每一个*(,)i i k i∈N≤,都有i ib c=,我们称数列{}n b和{}n c为“同根数列”.(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;①sinπna n=;②121,1,3,2,, 3.nn nnb nb b n--=⎧⎪==⎨⎪-≥⎩(2)若{}n a和{}n b是“同根数列”,且周期的最小值分别是3和5,求证:6k≤;(3)若{}n a和{}n b是“同根数列”,且周期的最小值分别是2m+和4m+*()m∈N,求k的最大值.【答案】(1){}n a、{}n b均是周期数列,数列{}n a周期为1(或任意正整数),数列{}n b周期为6(2)证明见解析(3)答案见解析【解析】【分析】(1)由周期数列的定义求解即可;(2)由“同根数列”的定义求解即可;(3)m是奇数时,首先证明25k m+≥不存在数列满足条件,其次证明24k m=+存在数列满足条件.当m 是偶数时,首先证明24k m+≥时不存在数列满足条件,其次证明23k m=+时存在数列满足条件.【小问1详解】{}n a 、{}n b 均是周期数列,理由如下:因为1sin (1)π0sin πn n a n n a +=+===,所以数列{}n a 是周期数列,其周期为1(或任意正整数).因为32111n n n n n n n b b b b b b b +++++=-=--=-,所以63n n n b b b ++=-=.所以数列{}n b 是周期数列,其周期为6(或6的正整数倍).【小问2详解】假设6k ≤不成立,则有7k ≥,即对于17i ≤≤,都有i i a b =.因为71a a =,722b b a ==,所以12a a =.又因为63a a =,611b b a ==,所以13a a =.所以123a a a ==,所以1=n n a a +,与1T 的最小值是3矛盾.所以6k ≤.【小问3详解】当m 是奇数时,首先证明25k m +≥不存在数列满足条件.假设25k m +≥,即对于125i m +≤≤,都有i i a b =.因为()54m t m t a b t m ++=≤≤+,所以()24454t t t a b a t m ---==≤≤+,即1352m a a a a +==== ,及2461m a a a a +==== .又5t m =+时,12(2)12511m m m m a a b b a +++++====,所以1=n n a a +,与1T 的最小值是2m +矛盾.其次证明24k m =+存在数列满足条件.取(2)31,=21(1)212,2(1)2m l im i k k a m i k k +++⎧-≤≤⎪⎪=⎨+⎪=≤≤⎪⎩()l ∈N及()431,=21(1)212,2(1)21,32,4m l i m i k k m i k k b i m i m +++⎧-≤≤⎪⎪+⎪=≤≤=⎨⎪=+⎪⎪=+⎩()l ∈N ,对于124i m +≤≤,都有i i a b =.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件.假设24k m +≥,即对于124i m +≤≤,都有i i a b =.因为()53m t m t a b t m ++=≤≤+,所以()24453t t t a b a t m ---==≤≤+,即1351m a a a a +==== ,及246m a a a a ==== .又4t m =+时,2m m m a b a +==,所以2=n n a a +,与1T 的最小值是2m +矛盾.其次证明23k m =+时存在数列满足条件.取()221,=21(1)22,2(1)23,2m l i m i k k a m i k k i m +++⎧-≤≤⎪⎪=⎨=≤≤⎪⎪=+⎩()l ∈N 及()421,=21(1)22,2(1)23,21,32,4m l im i k k m i k k b i m i m i m +++⎧-≤≤⎪⎪⎪=≤≤⎪=⎨⎪=+⎪=+⎪⎪=+⎩()l ∈N ,对于123i m +≤≤,都有i i a b =.综上,当m 是奇数时,k 的最大值为24m +;当m 是偶数时,k 的最大值为23m +.【点睛】关键点睛:本题(3)的突破口是利用“同根数列”的定义分类讨论,当m 是奇数时,首先证明25k m +≥不存在数列满足条件,其次证明24k m =+存在数列满足条件.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件,其次证明23k m =+时存在数列满足条件.。
高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。
高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。
2023-2024学年江苏省苏州市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合U =R ,集合M ={x |log 2x <1},N ={x |x >1},则集合{x |0<x ≤1}=( ) A .M ∪NB .M ∩NC .(∁U M )∩ND .(∁U N )∩M2.设i 为虚数单位,复数z 满足(3﹣i )z =4+2i ,则|z |=( ) A .√2B .√3C .2D .43.2023年9月28日,沪宁沿江高速铁路开通运营,形成上海至南京间的第二条城际高速铁路,沪宁沿江高速铁路共设8座车站(如图).为体验高铁速度,游览各地风光,甲乙两人准备同时从南京南站出发,甲随机选择金坛、武进、江阴、张家港中的一站下车,乙随机选择金坛、武进、江阴、张家港、常熟中的一站下车.已知两人不在同一站下车,则甲比乙晚下车的概率为( )A .320B .14C .120D .384.已知函数f (x )=cos (ωx +π3)+1(ω>0)的最小正周期为π,则f (x )在区间[0,π2]上的最大值为( ) A .12B .1C .32D .25.在梯形ABCD 中,AD ∥BC ,∠ABC =π2,BC =2AD =2AB =2,以下底BC 所在直线为轴,其余三边旋转一周形成的面围成一个几何体,则该几何体的体积为( ) A .2π3B .4π3C .5π3D .2π6.在平面直角坐标系xOy 中,已知A 是圆C 1:x 2+(y ﹣3)2=1上的一点,B ,C 是圆C 2:(x ﹣4)2+y 2=4上的两点,则∠BAC 的最大值为( ) A .π6B .π3C .π2D .2π37.已知正实数a ,b ,c 满足2a+1a=2a ﹣a ,3b+1b =3b ﹣b ,4c+1c=4c ﹣c ,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .a <c <bD .b <a <c8.若sin π10是函数f (x )=ax 3﹣bx +1(a ,b ∈N *)的一个零点,则f (1)=( )A .2B .3C .4D .5二、选择题:本题共4小题,每小题5分,共20分。
2023-2024学年江苏省连云港市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足(1+i )•z =i ,则此复数z 的虚部为( ) A .12B .−12C .12iD .−12i2.已知集合S ={x |x =k −12,k ∈Z },T ={x |x =2k +12,k ∈Z },则S ∩T =( )A .SB .TC .ZD .R3.随机变量X ~N (2,σ2),若P (X ≤1.5)=m ,P (2≤X ≤2.5)=1﹣3m ,则P (X ≤2.5)=( ) A .0.25B .0.5C .0.75D .0.854.图1是蜂房正对着蜜蜂巢穴开口的截面图,它是由许多个正六边形互相紧挨在一起构成.可以看出蜂房的底部是由三个大小相同的菱形组成,且这三个菱形不在一个平面上.研究表明蜂房底部的菱形相似于菱形十二面体的表面菱形,图2是一个菱形十二面体,它是由十二个相同的菱形围成的几何体,也可以看作正方体的各个正方形面上扣上一个正四棱锥(如图3),且平面ABCD 与平面ATBS 的夹角为45°,则cos ∠ASB =( )A .√22B .√32 C .13D .2√235.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有( ) A .108种B .90种C .72种D .36种6.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左顶点为M ,左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线交C 于A ,B 两点,若∠AMB 为锐角,则C 的离心率的取值范围是( ) A .(1,√3)B .(1,2)C .(√3,+∞)D .(2,+∞)7.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =4,A =π3,且BE 为边AC 上的高,AD 为边BC 上的中线,则AD →•BE →的值为( )A .2B .﹣2C .6D .﹣68.已知a =ln 3,b =log 2e ,c =6(2−ln2)e,则a ,b ,c 的大小关系是( ) A .a <b <cB .b <c <aC .c <a <bD .a <c <b二、选择题:本题共4小题,每小题5分,共20分。
海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。
2023-2024学年北京市西城区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目 1.已知集合A ={x |﹣1<x <3},B ={x |x 2≥4},则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,2]C .(﹣∞,﹣2]∪(﹣1,+∞)D .(﹣∞,﹣2]∪(﹣1,3)2.在复平面内,复数z =i−2i的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,b ∈R ,且a >b ,则( ) A .1a <1bB .tan a >tan bC .3﹣a <2﹣bD .a |a |>b |b |4.已知双曲线C 的一个焦点是F 1(0,2),渐近线为y =±√3x ,则C 的方程是( ) A .x 2−y 23=1B .x 23−y 2=1C .y 2−x 23=1D .y 23−x 2=15.已知点O (0,0),点P 满足|PO |=1.若点A (t ,4),其中t ∈R ,则|P A |的最小值为( ) A .5B .4C .3D .26.在△ABC 中,∠B =60°,b =√7,a ﹣c =2,则△ABC 的面积为( ) A .3√32B .3√34 C .32D .347.已知函数f(x)=ln1+x1−x,则( ) A .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称轴B .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称中心C .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称轴D .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称中心 8.设a →,b →是非零向量,则“|a →|<|b →|”是“|a →•b →|<|b →|2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设{a n }是首项为正数,公比为q 的无穷等比数列,其前n 项和为S n .若存在无穷多个正整数k ,使S k ≤0,则q 的取值范围是( ) A .(﹣∞,0)B .(﹣∞,﹣1]C .[﹣1,0)D .(0,1)10.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板A 1B 1C 1D 1E 1F 1.若其中三根柱子AA 1,BB 1,CC 1的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为( )A .47mB .48mC .49mD .50m二、填空题共5小题,每小题5分,共25分。
【好题】高三数学上期末试题(含答案)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x +1;④y =sin44x ππ+()A .1B .2C .3D .43.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .4.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-5.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( )A .-3B .5C .33D .-316.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .17.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20588.已知数列{}n a 的首项110,211n n n a a a a +==++,则20a =( ) A .99B .101C .399D .4019.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sinB =( ) A .25B .35C .45 D .8510.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =11.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .912.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .57二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S ,且数列也为公差为d 的等差数列,则d =______.15.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________16.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .17.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积S =,其中a b c 、、分别为ABC △内角、、A B C 的对边.若2b =,且tanC =,则ABC △的面积S 的最大值为__________.18.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.19.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积222)S a b c =+-,则角C =__________.20.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.23.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。
2023-2024学年浙江省杭州市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x 2﹣2x ﹣3≤0},B ={x|3x−1≤1},则A ∩B =( ) A .[1,3]B .(1,3]C .[﹣1,1]D .[﹣1,1)2.已知复数z 满足z =−z i (i 为虚数单位),且|z |=√2,则z 2=( ) A .2iB .﹣2iC .√2+√2iD .√2−√2i3.已知随机变量X 1,X 2分别满足二项分布X 1~B (n 1,13),X 2~B (n 2,13),则“n 1>n 2”是“D (X 1)>D (X 2)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.若0<x <12,则不等式1x +11−2x的最小值是( )A .3+2√2B .6C .4√2D .95.冬季是流行病的高发季节,大部分流行病是由病毒或细菌引起的,已知某细菌是以简单的二分裂法进行无性繁殖,在适宜的条件下分裂一次(1个变为2个)需要23分钟,那么适宜条件下1万个该细菌增长到1亿个该细菌大约需要(参考数据:lg 2≈0.3)( ) A .3小时B .4小时C .5小时D .6小时6.已知定义在R 上的函数f (x )满足sin xf (x )+cos xf ′(x )>0,则( ) A .f(π3)<√3f(π6)B .f(π6)<√3f(π3)C .f(π3)>√3f(π6)D .f(π6)>√3f(π3)7.已知数列{a n },{b n }满足a 1=b 1=1,a n +1=a n +b n ,b n +1=a n ﹣b n ,则a n =( ) A .2n ﹣1B .2n−12C .2n+12D .22n−1+(−1)n48.已知四面体ABCD ,△ABC 是边长为6的正三角形,DA =DB =2√3,二面角D ﹣AB ﹣C 的大小为23π,则四面体ABCD 的外接球的表面积为( ) A .40πB .52πC .72πD .84π二、选择题:本题共4小题,每小题5分,共20分。
2023-2024学年北京市大兴区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U ={x |x >1},集合A ={x |x ≥2},则∁U A =( ) A .{x |1<x ≤2}B .{x |x <2}C .{x |1<x <2}D .{x |x ≤1}2.若复数z 满足i •(z +i )=1,则复数z 的虚部是( ) A .﹣2B .2C .﹣1D .03.(x 2−1x)6的展开式中的常数项为( )A .20B .﹣20C .15D .﹣154.设向量a →,b →,若|a →|=1,b →=(−3,4),b →=λa →(λ>0),则a →=( ) A .(45,−35)B .(−45,35)C .(35,−45)D .(−35,45)5.已知函数f (x )=2x ﹣1,则不等式f (x )≤x 的解集为( ) A .(﹣∞,2]B .[0,1]C .[1,+∞)D .[1,2]6.在△ABC 中,“C =π2”是“sin 2A +sin 2B =1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知定点M (1,3)和抛物线C :x 2=8y ,F 是抛物线C 的焦点,N 是抛物线C 上的点,则|NF |+|NM |的最小值为( ) A .3B .4C .5D .68.已知a >b >0且ab =10、则下列结论中不正确的是( ) A .lga +lgb >0 B .lga ﹣lgb >0 C .lga ⋅lgb <14D .lga lgb>19.木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为等边三角形,EF ∥CD ,EF =4,则该木楔的体积为( )A .√2B .2√2C .2√23D .8√2310.设无穷等差数列{a n }的公差为d ,集合T ={t |t =sin a n ,n ∈N *}.则( ) A .T 不可能有无数个元素B .当且仅当d =0时,T 只有1个元素C .当T 只有2个元素时,这2个元素的乘积有可能为12D .当d =2πk,k ≥2,k ∈N ∗时,T 最多有k 个元素,且这k 个元素的和为0 二、填空题共5小题,每小题5分,共25分.11.设{a n }是等比数列,a 1=1,a 2•a 4=16,则a 5= . 12.若双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,则b = . 13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题的一组整数a ,b ,c 的值依次为 .14.如图是六角螺母的横截面,其内圈是半径为1的圆O ,外框是以为O 中心,边长为2的正六边形ABCDEF ,则O 到线段AC 的距离为 ;若P 是圆O 上的动点,则AC →⋅AP →的取值范围是 .15.设函数f (x )的定义域为R ,且f (x )满足如下性质:(i )若将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,(ii )若将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的图象关于原点对称.给出下列四个结论:①f (1)=f (3);②f (0)=0;③f (2)+f (4)=0;④f(−12)f(112)≤0.其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程,16.(14分)如图.在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点.(1)求证:平面CDE ⊥平面ABB 1A 1;(2)求直线CE 与平面BCC 1B 1所成角的正弦值.17.(13分)在△ABC中,a=1,b=2.(1)若c=2√2,求△ABC的面积:(2)在下列三个条件中选择一个作为已知,使△ABC存在,求∠A.条件①:∠B=2∠A;条件②:∠B=π3+∠A;条件③:∠C=2∠A.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(13分)为了解客户对A,B两家快递公司的配送时效和服务满意度情况,现随机获得了某地区客户对这两家快递公司评价的调查问卷,已知A,B两家公司的调查问卷分别有120份和80份,全部数据统计如下:假设客户对A,B两家快递公司的评价相互独立.用频率估计概率,(1)从该地区选择A快递公司的客户中随机抽取1人,估计该客户对A快递公司配送时效的评价不低于75分的概率;(2)分别从该地区A和B快递公司的样本调查问卷中,各随机抽取1份,记X为这2份问卷中的服务满意度评价不低于75分的份数,求X的分布列和数学期望;(3)记评价分数x≥85为“优秀”等级,75≤x<85为“良好”等级,65≤x<75为“一般”等级、已知小王比较看重配送时效的等级,根据该地区A,B两家快递公司配送时效的样本评价分数的等级情况.你认为小王选择A,B哪家快递公司合适?说明理由.19.(15分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为√3 2.(1)求椭圆C 的方程;(2)设O 为原点,过点T (4,0)的直线l 交椭圆C 于点M ,N ,直线BM 与直线x =1相交于点P ,直线AN 与y 轴相交于点Q .求证:△OAQ 与△OTP 的面积之比为定值. 20.(15分)已知函数f(x)=ax +ln1−x1+x. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为0,求a 的值; (2)当a =4时,求f (x )的零点个数;(3)证明:0≤a ≤2是f (x )为单调函数的充分而不必要条件.21.(15分)若各项为正的无穷数列{a n }满足:对于∀n ∈N *,a n+12−a n 2=d ,其中d 为非零常数,则称数列{a n }为D 数列.记b n =a n +1﹣a n .(1)判断无穷数列a n =√n 和a n =2n 是否是D 数列,并说明理由; (2)若{a n }是D 数列,证明:数列{b n }中存在小于1的项; (3)若{a n }是D 数列,证明:存在正整数n ,使得∑ n i=11a i>2024.2023-2024学年北京市大兴区高三(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U ={x |x >1},集合A ={x |x ≥2},则∁U A =( ) A .{x |1<x ≤2}B .{x |x <2}C .{x |1<x <2}D .{x |x ≤1}解:U ={x |x >1},集合A ={x |x ≥2},则∁U A ={x |1<x <2}. 故选:C .2.若复数z 满足i •(z +i )=1,则复数z 的虚部是( ) A .﹣2B .2C .﹣1D .0解:∵i •(z +i )=1,∴z +i =1i=−i ,解得z =﹣2i ,∴z 的虚部为﹣2. 故选:A .3.(x 2−1x)6的展开式中的常数项为( )A .20B .﹣20C .15D .﹣15解:通项公式T r +1=∁6r (x 2)6﹣r(−1x)r =(﹣1)r ∁6r x 12﹣3r , 令12﹣3r =0,解得r =4.∴展开式中的常数项=∁64=15. 故选:C .4.设向量a →,b →,若|a →|=1,b →=(−3,4),b →=λa →(λ>0),则a →=( ) A .(45,−35)B .(−45,35)C .(35,−45)D .(−35,45)解:设a →=(m ,n ),∵若|a →|=1,b →=(−3,4),b →=λa →(λ>0), ∴λm =﹣3,λn =4,且m 2+n 2=1,即9λ2+16λ2=1,∴λ2=25,又λ>0, ∴λ=5,∴m =−35,n =45,∴a →=(m ,n )=(−35,45).故选:D .5.已知函数f (x )=2x ﹣1,则不等式f (x )≤x 的解集为( )A.(﹣∞,2]B.[0,1]C.[1,+∞)D.[1,2]解:令g(x)=f(x)﹣x=2x﹣x﹣1,则g′(x)=2x ln2﹣1,令g′(x)=0,得2x=1ln2=log2e,即x=log2(log2e),当x∈(﹣∞,log2(log2e))时,g′(x)<0,当x∈(log2(log2e),+∞)时,g′(x)>0,∴g(x)在区间(﹣∞,log2(log2e))上单调递减,在区间(log2(log2e),+∞)上单调递增,又g(0)=0,g(1)=0,∴当x∈[0,1]时,g(x)=f(x)﹣x=2x﹣x﹣1≤0,∴不等式f(x)≤x的解集为[0,1].故选:B.6.在△ABC中,“C=π2”是“sin2A+sin2B=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:在△ABC中,当C=π2时,则A+B=π2,故sin2A+sin2B=sin2A+sin2(π2−A)=sin2A+cos2A=1,故充分性成立,当A=120°,B=30°,满足sin2A+sin2B=1,但C≠π2,故必要性不成立,综上所述,在△ABC中,“C=π2”是“sin2A+sin2B=1”的充分不必要条件.故选:A.7.已知定点M(1,3)和抛物线C:x2=8y,F是抛物线C的焦点,N是抛物线C上的点,则|NF|+|NM|的最小值为()A.3B.4C.5D.6解:作出抛物线C:x2=8y的图象如图:点M(1,3)在抛物线C:x2=8y内,抛物线的准线方程为y=﹣2,过M作准线的垂线,垂足为K,垂线交抛物线于N,则此时|NF|+|NM|取最小值为|MK|=3﹣(﹣2)=5.8.已知a >b >0且ab =10、则下列结论中不正确的是( ) A .lga +lgb >0 B .lga ﹣lgb >0 C .lga ⋅lgb <14D .lga lgb>1解:∵a >b >0且ab =10,∴a b>1,b =10a ,a >√10(若a ≤√10,则b <√10,ab <10,与已知矛盾),∴lgab =lga +lgb =lg 10=1>0,A 正确; ∴lg ab =lga ﹣lgb >lg 1=0,B 正确;由a >√10,得lga >12,∴(lga −12)2>0,∴lga •lgb =lga •lg 10a=lga (1﹣lga )=﹣(lga −12)2+14<14,C 正确;∵lga lgb −1=lga−lgb lgb 中,分子lga ﹣lgb >0,但分母lgb 的符号不确定,故lga lgb−1的符号不确定,D 错误. 故选:D .9.木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为等边三角形,EF ∥CD ,EF =4,则该木楔的体积为( )A .√2B .2√2C .2√23D .8√23解:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,由四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为正三角形,EF ∥CD ,EF =4, 得EG =HF =1,AG =GD =BH =HC =√3. 取AD 的中点O ,连接GO ,可得GO =√2, ∴S △ADG =S △BCH =12×√2×2=√2. ∴该木楔子的体积V =V E ﹣ADG +V F ﹣BCH +V AGD ﹣BHC =2V E ﹣ADG +V AGD ﹣BHC =2×13×√2×1+√2×2=8√23.10.设无穷等差数列{a n }的公差为d ,集合T ={t |t =sin a n ,n ∈N *}.则( ) A .T 不可能有无数个元素B .当且仅当d =0时,T 只有1个元素C .当T 只有2个元素时,这2个元素的乘积有可能为12D .当d =2πk,k ≥2,k ∈N ∗时,T 最多有k 个元素,且这k 个元素的和为0 解:对于A ,不妨令a n =n ,则d =1,则t =sin a n ,由于y =sin x 的周期为2π,且对称轴为x =π2+kπ,k ∈Z ,则对任意的a i ,a j ,i ,j ∈N *,i ≠j ,必有sin a i ≠sin a j ,当a n 有无穷项时,T 中有无数元素,A 错误;对于B ,令a n =n π,此时d =π,此时sin n π=0,T 中只有一个元素0,B 错误;对于C ,若T 中只有两个元素,根据y =sin x 的周期性与中心对称性,sin a n 的值必一正一负,因为若两个值都为正,必不满足等差数列的定义,所以该两个数的乘积必为负,C 错误; 对于D ,当d =2πk ,k ≥2,k ∈N ∗时,在y =sin x 的一个周期[0,2π)内,取a 1=0,此时k ×2πk=2π,比如取k =5,此时sin a 1,sin a 2,⋯,sin a 5两两不相等,此时T 有5个元素;而结合y =sin x 的周期为2π可知,必有sin a i 必周期性重复出现,所以T 中最多有k 个元素; 再证明和为0,∑ k−1i=0sin(α+2iπk )=12sin πk ∑ k−1i=0[sin(α+2iπk )sin πk ]=12sin πk ∑ k−1i=0[cos(α+2i−1k π)−cos(α+2i+1k π)]=12sin πk[cos(α−πk )−cos (α+2k−1k π)]=0,D 正确. 故选:D .二、填空题共5小题,每小题5分,共25分.11.设{a n }是等比数列,a 1=1,a 2•a 4=16,则a 5= 16 .解:因为等比数列{a n }中,a 1=1,a 2a 4=a 12⋅q 4=16,则q 4=16,所以a 5=a 1⋅q 4=16.故答案为:16.12.若双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,则b = 2 .解:双曲线x 2−y 2b2=1(b >0),则渐近线为y =±ba =±b , 双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,即y =2x ,b >0,则b =2. 故答案为:2.13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题的一组整数a ,b ,c 的值依次为 ﹣1,﹣2,﹣3(答案不唯一) .解:当a =﹣1,b =﹣2,c =﹣3时,满足a >b >c , 但ab =2,c 2=9,ab <c 2,故“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题. 故答案为:﹣1,﹣2,﹣3(答案不唯一).14.如图是六角螺母的横截面,其内圈是半径为1的圆O ,外框是以为O 中心,边长为2的正六边形ABCDEF ,则O 到线段AC 的距离为 1 ;若P 是圆O 上的动点,则AC →⋅AP →的取值范围是 [6﹣2√3,6+2√3] .解:如图以O 为坐标原点,AD 所在直线为x 轴,AD 的垂直平分线所在直线为y 轴,建立平面直角坐标系,设点P (cos θ,sin θ)(0≤θ≤2π),由题意知,A (﹣2,0),O (0,0),C (1,−√3),直线AC 的斜率k =−√31−(−2)=−√33,AC 的方程为y ﹣0=√33(x +2),即x +√3y +2=0,故O 到线段AC 的距离d =2√1+(√3)2=1;又AC →=(3,−√3),AP →=(2+cos θ,sin θ),AC →⋅AP →=6+3cos θ−√3sin θ=6+2√3(√32cos θ−12sin θ)=6+2√3sin (π3−θ)∈[6﹣2√3,6+2√3].故答案为:1;[6﹣2√3,6+2√3].15.设函数f (x )的定义域为R ,且f (x )满足如下性质:(i )若将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,(ii )若将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的图象关于原点对称.给出下列四个结论:①f (1)=f (3);②f (0)=0;③f (2)+f (4)=0;④f(−12)f(112)≤0.其中所有正确结论的序号是 ①③④ .解:∵将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,∴f (x )的图象关于x =2对称,∴f (﹣x )=f (x +4),∴f (1)=f (3),∴①正确;∵将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的函数为f (2x +1),又f (2x +1)的图象在R 上关于原点对称,∴f (﹣2x +1)+f (2x +1)=0,∴2f (1)=0,∴f (1)=0, ∴f (x )关于(1,0)对称,∴f (﹣x )=﹣f (x +2),又f (﹣x )=f (x +4), ∴f (x +4)=﹣f (x +2),∴f (x +2)=﹣f (x ), ∴f (x +4)=f (x ),∴f (x )的周期T =4,∵f (﹣x )=﹣f (x +2),∴f (0)=﹣f (2),而x =2是f (x )的对称轴,∴f (2)不一定为0, ∴f (0)=0不一定成立,∴②错误;∵f (0)=﹣f (2),∴f (2)+f (0)=0,由周期性可知f (0)=f (4), ∴f (2)+f (4)=0,∴③正确; ∵f (x )的周期T =4,∴f (112)=f (4+32)=f (32),又f (x +2)=﹣f (x ),∴f (32)=﹣f (−12),∴f (112)=f (4+32)=f (32)=﹣f (−12),∴f (−12)f (112)=−[f(−12)]2≤0,∴④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程,16.(14分)如图.在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点.(1)求证:平面CDE ⊥平面ABB 1A 1;(2)求直线CE 与平面BCC 1B 1所成角的正弦值.(1)证明:由BB 1⊥平面ABC ,CD ⊂平面ABC ,可得BB 1⊥CD , 由CA =CB ,D 为AB 中点,可得CD ⊥AB , 又AB ∩BB 1=B ,AB ,BB 1⊂平面ABB 1A 1, 所以CD ⊥平面ABB 1A 1,又CD ⊂平面CDE , 所以平面CDE ⊥平面ABB 1A 1;(2)解:由(1)知:DA ,DC ,BB 1两两垂直, 过D 作Dz ∥BB 1,则DA ,DC ,Dz 两两垂直, 故以D 为坐标原点,建立如图所示空间直角坐标系,由CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点, 可得B (﹣1,0,0),C (0,2,0),C 1(0,2,2),E (1,0,1), 则CE →=(1,−2,1),CB →=(−1,−2,0),CC 1→=(0,0,2), 设平面BCC 1B 1的法向量为n →=(x ,y ,z),则有{n →⋅CB →=−x −2y =0n →⋅CC 1→=2z =0,令x =2,则y =﹣1,z =0,可得平面BCC 1B 1的一个法向量为n →=(2,−1,0),设直线CE 与平面BCC 1B 1所成角为θ,则有sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=4√6×√5=2√3015,故直线CE 与平面BCC 1B 1所成角的正弦值为2√3015.17.(13分)在△ABC中,a=1,b=2.(1)若c=2√2,求△ABC的面积:(2)在下列三个条件中选择一个作为已知,使△ABC存在,求∠A.条件①:∠B=2∠A;条件②:∠B=π3+∠A;条件③:∠C=2∠A.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)在△ABC中,a=1,b=2,c=2√2,由余弦定理,可得cos C=a2+b2−c22ab=1+4−82×2×1=−34,又C∈(0,π),可得sin C=√1−916=√74,故S△ABC=12ab⋅sinC=12×1×2×√74=√74;(2)若选条件①:由题意有B=2A,a=1,b=2,则由正弦定理,可得sinBsinA=ba,即sin2AsinA=2cos A=2,即cos A=1,又A∈(0,π),cos A≠1,故△ABC不存在;若选条件②:由题意有B=π3+A,a=1,b=2,则由正弦定理,可得sinBsinA=ba,即sin(π3+A)sinA=2,即32sinA−√32cosA=0,即√3sin(A−π6)=0,所以sin(A−π6)=0,又A∈(0,π),所以A−π6∈(−π6,5π6),故A−π6=0,即A=π6;若选条件③:由题意有C=2A,a=1,b=2,则由正弦定理,可得sinCsinA=ca,即sin2AsinA=2cosA=ca,由余弦定理,可得b2+c2−a22bc=c2a,即4+c2﹣1=2c2,解得c=√3,故cos A=c2a=√32,又A∈(0,π),所以A=π6;综上,只能选择条件②或③,解得A=π6.18.(13分)为了解客户对A,B两家快递公司的配送时效和服务满意度情况,现随机获得了某地区客户对这两家快递公司评价的调查问卷,已知A,B两家公司的调查问卷分别有120份和80份,全部数据统计如下:假设客户对A ,B 两家快递公司的评价相互独立.用频率估计概率,(1)从该地区选择A 快递公司的客户中随机抽取1人,估计该客户对A 快递公司配送时效的评价不低于75分的概率;(2)分别从该地区A 和B 快递公司的样本调查问卷中,各随机抽取1份,记X 为这2份问卷中的服务满意度评价不低于75分的份数,求X 的分布列和数学期望;(3)记评价分数x ≥85为“优秀”等级,75≤x <85为“良好”等级,65≤x <75为“一般”等级、已知小王比较看重配送时效的等级,根据该地区A ,B 两家快递公司配送时效的样本评价分数的等级情况.你认为小王选择A ,B 哪家快递公司合适?说明理由.解:(1)根据题中数据,该地区参与A 快递公司调查的问卷共120份,样本中对A 快递公司配送时效的评价不低于75分的问卷共29+47=76 份,所以样本中对A 快递公司配送时效的评价不低于75分的频率为76120=1930,估计该地区客户对A 快递公司配送时效的评价不低于75分的概率1930; (2)X 的所有可能取值为0,1,2,记事件C 为“从该地区A 快递公司的样本调查问卷中随机抽取1份,该份问卷中的服务满意度评价不低于75分”,事件D 为“从该地区B 快递公司的样本调查问卷中随机抽取1份,该份问卷中的服务满意度评价不低于75分”,由题设知,事件C ,D 相互独立,且P(C)=24+56120=23,P(D)=12+4880=34, 所以P (X =0)=P (CD )=(1−23)×(1−34)=112,P (X =1)=P (CD ∪C D )=(1−23)×34+23×(1−34)=512,P (X =2)=P (CD )=23×34=12,所以X的分布列为:故X的数学期望E(X)=0×112+1×512+2×12=1712;(3)答案不唯一,答案示例1:小王选择A快递公司合适,理由如下:根据样本数据,估计A快递公司配送时效评价为“优秀”的概率是29120,估计B快递公司配送时效评价为“优秀”的概率是1 5,因为29120>15,故小王选择A快递公司合适,答案示例2:小王选择B快递公司合适,理由如下:由(1)知,估计A快递公司配送时效评价为“良好”以上的概率是1930,由样本数据可知,估计B快递公司配送时效评价为“良好”以上的概率是16+4080=5680=710,因为1930<710,故小王选择B快递公司合适.19.(15分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为√3 2.(1)求椭圆C的方程;(2)设O为原点,过点T(4,0)的直线l交椭圆C于点M,N,直线BM与直线x=1相交于点P,直线AN与y轴相交于点Q.求证:△OAQ与△OTP的面积之比为定值.解:(1)由题意可得a=2,e=ca=√32,可得c=√3,所以b2=a2﹣c2=4﹣3=1,所以椭圆C的方程为:x24+y2=1;证明:(2)显然直线l的斜率存在且不为0,由题意设直线l的方程为x=my+4,设M(x1,y1),N(x2,y2),联立{x=my+4x24+y2=1,整理可得:(4+m2)y2+8my+12=0,则Δ=82m2﹣4×12×(4+m2)>0,即m2>12,且y1+y2=−8m4+m2,y1y2=124+m2,可得y1y2y1+y2=−128m=−32m,即2my1y2=﹣3(y1+y2),设直线BM的方程为y=y1x1−2(x﹣2),令x=1,可得y P=−y1x1−2=−y1my1+2,直线AN 的方程为y =y 2x 2+2(x +2),令x =0,可得y Q =2y 2x 2+2=2y 2my 2+6, 所以S △OAQ S OTP=12|OA|⋅|y Q |12|OT|⋅|y P |=24•|2y 2my 2+6y 1my 1+2|=|my 1y 2+2y 2my 1y 2+6y 1|=|−32(y 1+y 2)+2y 2−32(y 1+y 2)+6y 1|=13•|y 2−3y 1−y 2+3y 1|=13,为定值. 即证得:△OAQ 与△OTP 的面积之比为定值,且定值为13.20.(15分)已知函数f(x)=ax +ln1−x1+x. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为0,求a 的值; (2)当a =4时,求f (x )的零点个数;(3)证明:0≤a ≤2是f (x )为单调函数的充分而不必要条件. 解:(1)函数f(x)=ax +ln1−x 1+x 的导数为f ′(x )=a +1+x 1−x •−2(1+x)2=a +2x 2−1, 可得曲线y =f (x )在点(0,f (0))处的切线斜率为a ﹣2=0,解得a =2; (2)当a =4时,f (x )=4x +ln 1−x 1+x ,由1−x1+x>0,解得﹣1<x <1,f (x )的定义域为(﹣1,1),关于原点对称,f (﹣x )+f (x )=﹣4x +ln 1+x 1−x +4x +ln 1−x1+x=0+ln 1=0,即f (﹣x )=﹣f (x ),可得f (x )为奇函数,则f (0)=0, 当0<x <1时,f (x )的导数为f ′(x )=4+2x 2−1=4x 2−2x 2−1, 当0<x <√22时,f ′(x )>0,f (x )递增;当√22<x <1时,f ′(x )<0,f (x )递减, 可得f (x )在x =√22处取得最大值,又x →1时,f (x )→﹣∞,所以0<x <1时,f (x )有一个零点;由奇函数的性质可得﹣1<x <0时,f (x )有一个零点, 则当a =4时,f (x )的零点个数为3;(3)证明:由f (x )=ax +ln 1−x1+x为单调函数,即f (x )在(﹣1,1)内递增,或递减.由f ′(x )=a +2x 2−1,若f (x )在(﹣1,1)内递增,则f ′(x )≥0,即a ≥21−x 2恒成立. 由g (x )=21−x 2∈[2,+∞),则a ≥21−x 2不恒成立,即f (x )在(﹣1,1)内不为递增函数. 若f (x )在(﹣1,1)内递减,则f ′(x )≤0,即a ≤21−x 2恒成立. 由g (x )=21−x 2∈[2,+∞),则a ≤2, 所以,f (x )为单调函数的充要条件为a ≤2, 而{a |0≤a ≤2}⫋(﹣∞,2],则0≤a ≤2是f (x )为单调函数的充分而不必要条件.21.(15分)若各项为正的无穷数列{a n }满足:对于∀n ∈N *,a n+12−a n 2=d ,其中d 为非零常数,则称数列{a n }为D 数列.记b n =a n +1﹣a n .(1)判断无穷数列a n =√n 和a n =2n 是否是D 数列,并说明理由; (2)若{a n }是D 数列,证明:数列{b n }中存在小于1的项; (3)若{a n }是D 数列,证明:存在正整数n ,使得∑ n i=11a i>2024. 解:(1)数列a n =√n 是D 数列.理由如下:a n+12−a n 2=(√n +1)2−(√n)2=1满足D 数列定义,数列a n =2n 不是D 数列.理由如下:a n+12−a n 2=(2n+1)2−(2n )2=22n+2−22n =3⋅22n 不是常数;(2)以下证明:d >0.假设d <0,由a n+12−a n 2=d 知{a n 2}为等差数列,故a n 2=a 12+(n −1)d ,因为{a n }是各项为正的无穷数列,当n 取大于[−a 12d ]+1 的整数时,a n 2≤a 12+([−a 12d]+2−1)d <0,与已知矛盾,所以假设不成立,所以d >0,以下证明{a n } 是递增数列.因为d >0,a n+12=a n 2+d >a n 2,且{a n }是各项为正的无穷数列,所以a n +1>a n , 所以{a n } 是递增数列,以下证明:∀t >0,∃k ∈N *,当n ≥k 时,a n >t , 若t <a 1,当n >1时,显然a n >t , 若t ≥a 1,取k =[t 2−a 12d]+2, 当n ≥k时,a n2≥a 12+([t 2−a 12d ]+2−1)d >t 2,即a n >t 成立, 因为b n =a n+1−a n =d a n+1+a n <d2a n,取t =d 2,当m ≥k 时,a n >t ,此时,b n <d2⋅d 2=1.所以若{a n } 是D 数列,则数列{b n }中存在小于1的项; (3)由(2)知,∃k ∈N ,当n ≥k 时,b n <1,即a π+1<a n +1, 以此类推,0<a k +m <a k +m ﹣1+1<a k +m ﹣2+2<…<a k +m ,m ∈N , 所以1a k+m>1a k +m,m ∈N *,设此时 2s−1≤a k <2s ,s ∈N *,令 n =k +m ,所以∑n i=11a i>∑k+mi=k1a i>1a k>1a k+1+1a k+2+⋯+1a k+m>12s+12s+1+12s+2+⋯+12s+m,因为12s+12s+1+12s+2+⋯+1s2s+(2s−1)>12s+2s=12,所以当m=2s+2×2024﹣1,m∈N*,∑n i=11a i >∑k+mi=k1a i>12s+12s+1+12s+2+⋯+12s+(2s+2×2024−1)=(12s+12s+1+⋯+12s+(2s−1))+(12s+1+12s+1+1+⋯+12s+1+(2s+1−1))+...+(12s+2×2024+12s+2×2024+1+⋯+12s+2×2024+(2s+2×2024−1))>2×20242=2024.所以存在正整数n,使得∑n i=11a n>2024.。
2023-2024学年浙江省杭州市高三(上)期末数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230A x x x =--≤,311B x x ⎧⎫=≤⎨⎬-⎩⎭,则A B = ()A.[]1,3 B.(]1,3 C.[]1,1- D.[)1,1-【答案】D 【解析】【分析】先求出集合,A B ,再由交集的定义求解即可.【详解】由2230x x --≤可得:()()130x x +-≤,解得:13x -≤≤,由311x ≤-可得3101x -≤-,即3101x x -+≤-,即()()1401x x x ⎧--≥⎨≠⎩,解得:1x <或4x ≥,故[]1,3A =-,()[),14,B ∞∞=-⋃+,所以A B = [)1,1-.故选:D .2.已知复数z 满足i z z =-(i 为虚数单位),且z =,则2z =()A.2iB.2i-C.D.【答案】B 【解析】【分析】设i z a b =+,结合共轭复数的定义和复数的模公式求出即可.【详解】设i z a b =+,(),R a b ∈,则i z a b =-,因为i z z =-,则()()i i i i 0a b a b a b a b a b +=--⨯⇒+++=⇒=-,又z =,则222a b +=,解得1,1a b ==-或1,1a b =-=,所以1i z =-或1i z =-+,所以()221i 2i z =-=-或()221i 2i z =-+=-,故选:B.3.已知随机变量1X ,2X 分别满足二项分布111~,3X B n ⎛⎫ ⎪⎝⎭,221~,3X B n ⎛⎫ ⎪⎝⎭,则“12n n >”是“()()12D X D X >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由二项分布的方差公式求出()()12,D X D X ,再由充分条件和必要条件的定义求解即可.【详解】因为111~,3X B n ⎛⎫ ⎪⎝⎭,221~,3X B n ⎛⎫ ⎪⎝⎭,所以()()1112221121121,1339339D X n n D X n n ⎛⎫⎛⎫=⋅⋅-==⋅⋅-= ⎪ ⎪⎝⎭⎝⎭,所以12n n >,则()()12D X D X >,若()()12D X D X >,则12n n >.所以“12n n >”是“()()12D X D X >”的充要条件.故选:C .4.若102x <<,则1112x x+-的最小值是()A.3+B.6C. D.9【答案】A 【解析】【分析】由2(12)1x x +-=,得到1111[2(12)]()1212x x x x x x+=+-+--,结合基本不等式,即可求解.【详解】因为102x <<,可得120x ->,且2(12)1x x +-=,则1111122[2(12)]()3121212x x x x x x x x x x -+=+-+=++---33≥+=+,当且仅当12212x x x x -=-时,即22x =时,等号成立,所以1112x x+-的最小值是3+.故选:A.5.冬季是流行病的高发季节,大部分流行病是由病毒或细菌引起的,已知某细菌是以简单的二分裂法进行无性繁殖,在适宜的条件下分裂一次(1个变为2个)需要23分钟,那么适宜条件下1万个该细菌增长到1亿个该细菌大约需要(参考数据:lg 20.3≈)()A.3小时 B.4小时C.5小时D.6小时【答案】C 【解析】【分析】设适宜条件下1万个该细菌增长到1亿个该细菌大约需要x 分钟,则231210000x⋅=,两边同时取对数得,结合对数的运算性质求解即可.【详解】设适宜条件下1万个该细菌增长到1亿个该细菌大约需要x 分钟,则231210000x ⋅=,两边同时取对数得,lg 2lg10000423x⋅==,所以42392306.7lg 20.3x ⨯=≈≈,所以大约需要306.7560≈小时.故选:C .6.已知定义在R 上的函数()f x 满足()()sin cos 0xf x xf x '+>,则()A.ππ36f ⎫⎫⎛⎛< ⎪ ⎪⎝⎝⎭⎭B.ππ63f f ⎫⎫⎛⎛< ⎪ ⎪⎝⎝⎭⎭C.ππ36f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ D.ππ63f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】【分析】构造函数()()cos f x F x x=,ππ,Z 2x k k ≠+∈,求导得到其单调性,从而得到ππ63F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,化简后得到答案.【详解】令()()cos f x F x x=,ππ,Z 2x k k ≠+∈,故()()()2cos sin 0cos f x x f x xF x x+='>'恒成立,故()()cos f x F x x=在πππ,π,Z 22k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,故ππ63F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即ππππππ6363ππ163cos cos6322f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭<⇒⇒< ⎪ ⎪⎝⎭⎝⎭.故选:B7.已知数列{}n a ,{}n b 满足111a b ==,1n n n a a b +=+,1n n n b a b +=-,则n a =()A.12n - B.122n - C.122n + D.()21142nn -+-【答案】D 【解析】【分析】根据递推关系,归纳出数列{}n a 的奇数项与偶数项分别为公比为2的等比数列,进而可得数列{}n a 的通项公式.【详解】因为1n n n a a b +=+,1n n n b a b +=-,则112n n n a b a +++=,又211n n n a a b +++=+,则22n n a a +=,所以数列{}n a 的奇数项与偶数项分别为公比为2的等比数列,由111a b ==可得2112a a b =+=,则数列{}n a 的各项为1,2,2,4,4,8,8, ,其中奇数项的通项公式为1122122n n n a a --=⋅=,偶数项的通项公式为122222n n n a a -=⋅=,所以数列{}n a 的通项公式为()21142nn n a -+-=.故选:D8.已知四面体ABCD ,ABC 是边长为6的正三角形,DA DB ==,二面角D AB C --的大小为2π3,则四面体ABCD 的外接球的表面积为()A.40πB.52πC.72πD.84π【答案】B 【解析】【分析】画出图形,找出外接球球心的位置,利用OD OC r ==以及图形几何关系表示出相应的线段长度,结合勾股定理列方程求出外接球半径即可得解.【详解】如图,取AB 中点E ,连接,CE DE ,因为ABC 是边长为6的正三角形,DA DB ==,则由三线合一可知,AB CE AB DE ⊥⊥,所以二面角D AB C --的平面角为2π3CED ∠=,取三角形ABC 的外心1O ,设外接球的球心为O ,则1OO ⊥平面ABC ,且OA OB OC OD r ====,其中r 为四面体ABCD 外接球的半径,过点D 作DG 垂直平面ABC ,垂足为点G ,由对称性可知点G 必定落在1O E 的延长线上面,由几何关系,设DF x =,而由正弦定理边角互换得112sin 60AB C O =⨯=进而1162O E CE CO =-=⨯-,由勾股定理得DE ==从而()πcos πcos 3EG DE CED DE =⋅-∠=⋅=,()π3sin πsin 32DG DE CED DE =⋅-∠=⋅=,所以132OO FG x ==-,12OF O G ==,所以由OD OC r ==得,2222231222r x r x ⎧⎛⎫=+-⎪ ⎪⎝⎭⎪⎨⎛⎫⎪=+ ⎪⎪ ⎪⎝⎭⎩,解得5,2x r ==,所以四面体ABCD 的外接球的表面积为24π52πr =.故选:B.【点睛】关键点点睛:关键是合理转换二面角D AB C --的大小为2π3,并求出外接球半径,由此即可顺利得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知平面向量)a =,(),3b x =- ,则下列命题正确的是()A.若a b∥,则x =- B.若a b ⊥,则x =C.若a b +=,则0x = D.若5π,6a b =,则x =【答案】ABD 【解析】【分析】A.由共线向量定理求解判断;B.利用向量的数量积运算求解判断;C.利用向量的模公式求解判断;D.由向量的夹角公式求解判断.【详解】A.若a b∥,则13x ⨯=-,解得x =-,故正确;B .若a b ⊥()130+⨯-=,解得x =C.若a b +=,0x =或x =-D.若5π,6a b =,则5πcos ,cos 62a b ===- ,解得x =故选:ABD 10.已知四棱柱1111ABCD A B C D -的底面ABCD 为菱形,且π3DAB ∠=,12A A AB =,11A AB A AD ∠=∠,O 为11AC 的中点,P 为线段1AB 上的动点,则下列命题正确的是()A.{}1,,OA BD AB可作为一组空间向量的基底B.{},,OA OD AB可作为一组空间向量的基底C.直线//OP 平面1C BDD.向量CP 在平面11AB D 上的投影向量为OP【答案】BCD 【解析】【分析】选项A ,找到11BD B D =,容易判断{}111,,OA B D AB 共面,从而做出判断即可;选项B ,先找到含有两个向量,OA OD 的平面OAD ,判断AB与平面OAD 的关系即可;选项C ,证明平面11//AB D 平面1C BD 即可;选项D ,证明OC 垂直平面11AB D 即可.【详解】如图所示,四棱柱1111ABCD A B C D -,对于选项A ,11BD B D =,三个向量{}111,,OA B D AB 都在平面11AB D ,即三个向量{}111,,OA B D AB 共面,则{}1,,OA BD AB也共面,{}1,,OA BD AB不可作为一组空间向量的基底,选项A 错误;对于选项B ,两个向量,OA OD都在平面OAD ,显然直线AB 与平面OAD 是相交关系,AB不与平面OAD 平行,故三个向量{},,OA OD AB不共面,可作为一组空间向量的基底,选项B 正确;对于选项C ,由于11//BD B D ,11//AB DC ,易得11//B D 平面1C BD ,1//AB 平面1C BD ,从而有平面11//AB D 平面1C BD ,且OP ⊂平面11AB D ,所以直线//OP 平面1C BD ,选项C 正确;对于选项D ,取{}1,,AB AD AA作为一组空间向量的基底,1111()2OC OC C C AB AD AA =+=+- ,111()2B D BD AD AB ==- ,1111()2OA OA A A AB AD AA =+=-+-,其中22111111()()42OC B D AD AB AA AB AA AD ⋅=-+⋅-⋅ ,因为底面ABCD 为菱形,且π3DAB ∠=,12A A AB =,11A AB A AD ∠=∠,得22AD AB = ,11AA AB AA AD ⋅=⋅,所以110OC B D ⋅= ,即11OC B D ⊥,11OC B D ⊥,其中2211[()]2OC OA AA AB AD ⋅=-+ ,显然22134AA AB = ,2222222111π3[()](2)(2cos )24434AB AD AB AD AB AD AB AB AB AB +=++⋅=++= ,所以0OC OA ⋅=,即OC OA ⊥ ,OC OA ⊥,因为11OC B D ⊥,OC OA ⊥,且11B D ⊂平面11AB D ,OA ⊂平面11AB D ,11B D OA O ⋂=,所以OC ⊥平面11AB D ,所以向量CP 在平面11AB D 上的投影向量为OP,选项D 正确;故选:BCD.11.已知函数()cos 2f x x =,()πsin 23g x x ⎛⎫=+ ⎪⎝⎭,则()A.将函数()y f x =的图象右移π12个单位可得到函数()y g x =的图象B.将函数()y f x =的图象右移π6个单位可得到函数()y g x =的图象C.函数()y f x =与()y g x =的图象关于直线π24x =对称D.函数()y f x =与()y g x =的图象关于点7π,024⎛⎫⎪⎝⎭对称【答案】ACD【解析】【分析】由三角函数的平移变换可判断A ,B ;由()π12g x f x ⎛⎫=- ⎪⎝⎭可判断C ;由()7π12g x f x ⎛⎫-=-⎪⎝⎭可判断D .【详解】因为()ππππsin 2cos 2cos 23236g x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=-++=- ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,将函数()y f x =的图象右移π12个单位可得到ππcos 2cos 2126y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,将函数()y f x =的图象右移π6个单位可得到ππcos 2cos 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确,B 错误;由A 选项可知,()π12g x f x ⎛⎫=- ⎪⎝⎭,所以函数()y f x =与()π12y g x f x ⎛⎫==- ⎪⎝⎭的图象关于直线π24x =对称,故C 正确;若函数()y f x =与()y g x =的图象关于点7π,024⎛⎫⎪⎝⎭对称,则在()y f x =上取点()11,A x y 关于7π,024⎛⎫ ⎪⎝⎭的对称点117π,12A x y ⎛⎫-- ⎪⎝⎭必在()y g x =上,所以11cos 2y x =,所以1117π7ππ7ππsin 2sin 21212363g x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1113πsin 2cos 22x x y ⎛⎫=-=-=- ⎪⎝⎭,故D 正确.故选:ACD .12.(多选)已知数据1234567x x x x x x x <<<<<<,若去掉4x 后剩余6个数的平均数比7个数的平均数大,记1x ,2x ,3x ,4x 的平均数与方差为1x ,21s ,记4x ,5x ,6x ,7x 的平均数与方差为2x ,22s ,则()A.1242x x x +>B.1242x x x +<C.()()47222212441414k k k k s s x x x x ==⎡⎤->---⎢⎥⎣⎦∑∑D.()()47222212441414k k k k s s x x x x ==⎡⎤-<---⎢⎥⎣⎦∑∑【答案】AC 【解析】【分析】根据平均数的大小列出不等式变形即可判断AB ,根据方差公式作差后变形,利用1242x x x +>,即可判断CD.【详解】因为123567123456767x x x x x x x x x x x x x +++++++++++>,所以12356746x x x x x x x +++++>,所以()()1234456748x x x x x x x x x +++++++>,所以1242x x x +>,故A 正确,B 错误;2222222222212346412724123455674444 x x x x x x x x x x x x x s x s x x ⎡⎤+++++++++⎛⎫-=--⎢⎥⎪⎝⎭⎢⎥⎡⎤+++⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦()()()2222222212356217144x x x x x x x x ⎡⎤=++-+++-⎢⎥⎣⎦()()()()2222221235621217144x x x x x x x x x x ⎡⎤=++-+++-⎣+⎦()()()222222123564271184x x x x x x x x x ⎡⎤>++-++-⎣+⎦()()4722441414k k k k x x x x ==⎡⎤---⎢⎥⎣⎦∑∑,故C 正确,D 错误.故选:AC三、填空题:本题共4小题,每小题5分,共20分.13.直线y =的倾斜角是___________.【答案】0【解析】【分析】根据斜率得到倾斜角.【详解】y =的斜率为0,设倾斜角为[)0,πα∈,则tan 0α=,解得0α=,故倾斜角为0故答案为:014.已知二项式()12nx +的展开式中含2x 的项的系数为84,则n =___________.【答案】7【解析】【分析】应用二项展开式的通项公式求解即可.【详解】二项式()12nx +中含2x 的项为:223C (2)n T x =,该项的系数为22(1)2C 42(1)2n n n n n -=⨯=-,由于该项的系数为84,得方程2(1)84n n -=,即2420n n --=,解得7n =或6-(舍去),故答案为:7.15.位于奥体核心的杭州世纪中心总投资近100亿元,总建筑面积约53万平方米,由两座超高层双子塔和8万平方米商业设施构成,外形为杭州的拼音首字母“H”,被誉为代表新杭州风貌、迎接八方来客的“杭州之门”.如图,为测量杭州世纪中心塔高AB ,可以选取与塔底B 在同一水平面内的两个测量基点C 与D ,现测得70BCD ∠=︒,30BDC ∠=︒,108CD =米,在点C 测得塔顶A 的仰角为80°,则塔高AB 为___________米.(结果保留整数,参考数据:cos800174︒≈.)【答案】310【解析】【分析】设AB h =米,进而可得tan80h BC =︒,在BCD △中由正弦定理求出BC ,求解即可得出答案.【详解】设AB h =米,因为在点C 测得塔顶A 的仰角为80°,所以80BCA ∠=︒,在ABC 中,tan 80AB hBC BC=︒=,所以tan80h BC =︒,在BCD △中,因为70BCD ∠=︒,30BDC ∠=︒,所以180703080CBD ∠=︒-︒-︒=︒,由正弦定理得sin sin 30CD BC CBD =∠︒,所以1081sin 802BC=︒,则1108542sin 80sin 80BC ⨯==︒︒,所以545454tan 80tan 80310sin 80cos800.174h BC =︒=⋅︒=≈≈︒︒米.故答案为:310.16.已知点P 是双曲线C :()22221,0x y a b a b-=>与圆222213x y a c +=+在第一象限的公共点,若点P 关于双曲线C 其中一条渐近线的对称点恰好在y 轴负半轴上,则双曲线C 的离心率e =___________.【答案】62【解析】【分析】根据题意,联立双曲线与圆的方程,求得点P 的坐标,再求得其对称点Q 的坐标,再由1PQ b k a ⎛⎫⋅-=- ⎪⎝⎭,化简即可得到,a b 的关系,再由离心率公式,即可得到结果.【详解】联立22222222113x y a b x y a c ⎧-=⎪⎪⎨⎪+=+⎪⎩,取0,0x y >>,解得2333x a y b ⎧=⎪⎪⎨⎪=⎪⎩,即,33P a b ⎛⎫ ⎪ ⎪⎝⎭,设点P 关于双曲线C 的渐近线by x a=-的对称点为Q ,则Q 恰好在y 轴负半轴上,且OQ OP ==0,Q ⎛ ⎝,由点P 与点Q 关于渐近线b y x a =-对称,所以直线PQ 的斜率为a b,233a b =,即3233b a b =,化简可得222a b =,所以2c e a ====.故答案为:2四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,4a =,8b =,角C 为锐角,已知ABC 的面积为.(1)求c ;(2)若CD 为AB 上的中线,求BDC ∠的余弦值.【答案】(1)c =(2)34.【解析】【分析】(1)由三角形的面积公式和余弦定理求解即可;(2)因为CD 为AB 上的中线,所以()12CD CA CB =+,对其两边同时平方可求出CD = ,再由余弦定理求解即可.【小问1详解】由ABC 的面积为可得:1sin 2ab C =因为4a =,8b =,解得:得sin 4C =,由角C 为锐角得3cos 4C =,故2222cos 32c a b ab C =+-=,解得c =【小问2详解】因为CD 为AB 上的中线,所以()12CD CA CB =+,所以()22212cos 4CD CA CB CA CB ACB =++⋅,()2212cos 4b a b a ACB =++⋅1364162483244⎛⎫=++⨯⨯⨯= ⎪⎝⎭,解得:CD =.故22222222243cos 2422242BD DC a BDC BD DC +-+-∠===⋅⋅⋅.18.已知n S 为公差为2的等差数列{}n a 的前n 项和,若数列n n S a ⎧⎫⎨⎬⎩⎭为等差数列.(1)求n a ;(2)求数列{}2n S 的前n 项和.【答案】(1)2n a n=(2)11410233n n +++-.【解析】【分析】(1)由等差中项的性质可得3212132S S S a a a ⋅=+,再由等差数列的通项公式和前n 项和公式代入化简可求得12a =,即可求出答案;(2)由(1)得2n S n n =+,则242n nnS =+,再由等比数列的前n 项和公式和分组求和法求解即可.【小问1详解】因为数列n n S a ⎧⎫⎨⎬⎩⎭为等差数列,所以3212132S S S a a a ⋅=+,因为n S 为公差为2的等差数列{}n a 的前n 项和,则111122362124a a a a ++⋅=+++,解得12a =.故()2212n a n n =+-=.【小问2详解】由(1)得()122n n n a a S n n +==+,故242n n nS =+,故数列{}2n S 的前n 项和为()()114142124102141233n nn n ++--=+=+---.19.已知直三棱柱111ABC A B C -,1122AB AC AA ===,AB AC ⊥,D ,E 分别为线段1CC ,1BB 上的点,1CD =.(1)证明:平面BDA ⊥平面1ECA ;(2)若点1B 到平面1ECA 的距离为47,求直线BD 与平面1ECA 所成的角的正弦值.【答案】(1)证明见解析(2)1121.【解析】【分析】(1)建系,分别求出平面BDA 和平面1ECA 的法向量,利用两法向量垂直,两面垂直即可证明;(2)设出E 点坐标,由已知点面距离利用向量法解出点E 坐标,再代入线面角的向量公式求出即可.【小问1详解】证明:在直三棱柱中,AB AC ⊥,1AA ⊥平面ABC ,所以以A 为原点,AB ,AC ,1AA 为x ,y ,z 轴建立空间直角坐标系,则点()10,0,4A ,()2,0,0B ,()12,0,4B ,()0,2,0C ,()0,2,1D ,则()2,2,1BD =- ,()2,0,0AB = ,()10,2,4A C =-,设BE t =,则()2,0,E t ,()2,2,EC t =--设平面BDA 和平面1ECA 的法向量分别为()()11112222,,,,,n x y z n x y z ==,则11111122020n BD x y z n AB x ⎧⋅=-++=⎪⎨⋅==⎪⎩,取11y =,则()10,1,2n =- ;22222122220240n EC x y mz n A C y z ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩,取21z =,则24,2,12m n -⎛⎫= ⎪⎝⎭ ,因为120n n ⋅=,所以平面BDA ⊥平面1ECA .【小问2详解】设点()2,0,E t ,由()10,2,4A C =- ,()12,0,4A E t =- 得平面1ECA 的法向量()4,4,2n t =-,由()112,0,0A B =得点1B 到平面1ECA 的距离1147A B n d n⋅===,解得83t =,由()2,2,1BD =- ,4,4,23n ⎛⎫= ⎪⎝⎭得,直线BD 与平面1ECA 所成的角的正弦值为11cos ,21BD n BD n BD n ⋅==⋅ .20.已知点1F ,2F 为椭圆C :2212x y +=的左,右焦点,椭圆C 上的点P ,Q 满足12//F P F Q ,且P ,Q在x 轴上方,直线1FQ ,2F P 交于点G .已知直线1PF 的斜率为()0k k >.(1)当1k =时,求12PF QF +的值;(2)记1PFG ,2QF G △的面积分别为1S ,2S ,求12S S -的最大值.【答案】(1(2)2.【解析】【分析】(1)由椭圆的性质可得1211PF QF PF Q F =+'+,再利用弦长公式求解即可;(2)利用已知条件将12S S -表示出来,在利用基本不等式即可求解.【小问1详解】设直线1PF 与椭圆的另一个交点为Q ',由椭圆的对称性得Q ,Q '关于原点对称.设点()11,P x y ,()22,Q x y '.因为C :2212x y +=中222,1,1a b c ====,所以()11,0F ,所以当1k =时,直线1PF 的方程为:1y x =+,联立直线1y x =+与椭圆22220x y +-=的方程得2340x x +=,所以12124,03x x x x +=-=,所以1243x x -==,所以12111212PF QF PF Q F x x +=+=-=-='【小问2详解】由题可设直线1PF 的方程为:1yx k=-,联立直线1y x k =-与椭圆22220x y +-=得:2212210y y k k ⎛⎫+--= ⎪⎝⎭,所以122221122ky y k k k+==++,1212121212F F P F F Q F F P F F Q S S S S S S '-=-=- ,()()1211221212111222122222F F y F F y y y y y kk=⋅-⋅-=⨯+=+=≤+,所以当12k k =即2k =时等号成立,12S S -取到最大值2.【点睛】思路点睛:本题考查直线与椭圆综合应用中的面积问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于y 的一元二次方程的形式,得到韦达定理;②表示出12S S -的面积,将韦达定理代入,再借助基本不等式即可求出面积的最大值.21.我国有天气谚语“八月十五云遮月,正月十五雪打灯”,说的是如果中秋节有降水,则来年的元宵节亦会有降水.某同学想验证该谚语的正确性,统计了40地5年共200组中秋节与来年元宵节的降水状况,整理如下:中秋天气元宵天气合计降水无降水降水194160无降水5090140合计69131200(1)依据0.05α=的独立性检验,能否认为元宵节的降水与前一年的中秋节降水有关?(2)从以上200组数据中随机选择2组,记随机事件A 为二组数据中中秋节的降水状况为一降水一无降水,记随机事件B 为二组数据中元宵节的降水状况为一降水一无降水,求()P B A .参考公式与数据:()()()()()22n ad bc a b c d a c b d χ-=++++.α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828【答案】(1)无关(2)47105【解析】【分析】(1)计算2χ的值,与临界值比较得出结论;(2)利用条件概率公式求解.【小问1详解】零假设为0H :元宵节的降水与中秋节的降水无关.()222200199041502003400.3 3.84169131601406913160140χ⨯⨯-⨯⨯==≈<⨯⨯⨯⨯⨯⨯,因为20.05x χ<,所以没有充分证据推断0H 不成立,故元宵节的降水与中秋节的降水无关.【小问2详解】中秋节的降水状况为一降水一无降水概率为()220014060C P A ⨯=,中秋节、元宵节的降水状况均为一降水一无降水概率为()220019904150C P AB ⨯+⨯=,故()()()47105P AB P B A P A ==.22.定义满足()()00f x f x '=的实数0x 为函数()y f x =的然点.已知()()ln e xf x x a -=+.(1)证明:对于a ∀∈R ,函数()y f x =必有然点;(2)设0x 为函数()y f x =的然点,判断函数()()()0g x f x f x =-的零点个数并证明.【答案】(1)证明见解析(2)2个零点,证明见解析【解析】【分析】(1)根据函数零点存在原理,结合导数的性质、题中定义进行运算证明即可;(2)根据(1)的结论,结合函数零点存在原理、结合放缩法进行求解即可.【小问1详解】()1ln e x f x x a x -⎛⎫'=-- ⎪⎝⎭,由()()f x f x '=得1ln 02x a x -+=.令()1ln 2h x x a x=-+,因为()h x 在()0,∞+上单调递增,故()h x 至多一个零点,又因为()1e02e aah --=-<,()2222221e 2102e a ah a a a a ++=++->++>,所以()220e ,ea ax -+∃∈使()00h x =,故对于a ∀∈R ,函数()y f x =有唯一然点0x .【小问2详解】由(I )得001ln 2a x x =-,()1ln e xg x x a x -⎛⎫'=-- ⎪⎝⎭令()1ln G x x a x =--,因为()G x 在()0,∞+上单调递减,且()00102G x x =>,()2222221e 210eaa G a a a a ++=---<---<,故()220,e at x +∃∈使()0G t =,()g x 在(]0,t 上单调递增,在[),t +∞上单调递减.因为()00g x =,故()()00g t g x >=,将001ln 2a x x =-代入,得()00001e ln ln e 22x x g x x x x x --⎛⎫=-+- ⎪⎝⎭()002000020010c 211ln 1e 2211e e e 22e x x x x x x g x x x --+-⎛⎫+++⎪-⎛⎫⎝⎭++=⋅-⋅ ⎪-⎝⎭()000020011e 221e 12e e 2x x x x x x -⎛⎫++ ⎪- ⎪<-⎛⎫ ⎪⋅+ ⎪ ⎪-⎝⎭⎝⎭()0000000e 2e 21e 02e e 222(e 2)x x x x x x x -⎛⎫+ ⎪- ⎪=-< ⎪⎛⎫⋅+ ⎪ ⎪ ⎪-⎝⎭⎝⎭,所以()g x 有2个零点.【点睛】关键点睛:根据题中定义,运用零点存在原理是解题的关键.。
高三上学期期末考试数学试卷-附答案解析班级:___________姓名:___________考号:___________一、单选题 1.设全集{6}Ux N x =∈<∣,集合{1,2,3},{1,4}A B ==,则()UA B ⋃等于( )A .{1,2,3,4}B .{5}C .{2,4}D .{0,5}2.生物入侵指生物由原生存地入侵到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q ,一年四季均可繁殖,繁殖间隔T 为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型()ln K n n λ=来描述该物种累计繁殖数量n 与入侵时间K (单位:天)之间的对应关系,且1TQ λ=+,在物种入侵初期,基于现有数据得出9Q =和80T =.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为(ln 20.69≈,ln3 1.10≈)( ) A .6.9天B .11.0天C .13.8天D .22.0天3.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,偶函数()f x 满足()()2f x f x +=,当[]0,1x ∈时()f x x =,则( )A .()sgn 0f x >⎡⎤⎣⎦B .202112f ⎛⎫= ⎪⎝⎭C .()()sgn 211k f k +=⎡⎤⎣⎦∈ZD .()()sgn sgn f k k k =∈⎡⎤⎣⎦Z5.已知函数()f x 是定义在R 上的奇函数()()20f x f x --+=,当(]0,1x ∈时()2log f x x =,则4039924f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .3- B .1- C .2 D .36.已知函数()2log 2f x ax =-的图象关于直线x=2对称,则函数f (x )图象的大致形状为( )A .B .C .D .7.已知函数()41xf x x=+,则不等式()3213f x -<+<的解集是( ) A .1,2B .()2,1-C .()(),12,-∞-+∞D .()(),21,-∞-+∞8.下列关于命题的说法错误的是9.曲线(2)x y ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .810.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()()20xf x f x '->,()21f -= 则不等式()214f x x <的解集是( ) A .()2,2- B .()(),22,-∞-+∞C .()()2,00,2-⋃D .()(),00,2-∞11.关于函数()222e xx x f x +-=,有如下列结论:①函数()f x 有极小值也有最小值;②函数()f x 有且只有两个不同的零点;③当2262e e k -<<时()f x k =恰有三个实根;④若[]0,x t ∈时()2max 6ef x =,则t 的最小值为2.其中正确..结论的个数是( )A .1B .2C .3D .412.已知函数221552sin ,544()5log (1),4x x f x x x π⎧-≤≤⎪⎪=⎨⎪-⎪⎩>,若存在实数满足1234()()()()f x f x f x f x m ====,则()A .01m ≤≤B .1252x x += C .34340x x x x --= D .340x x >二、填空题13.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是______.14.在△ABC 中,点O 是BC 的三等分点2OC OB =,过点O 的直线分别交直线AB ,AC 于点E ,F ,且AB mAE =,AC nAF =(0m >,0n >),若()210t t m n+>的最小值为3,则正数t 的值为___________.15.已知函数()322sin x x x f x =+-,则不等式()()2650f x f x -+≤的解集为___________.16.已知()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x a =有3个不同实根,则实数a 取值范围为______.三、解答题 17.化简求值:(1)2302427216log log 839π-⎛⎫++- ⎪⎝⎭; (2)已知tan 2α,求2sin()sin 2cos()sin(3)ππααααπ⎛⎫-++ ⎪⎝⎭-+-的值.18.已知定义域为R 的函数()122xx b f x a+-=+是奇函数.(1)求实数a 、b 的值;(2)判断函数()f x 在R 的单调性并给予证明; (3)求函数()f x 的值域.19.已知函数()1xf x e ax =--.(1)当1a =时求()f x 的单调区间与极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.20.已知:函数()(1)ln()f x ax x ax =+-. (1)当1a =时讨论函数()f x 的单调性;(2)若()f x 在(0,)x ∈+∞上单调递增,求实数a 的取值范围.21.已知函数()316f x x x =+-.(1)求曲线()y f x =在点()2,6-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.22.已知函数()()2ln 2f x x ax a x =+++和a ∈R .(1)当2a =-时讨论()f x 的单调性;(2)当a<0时若关于x 的不等式()21f x b a≤-+-恒成立,求实数b 的取值范围;(3)设*n ∈N 时证明:()1111ln 12ln 22341n n n ⎛⎫+≥++++- ⎪+⎝⎭.参考答案与解析1.【答案】D故选:D . 2.【答案】C 【分析】根据1TQ λ=+,9Q =与80T =,求得λ,进而得到()ln K n n λ=求解. 【详解】因为1TQ λ=+,9Q =与80T =所以8091λ=+解得10λ=.设初始时间为1K ,初始累计繁殖数量为n ,累计繁殖数量增加3倍后的时间为2K 则()21442213.80K K ln n lnn ln ln λλλ-=-==≈天. 故选:C 3.【答案】A【分析】求出当12l l //时实数a 的值,再利用集合的包含关系判断可得出结论. 【详解】当12l l //时()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //; 当4a =时直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //. 因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件. 故选:A. 4.【答案】C【分析】利用特殊值法可判断AD 选项;利用函数的周期性以及题中定义可判断BC 选项. 【详解】对于A 选项 ()sgn 0sgn 00f ==⎡⎤⎣⎦,A 错; 对于B 选项 202111110102222f f f ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 错;对于C 选项,对任意的Z k ∈,()()2111f k f +== 则()sgn 21sgn11f k +==⎡⎤⎣⎦,C 对; 对于D 选项 ()()sgn 2sgn 0sgn 00f f ===⎡⎤⎡⎤⎣⎦⎣⎦,而sgn 21=,D 错. 故选:C. 5.【答案】D【分析】由函数()f x 是定义在R 上的奇函数,结合()()20f x f x --+=,可得函数的周期为4,然后利用周期和()()20f x f x --+=及奇函数的性质,分别对40399,24f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭化简,使其自变量在区间(]0,1上,然后代入解析式中求解即可【详解】解:因为函数()f x 是定义在R 上的奇函数,所以()()0f x f x +-= 因为()()20f x f x --+=,所以()(2)f x f x -=+ 所以()(2)f x f x =-+,所以(2)(4)f x f x +=-+所以()(4)f x f x =+,所以()f x 的周期为4所以403911711201945043222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=⨯++==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭911124444f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭因为当(]0,1x ∈时()2log f x x = 所以40399112424f f ff ⎛⎫⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211log log 24=--22log 2log 43=+=故选:D 6.【答案】A【分析】根据函数图象的变换和()2log 2f x ax =-的图象关于2x =对称得到220a -=,即1a =,然后再根据对数函数的图象和图象的变换判断即可.【详解】因为()2log 2f x ax =-的图象关于2x =对称,所以220a -=,解得1a =,则()2log 2f x x =- 所以()f x 的图象可由函数2log y x =的图象沿y 轴翻折,再向右平移2个单位得到. 故选:A. 7.【答案】B【分析】先判断函数()f x 的奇偶性和单调性,再利用函数的单调性化简得3213x -<+<,解不等式即得解. 【详解】因为()()f x f x -=-,所以()f x 是奇函数 当0x >时()44411x f x x x==-++是增函数,此时()0f x > 又(0)0f =所以()f x 在R 上是增函数.又因为()33f -=- ()33f = 所以()3213f x -<+<可化为()(3)21(3)f f x f -<+< 所以3213x -<+< 解得2<<1x -. 故选:B 8.【答案】D【分析】利用原命题与逆否命题的关系可判断出A 选项的正误;根据充分必要性判断出B 选项的正误;利用特称命题的否定可判断出C 选项的正误;利用作商法和指数函数的单调性可判断出D 选项的正误. 【详解】对于A 选项,命题的逆否命题,只需把原命题的结论否定当条件,条件否定当结论即可,A 选项正确;对于B 选项,若函数()log a f x x =在区间()0,∞+上为增函数,则1a >,所以,“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件,B 选项正确; 对于C 选项,特称命题的否定为全称,C 选项正确;对于D 选项,当0x <时由于函数32x y ⎛⎫= ⎪⎝⎭为增函数,则03331222x x x ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭ 23x x ∴>,D 选项错误.故选D.【点睛】本题考查四种命题的关系、充分不必要条件的判断、特称命题的否定以及特称命题真假的判断,考查逻辑推理能力,属于中等题. 9.【答案】B【解析】求函数导数,利用切线斜率求出a ,根据切线过点(0,2)求出b 即可. 【详解】因为(2)x y ax e =+ 所以(2)x y e ax a '=++ 故0|22x k y a ='==+=- 解得4a =- 又切线过点(0,2)所以220b =-⨯+,解得2b = 所以8ab =- 故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题. 10.【答案】C【解析】构造函数令2()()f x g x x =,依题意知()g x 为偶函数且在区间(0,)+∞单调递增;不等式2()1()(2)4f x g x g x <⇔<,利用单调性脱去“g ”即可求得不等式2()14f x x <的解集. 【详解】解:令2()()f xg x x=,则243()2()()2()()x f x xf x xf x f x g x x x '-'-'==因为()2()0xf x f x '->所以,当0x >时()0g x '>,即()g x 在区间(0,)+∞单调递增; 又()f x 是R 上的偶函数又()2f ()21f =-=; 故()2g 2(2)124f == 于是,不等式2()14f x x <化为()()2g x g < 故||2x <解得22x -<<,又0x ≠ 故选:C .【点睛】本题考查利用导数研究函数的单调性,考查函数奇偶性,考查化归思想与运算能力,属于难题. 11.【答案】C【分析】求导后,根据()f x '正负可确定()f x 的单调性;根据()0f x >在()2,+∞上恒成立,结合极值和最值的定义可知①正确;利用零点存在定理可说明②正确;作出()f x 图象,将问题转化为()f x 与y k =的交点个数问题,采用数形结合的方式可确定③错误;根据图象和函数值域可确定④正确. 【详解】()()()2224e e x xx x x f x +--'==∴当()(),22,x ∈-∞-+∞时()0f x '<;当()2,2x ∈-时0fx ;f x 在(),2-∞-,()2,+∞上单调递减,在()2,2-上单调递增;对于①,()f x 在2x =-处取得极小值,极小值为()222e 0f -=-<当2x >时2220x x +->恒成立,()0f x ∴>在()2,+∞上恒成立()2f ∴-为()f x 的最小值,则()f x 既有极小值也有最小值,①正确; 对于②()33e 0f -=> ()222e 0f -=-< ()110f =>ef x 在()3,2--和()2,1-上各有一个零点又当2x >时()0f x >恒成立,f x 有且只有两个不同的零点,②正确;对于③()262e f =,f x 图象如下图所示由图象可知:当22e 0k -<≤时()f x 与y k =有且仅有两个不同交点 即当22e 0k -<≤时()f x k =有且仅有两个不等实根,③错误; 对于④,若[]0,x t ∈时()2max 6e f x =,结合图象可知:2t ≥,即t 的最小值为2,④正确. 故选:C.【点睛】方法点睛:本题考查利用导数研究函数的相关性质的问题,其中考查了方程根的个数问题,解决此类问题的基本方法有:(1)直接法:直接求解方程得到方程的根来确定根的个数;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 12.【答案】C【分析】根据题意分段函数的定义,逐个分析即可. 【详解】由15544x -≤≤得3π2ππ252x -≤≤ ()[]2π2sin 2,25f x x ∴=∈- 由54x >得114x ->()()20log 1f x x ∴=-≥对应函数图像如图所示若1234()()()()f x f x f x f x m ==== 则2m <,A 错;1x ,2x 关于54x =-对称 1252x x ∴+=-,B 错;由()()34221log lo 1g x x -=-()()23420log l 11og x x ∴-+-=()()342110log x x ∴--=⎡⎤⎣⎦,得()()34111x x --=即34340x x x x --=,C 对; 由34340x x x x --=,得34111x x +=>(31x 41x ≠) 344x x ∴>,D 错.故选:C 13.【答案】【详解】2230ax ax --≤恒成立,当0a =时30-≤成立;当0a ≠时 20{4120a a a <∆=+≤得30a -≤< 30a ∴-≤≤ 14.【答案】3【分析】由平面向量基本定理可得2133AO mAE nAF =+,进而又由点E ,O ,F 三点共线,则21133m n +=,根据“1”的作用由基本不等式的性质,可解得t 的值.【详解】解:在ABC 中,点O 是BC 的三等分点 ||2||OC OB = ∴1121()3333AO AB BO AB BC AB AC AB AB AC =+=+=+-=+AB mAE = AC nAF = ∴2133AO mAE nAF =+ O ,E ,F 三点共线 ∴21133m n += ∴2222222112122222()()233333393333t t n mt t t t t m n m n m n m n +=++=+++++=++当且仅当2233n mt m n =,即2222m t n =时取等号,∴21t m n +的最小值为2233t +即22333t += 0t > 3t ∴=故答案为:3 15.【答案】[2,3]【分析】由奇偶性定义、导数判断()f x 的奇偶性及单调性,再应用奇函数、单调性求解不等式即可.【详解】由题设,()322sin ()f x x x f x x =-+=---且定义域为R ,故()f x 为奇函数又()()2321cos 0f x x x =+-≥',()f x 在定义域上递增 ∴()()2650f x f x -+≤,可得()2(65)(56)f x f x f x ≤--=-∴256(2)(3)0x x x x -+=--≤,解得23x ≤≤ ∴原不等式解集为[2,3]. 故答案为:[2,3]. 16.【答案】10,e ⎛⎫⎪⎝⎭【分析】利用导函数研究出函数()y f x =的单调性,极值情况,画出函数图象,并将函数的根的问题转化为两函数交点个数问题,数形结合求出实数a 的取值范围. 【详解】当0x ≥时()e xx f x = ()1e x xf x -'=当[)0,1x ∈时()10e x xf x -'=>,当()1,x ∈+∞时()10e xx f x -'=< 故()f x 在[)0,1x ∈上单调递增,在()1,x ∈+∞上单调递减 且()11e f =,当0x >时()ex xf x =恒为正当0x <时()33=-f x x x ()()()233311f x x x x '=-=+-当(),1x ∈-∞-时()2303'=-<f x x ,当()1,0x ∈-时()2303'=->f x x故()f x 在(),1x ∈-∞-上单调递减,在()1,0x ∈-上单调递增且()1312f -=-+=-画出()3,0e 3,0x xx f x x x x ⎧≥⎪=⎨⎪-<⎩的图象如下:要想关于x 的方程()f x a =有3个不同实根,则要函数()y f x =与y a =有3个不同的交点即可显然当10,e a ⎛⎫∈ ⎪⎝⎭时符合要求.故答案为:10,e ⎛⎫⎪⎝⎭17.【答案】(1)49;(2)1-.【分析】(1)根据指数与对数的运算公式求解即可; (2)根据诱导公式,转化为其次问题进行求解即可.【详解】(1)原式2222241log log 333⎛⎫=++- ⎪⎝⎭2411log 92=++ 49=. (2)原式2sin cos cos sin αααα+=-2tan 11tan αα+=-1=-.18.【答案】(1)2,1a b == (2)单调递减,证明见详解 (3)11,22⎛⎫- ⎪⎝⎭【分析】(1)利用()00f =,()()011f f +-=列方程求出a 、b 的值,然后验证函数()f x 为奇函数即可; (2)任取12x x >,然后通过计算()()12f x f x -的正负来判断证明单调性; (3)以120x +>为基础,利用不等式的性质计算121222x +-+的范围,即为函数()f x 的值域.【详解】(1)定义域为R 的函数()122xx b f x a +-=+是奇函数∴()00f = ()()011f f +-=即110222041b ab b a a --⎧=⎪⎪+⎨--⎪+=⎪++⎩,解得21a b =⎧⎨=⎩ 即()11222x x f x +-=+又()()111112121221022222222x x x x x x x x f x f x -+-+++----+-=+=+=++++ ()11222xx f x +-∴=+是奇函数2,1a b ∴==;(2)由(1)得()11122222122x x x f x ++-=+=-++,其为定义域在R 上的单调减函数 任取12x x >()()()()()2112121112111122121222222222222x x x x x x f x f x ++++++⎛⎫⎛⎫∴-=---= ⎪ ⎪++++⎝+⎭-+⎝⎭ 12x x > 1211x x ∴+>+1211220x x ++∴>>()()120f x f x ∴-<,即()()12f x f x <∴函数()f x 是R 上单调递减函数;(3)120x +>1222x +∴+>1110222x +∴<<+120122x +∴<<+1121122222x +∴-<-<+即函数()f x 的值域为11,22⎛⎫- ⎪⎝⎭19.【答案】(1)在(),0∞-上单调递减,在()0,∞+上单调递增,函数()f x 有极小值0,无极大值 (2)2a e ≥-【分析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分0x =和0x >两种情况分析求解,当0x >时不等式变形为1()x e a x x x-+在[0x ∈,)∞+上有解,构造函数1()()x e g x x x x=-+,利用导数研究函数()g x 的单调性,求解()g x 的最小值,即可得到答案.(1)当1a =时()1x f x e x =--,所以()1xf x e '=-当0x <时()0f x '<;当0x >时0fx所以()f x 在(),0∞-上单调递减,在()0,∞+上单调递增 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,∞+上有解所以210x e x ax ---≤在[)0,∞+上有解 当0x =时不等式成立,此时a R ∈ 当0x >时1x e a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解令()1x e g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221111xx x e x e x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭由(1)知0x >时()()00f x f >=,即()10xe x -+>当01x <<时()0g x '<;当1x >时()0g x '> 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增 所以当1x =时()min 2g x e =-,所以2a e ≥- 综上可知,实数a 的取值范围是2a e ≥-.【点睛】利用导数研究不等式恒成立问题或有解问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围.20.【答案】(1)()0,∞+单调递增;(2)[]0,e .【解析】(1)由1a =得到()()1ln()f x x x x =+-,求导1ln 1()ln x x f x x x x+'=+=,再讨论其正负即可. (2)根据()f x 在(0,)x ∈+∞上单调递增,则1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立,转化ln 10ax x +≥,(0,)x ∈+∞恒成立,令()ln 1h x ax x =+求其最小值即可.【详解】(1)当1a =时()()1ln()f x x x x =+- 所以1ln 1()ln x x f x x x x+'=+= 令()ln 1g x x x =+,则()1ln g x x '=+ 当10x e<<时()0g x '<,()g x 递减; 当1x e>时()0g x '>,()g x 递增; 所以()g x 取得最小值1110g e e ⎛⎫=-> ⎪⎝⎭所以()0f x '>在()0,∞+上成立 所以()f x 在()0,∞+上递增; (2)因为()f x 在(0,)x ∈+∞上单调递增 所以1()ln 0f x a x x'=+≥,(0,)x ∈+∞恒成立 即ln 10ax x +≥,(0,)x ∈+∞恒成立 令()ln 1h x ax x =+,则()()1ln h x a x '=+ 当0a >时当10x e<<时()0h x '<,()h x 递减; 当1x e>时()0h x '>,()h x 递增; 所以()h x 取得最小值11a h e e ⎛⎫=- ⎪⎝⎭所以10ae-≥ 0a e <≤当a<0时易知()ln 11ah x ax x e=+≤-,不成立 当a=0时()10h x =>成立综上:0a e ≤≤所以实数a 的取值范围[]0,e .【点睛】方法点睛:1、利用导数研究函数的单调性,当f(x)不含参数时关键在于准确判定导数的符号;当f(x)含参数时需依据参数取值对不等式解集的影响进行分类讨论.2、可导函数f(x)在指定的区间D 上单调递增(减),求参数范围问题,转化为f ′(x)≥0(或f ′(x)≤0)恒成立问题,构建不等式求解,要注意“=”是否取到.21.【答案】(1)1332y x =-;(2)直线l 的方程为13y x =,切点坐标为(226)--,. 【分析】(1)求导,由导数在切点处的导数值可求切线斜率,根据点斜式即可求解;(2)设切点,求出切线方程,根据切线方程经过()00,,代入切线方程即可求解. 【详解】(1)∵()3222166f =+-=- ∴点()26-,在曲线上. ∵()321631()f x x x x ''=+-=+ ∴在点()26-,处的切线的斜率为()2232113.k f '⨯==+= ∴切线的方程为)132(6)(y x =-+-. 即1332y x =-.(2)设切点为00()x y ,则直线l 的斜率为()2003 1f x x '=+∴直线l 的方程为:2300003116()()y x x x x x =+-++-.又∵直线l 过点(0,0)∴2300000 3 116()()x x x x =+-++-整理得308=-x∴3002221626()()x y =-,=-+--=-∴23()3211k ⨯=-+=∴直线l 的方程为13y x =,切点坐标为(226)-,-. 22.【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减(2)[)1,-+∞ (3)证明见解析【分析】(1)将2a =-代入()f x ,对其求导,利用导数与函数的单调性的关系即可得解;(2)先利用导数求得()f x 的最大值,再将问题转化为()max 21f x b a ≤-+-,从而得到11ln b a a⎛⎫≥-+ ⎪⎝⎭,构造函数()()ln 0g t t t t =->,求得()max g t 即可得解;(3)结合(2)中结论取特殊值得到2ln 21x x ≤-恒成立,进而得到()2ln 1ln ln 2n n n--≤-,利用累加法即可得证,注意1n =的验证.【详解】(1)当2a =-时()2ln 2f x x x =-,()0,x ∈+∞则()21144x f x x x x-'=-=. 当10,2x ⎛⎫∈ ⎪⎝⎭时0fx;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(2)当a<0时()()()1121212a x x ax x a f x x x ⎛⎫⎛⎫++ ⎪⎪++⎝⎭⎝⎭'==. 当10,x a ⎛⎫∈- ⎪⎝⎭时0f x ;当1,x a ∈-+∞⎛⎫⎪⎝⎭时()0f x '<所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.所以()max 111211ln ln 1a f x f a a a a a a+⎛⎫⎛⎫⎛⎫=-=-+-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由不等式()21f x b a ≤-+-恒成立,得112ln 11b a aa ⎛⎫---≤-+- ⎪⎝⎭恒成立即11ln b a a⎛⎫≥-+ ⎪⎝⎭在a<0时恒成立令1t a =-,()()ln 0g t t t t =->则()111tg t t t-'=-=.当()0,1t ∈时()()0,g t g t '>单调递增;当()1,t ∈+∞时()()0,g t g t '<单调递减. 所以()g t 的最大值为()11g =-所以1b ≥-,即实数b 的取值范围是[)1,-+∞.【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<. (2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔->⎡⎤⎣⎦;()()f x g x <恒成立()()max 0f x g x ⇔-<⎡⎤⎣⎦; (4)1x M ∀∈,2x N ∀∈与()()()()1212min max f x g x f x g x >⇔>.。
高三数学第一学期期末试题2cos 2sin2sin sin β-αβ+α=β+α 2sin2cos 2sin sin β-αβ+α=β-α 2cos 2cos 2cos cos β-αβ+α=β+α 2sin2sin 2cos cos β-αβ+α-=β-α一、选择题:(本大题共12道小题,每小题5分,共60分) 1.在等差数列}a {n 中,90S 15=,则8a 等于 A .3 B .4 C .6 D .122.如果)x (f )x (f -=π+且)x (f )x (f -=,则f(x)可以是 A .sin2x B .cosx C .sin|x| D .|sinx|3.题设:平面α、β、γ直线l 、m 满足:α⊥γ,γI α=m ,γI β=l ,l ⊥m ,结论:①β⊥γ;②m ⊥β;③α⊥β,那么由题设可以推出的正确结论是 A .①和② B .③ C .②和③ D .①和③4.从1、2、3…,100这100个数中任取两个数相乘,如果乘积是3的倍数,则不同的取法有A .167133C CB .233167133C C C + C .233CD .1C 2C 267100--5.若复数z 满足|z+2i|+|z-2i|=4,记|z+1+i|的最大值和最小值分别为M ,m 则mM等于( ) A .2 B .5 C .10 D .210 6.过抛物线x 4y 2=的焦点F 做直线与抛物线交于P ,Q 两点,当此直线绕其焦点F 施转时,弦PQ 中点的轨迹方程为( )A .)1x (2y 2-=B .1x 2y 2-=C .1x y 2-=D .21y y 2-= 7.设复数i 31z 1+=,i 3z 2+=,则)z z arg(21等于( ) A .2π B .3π C .4π D .6π 8.将长为2πcm ,宽为πcm 的长方形纸片围成一个容器(不考虑底面及粘接处),立放于桌面上,下面四个方案中,容积最大的是A .直三棱柱B .直四棱柱C .高为π的圆柱D .高为2π的圆柱9.椭圆1m )6y (4)3x (222=++-的一条准线为x=7,则随圆的离心率等于A .21 B .22 C .23 D .4110.在正方体1111D C B A ABCD -中,EF 为异面直线D A 1和AC 的公垂线,则直线EF 与1BD 的关系是A .异面B .平行C .相交且垂直D .相交但不垂直 11.(理)在极坐标系中,点)611,2(P π到直线1)6sin(=π-θρ的距离等于A .2B .1C .3D .31+(文)自点(-1,4)作圆012y 6x 4y x 22==--+的切线,则切线长为 A .5 B .5 C .10 D .312.某工厂8年来某种产品总产量c 与时间t (年)的函数关系如图,下列四种说法:①前三年中,产量增长的速度越来越慢;②前三年中,产量增长的速度越来越快;③第三年后,这种产品停止生产;④第三年后,年产量保持不变,其中说法正确的是( )A .②与③B .②与④C .①与③D .①与④二、填空题:(本大题共四道小题每小题4分共16分)13.已知曲线C 与曲线02y 2x 2==+关于直线x-y=0对称,则曲线C 的焦点坐标为_________。
【好题】高三数学上期末试题带答案一、选择题1.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞2.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100 B .-100 C .-110 D .1103.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD.25.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-6.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .07.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形8.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .319.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-10.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A . 3-1 B . 3+1 C .23+2D .23-211.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .8412.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.14.计算:23lim 123n n nn→+∞-=++++L ________15.数列{}21n-的前n 项1,3,7..21n-组成集合{}()*1,3,7,21nn A n N=-∈,从集合nA中任取()1,2,3?··n k k =个数,其所有可能的k 个数的乘积的和为(若只取一个数,规定乘积为此数本身),记12n n S T T T =++⋅⋅⋅+,例如当1n =时,{}1111,1,1===A T S ;当2n =时,{}21221,2,13,13,13137A T T S ==+=⨯=++⨯=,试写出n S =___16.ABC ∆内角A 、B 、C 的对边分别是a ,b ,c ,且2cos (32)cos b C a c B =-.当42b =2a c =,ABC ∆的面积为______.17.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L ________.18.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 19.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 20.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值.22.设 的内角 的对边分别为 已知.(1)求角 ;(2)若,,求的面积.23.已知数列{}n a 的前n 项和n S 满足231n n S a =-,其中n *∈N . (1)求数列{}n a 的通项公式;(2)设23nn n a b n n=+,求数列{}n b 的前n 项和为n T .24.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量=(2sinB,2-cos2B),=(2sin 2(),-1),.(1)求角B 的大小; (2)若a =,b =1,求c 的值.25.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 2cos 0a C c A b B ++=. (Ⅰ)求角B 的大小;(Ⅱ)若ABC ∆3353,求ABC ∆的周长.26.已知{}n a 是递增数列,其前n 项和为n S ,11a >,且10(21)(2)n n n S a a =++,*n ∈N . (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)是否存在*,,m n k N ∈使得2()m n k a a a +=成立?若存在,写出一组符合条件的,,m n k 的值;若不存在,请说明理由;(Ⅲ)设32n n n b a -=-,若对于任意的*n N ∈,不等式 125111(1)(1)(1)3123n m b b b n ≤++++L m 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.2.B解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.3.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.4.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以q212a a q ===,故选D. 5.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减. 可得t=12处,此时q=2f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.6.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.7.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.8.A解析:A 【解析】 【分析】先求等比数列通项公式,再根据等比数列求和公式求结果. 【详解】Q 数列{}n a 为等比数列,11a =,748a a =,638q q ∴=,解得2q =, 1112n n n a a q --∴==, Q 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S , 55111111131211248161612S ⎛⎫⨯- ⎪⎝⎭∴=++++==-.故选A .【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.9.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.10.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c =1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误11.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
2023届北京市通州区高三上学期期末数学试题一、单选题1.已知集合,,则( ){}21A x x =-<<{}03B x x =<<A B ⋃=A .B .{}01x x <<{}23x x -<<C .D .{}13x x <<{}20x x -<<【答案】B【分析】由集合并集的定义求解即可.【详解】因为集合,,{}21A x x =-<<{}03B x x =<<所以,{|23}A B x x È=-<<故选:B 2.等差数列中,,,则的通项为( ){}n a 268a a +=343a a +={}n a A .B .C .D .516n -511n -38n -35n -【答案】A【分析】根据已知条件求得等差数列的首项和公差,从而求得.{}n a n a 【详解】设等差数列的公差为,{}n a d 依题意,解得,11268253a d a d +=⎧⎨+=⎩15,11d a ==-所以.()1115516n a n n =-+-⨯=-故选:A3.抛物线的焦点坐标为( )28x y =A .B .C .D .()4,0()0,4()2,0()0,2【答案】D【解析】抛物线交点坐标为,算出即可.(0,)2pp 【详解】由,得,故抛物线的焦点坐标为.282x y px ==4p =28x y =()0,2故选:D.【点睛】本题考查抛物线的定义及方程,求抛物线焦点坐标时,一定要注意将方程标准化,本题是一道基础题.4.已知向量,满足,,则等于( )a b ()2,4a b +=- ()310,16a b -=- a b ⋅ A .B .13C .D .2913-29-【答案】C【分析】先求得向量,,进而求得.a b a b ⋅【详解】依题意,,()2,4a b +=-()310,16a b -=-两式相加得,()()48,12,2,3a a =-=-所以,()()2,44,7b a =--=-所以.82129a b ⋅=--=-故选:C5.设为正整数,的展开式中存在常数项,则的最小值为( )n 212nx x ⎛⎫+ ⎪⎝⎭n A .2B .3C .4D .5【答案】B【分析】写出二项式展开式的通项,令的指数为0,进而可得结果.x 【详解】的展开式的通项,212nx x ⎛⎫+ ⎪⎝⎭()22311C 22C rn r r n r r n rr n n T x x x ---+⎛⎫==⋅ ⎪⎝⎭令得,因为,所以当时,有最小值3,230n r -=32n r =*N n ∈2r =n 故选:B6.在中,若,,则等于( )ABC 3b =c π3B =aA B C .D .【答案】A【分析】根据题意由余弦定理直接求得答案.【详解】在中,若,,ABC 3b =c =π3B =则,即,即,2222cos b a c ac B =+-296a =+230a -=解得,舍去,a =a =<故选:A7.“”是“”的( )2a >210aa -->A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据的特征,设函数,并判断其单调性,由此判断“”21aa --21,(2())x x f x x -->=2a >可推出“”,举反例说明反推不成立,可得答案.210aa -->【详解】设函数,21,(2())xx f x x -->=则,2212()ln 2ln 21ln1610,(2)x f x x ->-=->'⨯>=⨯即为单调增函数,则,21,(2())xx f x x -->=()(2)10f x f >=>即得,210,(2)x x x -->>所以当时,成立,2a >210aa -->当时,,但推不出成立,1a =-112121021a a -+--=-=>2a >故“”是“”的充分而不必要条件,2a >210aa -->故选:A8.已知半径为1的圆经过点,则其圆心到直线距离的最大值为( )()2,33440x y --=A .1B .2C .3D .4【答案】C【分析】先求得圆心的轨迹方程,然后结合点到直线的距离公式求得正确答案.【详解】由于半径为1的圆(设为圆)经过点,A ()2,3所以圆的圆心的轨迹是以为圆心,半径为的圆,A ()2,31到直线距离为,()2,33440x y --=612425--=所以圆的圆心到直线距离的最大值为.A 3440x y --=213+=故选:C9.要制作一个容积为的圆柱形封闭容器,要使所用材料最省,则圆柱的高和底面半径()3216πcm 应分别为( )A .,B .,6cm 6cmC .,D .,8cm 【答案】C【分析】设圆柱的高为,底面半径为.由,可得,h r 2216ππr h =⋅2222162π2π2π2πS r r h r r r =+⋅=+⋅再利用基本不等式即可得出.【详解】解:设圆柱的高为,底面半径为.hcm rcm ,2216ππV r h ==⋅ 2216h r∴=.2222162π2π2π2πS r r h r r r∴=+⋅=+⋅2216216π2r r r ⎛⎫=++ ⎪⎝⎭π≥⨯36=当且仅当,即当时取等号.22162r r =r ==此时.2216h r ===即当,时取得最小值.r =h =S 故选:C.10.设点是曲线上任意一点,则点到原点距离的最大值、最小值分别(),P x y 22:1C x y xy+=+P 为( )A B ,最小值1C .最大值2D .最大值2,最小值1【答案】B【分析】由题设明确点,结合曲线方程,利用基(),P x y 22:1C x y xy+=+本不等式可得的最小值和最大值,即可得答案.22x y +【详解】由题意知点 ,(),P x y 由于点是曲线上任意一点,可得,(),P x y 22:1C x y xy+=+2211x y xy +=+≥当且仅当时取等号,即曲线上的点到原点距离最小,最小值为1;0xy =(1,0),(0,1)±±又因为,所以,222,,R x y xy x y +≥∈2222||||||||,,R,||22x y x y x y x y xy ++⋅≤∈∴≤当且仅当时取等号,||||x y =故,即,当且仅当时取等号,2222112x y x y xy ++=+≤+222x y +≤||||1x y ==即点P 故选:B二、填空题11.复数的共轭复数______.21i z =-z =【答案】##1i -i +1-【分析】根据复数除法的运算求出,再由共轭复数的概念求解即可.z 【详解】,22(1i)22i 1i 1i (1i)(1i)2z ++====+--+所以,1i z =-故答案为:1i-12.已知双曲线的一条渐近线的倾斜角为60°,则C的离心率为2222:1(0,0)x y C a b a b-=>>___________.【答案】2【分析】根据渐近线得到,得到离心率.tan 60ba =︒=【详解】由题意可知,,离心率.tan 60ba =︒=2c e a ===故答案为:.2【点睛】本题考查了双曲线的离心率,属于简单题.13.已知函数,若函数存在最大值,则的取值范围为______.()ln ,0,x x af x ax a x <≤⎧⎪=⎨>⎪⎩()f x a 【答案】[)e,+∞【分析】分段求出函数在不同区间内的范围,然后结合存在最大值即可求解()f x 【详解】当,在区间上单调递增,所以此时;0x a <≤()ln f x x=(]0,a ()(],ln f x a ∈-∞当,在区间上单调递减,所以此时,x a >()af x x =(),a +∞()()0,1f x ∈若函数存在最大值,则,解得()f x ln 1a ≥ea ≥所以的取值范围为a [)e,+∞故答案为:[)e,+∞14.已知数列的前项和为,为数列的前项积,满足{}n a n n S ()0n S ≠nT{}n S n n n n nS T S T +=⋅,给出下列四个结论:()*n ∈N ①;②;③为等差数列;④.12a =()221n a n n =-{}n T 1n n S n +=其中所有正确结论的序号是______.【答案】①③④【分析】根据关系式,当时,即可求得的值;由得,n n n n S T S T +=⋅1n =1a n n n n S T S T +=⋅1nn n S T S =-当时,可得,可证明为等差数列,即可求得,则可求得,则可判2n ≥1111n n n S T S ---=-11n S ⎧⎫⎨⎬-⎩⎭n S ,n n T a 断其他选项.【详解】因为,所以当时,,解得或n n n n S T S T +=⋅()*n ∈N 1n =21111112S T S T a a +=⋅⇒=12a =,10a =又,所以,故,故①正确;0n S ≠10a ≠12a =因为,可得,所以,当时,,n n n n S T S T +=⋅1n S ≠1n n n S T S =-2n ≥1111n n n ST S ---=-所以()1111111*********11111111111n n n n n n n n n n n n n n n n n n n S T S S S S S S T S S S S S S S S S S -----------+--=⨯⇒=⨯⇒=⇒=⇒-=--------,是以为首项,为公差的等差数列,所以,则,11n S ⎧⎫⎨-⎩⎭1111S =-1()11111n n n S =+-⨯=-1n n S n +=故④正确;所以,则,所以为等差数列,故③正确;11111n n n n S n T n n S n +===++--()111,2n n T T n n n --=+-=≥{}n T 当时,,又不符合2n ≥()()221111111n n n n n n n a S S n n n n n n -+--=-=-==----12a =所以,故②不正确.()2,11,21n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:①③④.三、双空题15.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现双方各出上、中、下等马各一匹,分3组各进行一场比赛,胜2场及以上者获胜.若双方均不知对方马的出场顺序,则田忌获胜的概率为______;若已知田忌的上等马与齐王的中等马分在一组,则田忌获胜的概率为______.【答案】 ##0.51612【分析】列举出齐王与田忌赛马的每组马对阵的所有情况,即可求出双方均不知对方马的出场顺序时田忌获胜的概率,列举出田忌的上等马与齐王的中等马分在一组时的对阵情况,可求得田忌获胜的概率.【详解】设齐王的三匹马分别记为,田忌的三匹马分别记为,123,,a a a 123,,b b b 齐王与田忌赛马,双方每组对阵情况有∶,齐王获胜;112233)(,),(),(,,a b a b a b ,齐王获胜;112332)(,),(),(,,a b a b a b ,齐王获胜;211233)(,),(),(,,a b a b a b ,田忌获胜;211332)(,),(),(,,a b a b a b ,齐王获胜;311223)(,),(),(,,a b a b a b ,齐王获胜,共6种;312213(,,),(),(),a b a b a b其中田忌获胜的只有一种211332)(,),(),(,,a b a b a b 则田忌获胜的概率为;16若已知田忌的上等马与齐王的中等马分在一组,此时情况为和共两种,211233)(,),(),(,,a b a b a b 211332)(,),(),(,,a b a b a b 时,齐王获胜,,田忌获胜,211233)(,),(),(,,a b a b a b 211332)(,),(),(,,a b a b a b 此时田忌获胜的概率为 ,12故答案为:11;62四、解答题16.已知函数的最小正周期为.()()2sin22cos 0f x x x ωωω=+>π(1)求的值;ω(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向右平()y f x =移个单位,得到函数的图象,求函数的单调递增区间.π3()y g x =()g x 【答案】(1).1(2),.5π7π2π,2π1212k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z 【分析】(1)化简的表达式,根据最小正周期求得的值;()f x ω(2)根据三角函数图象的变换规律,可得的解析式,根据正弦函数的单调性,即可求得()y g x =答案.【详解】(1)因为,()2sin22cos f x x x ωω=+sin2cos21x x ωω=++π214x ω⎛⎫=++ ⎪⎝⎭所以的最小正周期,依题意得,解得.()f x 2ππ2T ωω==ππω=1ω=(2)由(1)知,()π214f x x ⎛⎫=++ ⎪⎝⎭把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),()y f x =得到的图象,π14y x ⎛⎫=++ ⎪⎝⎭再把得到的图象向右平移个单位,得到的图象,π3πππ114231y x x ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭即,()π112g x x ⎛⎫=-+ ⎪⎝⎭由函数的单调递增区间为,,sin y x =ππ2π,2π22k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z 令,得,πππ2π2π,Z2122k x k k -≤-≤+∈5π7π2π2π,Z 1212k x k k -≤≤+∈所以的单调递增区间为,.()f x 5π7π2π,2π1212k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z 17.如图,在四棱雉中,底面为矩形,平面平面,,P ABCD -ABCD PAD ⊥ABCD 2AB =,,分别是,的中点.4AD AP ==M N BC PD(1)求证:平面;MN ∥PAB (2)再从条件①,条件②两个中选择一个作为已知,求平面与平面夹角的余弦值.AMN ABCD 条件①:;AD MN ⊥条件②:.AM AN =注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析【分析】(1)取中点,连接,,证明,根据线面平行的判定定理即可证明结AP E EN BE BE MN ∥论;(2)选条件①,由可证,继而证明平面,推出,结合AD MN ⊥BE AD ⊥AD ⊥PAB PA AD ⊥,建立空间直角坐标系,求得相关点坐标,求出平面的法向量,利用面面角的空间向PA AB ⊥AMN 量求法,即可求得答案;选条件②,根据,证明,结合,建立空间直角坐标系,求得相关点坐标,AM AN =PA AD ⊥PA AB ⊥求出平面的法向量,利用面面角的空间向量求法,即可求得答案;AMN 【详解】(1)取中点,连接,,AP E EN BE因为为中点,所以有且,N PD EN AD ∥12EN AD =因为,,所以且,BM AD ∥12BM AD=EN BM ∥EN BM =所以四边形为平行四边形,BMNE 所以,BE MN ∥又因为平面,平面,MN ⊄PAB BE ⊂PAB 所以平面.//MN PAB (2)选择条件①:AD MN⊥因为平面平面,为矩形,,PAD ⊥ABCD ABCD AB AD ⊥平面平面平面,PAD ⋂,ABCD AD AB =⊂ABCD 所以平面,平面,AB ⊥PAD PA ⊂PAD 所以,AB PA ⊥又因为,由(1)可知,平面,AD MN ⊥BE MN ∥BE ⊂PAB 所以,又因为,平面,AD BE ⊥AD AB ⊥,,AB BE B AB BE ⋂=⊂PAB 所以平面,平面,所以,AD ⊥PAB PA ⊂PAB PA AD ⊥平面,故平面,,,AB AD A AB AD =⊂ ABCD PA ⊥ABCD 以A 为原点,以,,分别为轴、轴、轴建立坐标系,AB AD AP x y z则,,,,()0,0,0A ()2,2,0M ()0,2,2N (0,0,4)P 则,,设平面的法向量,()2,2,0AM =()0,2,2AN =AMN (),,n x y z =则,令,则,220220n AM x y n AN y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩1y =()1,1,1n =-- 因为平面,故可作为平面的法向量,AP ⊥ABCD (0,0,4)AP =ABCD 则平面与平面夹角的余弦值AMN ABCD cos ,n AP =选择条件②:.AM AN =因为平面平面,为矩形,ABCD ⊥PAD ABCD AB AD ⊥平面平面平面,PAD ⋂,ABCD AD AB =⊂ABCD 所以平面,所以,AB ⊥PAD AB PA ⊥又因为,AM AN =取中点为,连接,,AD G MG NG 则有,,2MG AG ==NG PA ∥所以,ANG AMG ≌△△所以,则,所以,90AGM AGN ∠=∠=NG AD ⊥PA AD ⊥平面,故平面,,,AB AD A AB AD =⊂ ABCD PA ⊥ABCD 以A 为原点,以,,分别为轴、轴、轴建立空间直角坐标系,AB AD AP x y z 则,,,,()0,0,0A ()2,2,0M ()0,2,2N (0,0,4)P 则,,设平面的法向量,()2,2,0AM =()0,2,2AN =AMN (),,n x y z =则,令,则,220220n AM x y n AN y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 1y =()1,1,1n =--因为平面,故可作为平面的法向量,AP ⊥ABCD (0,0,4)AP =ABCD 则平面与平面夹角的余弦值AMN ABCD cos ,n AP =18.为了解两个购物平台买家的满意度,某研究性学习小组采用随机抽样的方法,获得A 平台AB 、问卷100份,B 平台问卷80份.问卷中,对平台的满意度等级为:好评、中评、差评,对应分数分别为:5分、3分、1分,数据统计如下:好评中评差评A 平台75205B 平台6488假设用频率估计概率,且买家对平台的满意度评价相互独立.AB 、(1)估计买家对A 平台的评价不是差评的概率;(2)从所有在A 平台购物的买家中随机抽取2人,从所有在B 平台购物的买家中随机抽取2人,估计这4人中恰有2人给出好评的概率;(3)根据上述数据,你若购物,选择哪个平台?说明理由.AB 、【答案】(1)1920(2)73400(3)选择A 平台,理由见解析【分析】(1)根据题设统计表即可求得答案;(2)计算出买家对平台好评的概率,明确这4人中恰有2人给出好评的情况有哪几种,根据AB 、互斥事件以及相互独立事件的概率计算,可得答案.(3)列出买家对平台的满意度评分的分布列,分别计算均值和方差,由此可得结论.AB 、【详解】(1)设“买家对A 平台的评价不是差评”为事件,C 则.()519110020P C =-=(2)设“这4人中恰有2人给出好评”为事件,D 由已知数据估计,买家在A 平台好评的概率为,买家在平台好评的概率,7531004=B 644805=事件包含:A 平台2个好评,平台0个好评;A 平台1个好评,平台1个好评;D B B A 平台0个好评,平台2个好评,B 故.()22221122343344341C 1C 1145445545P D ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+--+- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭73400=(3)设一位买家对A 平台的满意度评分为,一位买家对平台的满意度评分为,X B Y 可得其分布列如下表:X531P0.750.20.05Y 531P '0.80.10.1则,,()50.7530.210.05 4.4E X =⨯+⨯+⨯=()50.830.110.1 4.4E Y =⨯+⨯+⨯=,222()(5 4.4)0.75(3 4.4)0.2(1 4.4)0.05 1.24D X =-⨯+-⨯+-⨯=,222()(5 4.4)0.8(3 4.4)0.1(1 4.4)0.1 1.64D Y =-⨯+-⨯+-⨯=从买家对两个平台满意度得分看两个平台均分相等,但,()()D X D Y <所以选择A 平台.19.已知椭圆的左、右顶点分别为,且,离心率为.2222:1x y C a b +=()0a b >>,A B AB 4=12(1)求椭圆的方程;C (2)设是椭圆上不同于的一点,直线,与直线分别交于点.试判断以为P C ,A B PA PB 4x =,M N MN直径的圆是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)22143x y +=(2)以为直径的圆过定点,.MN ()1,0()7,0【分析】(1)根据椭圆的标准方程和离心率列方程组求解即可;(2)设,由题意可得,,设定点为,利用(),P m n 64,2n M m ⎛⎫ ⎪+⎝⎭24,2n N m ⎛⎫ ⎪-⎝⎭()00,Q x y 即可得到结论.0MQ NQ ⋅=【详解】(1)由题意可知,解得,2222412a c e a a b c=⎧⎪⎪==⎨⎪=+⎪⎩21a b c =⎧⎪=⎨⎪=⎩所以所以求椭圆的方程为.C 22143x y +=(2)设,由(1)可知, 斜率存在且不为0,(),P m n ()2m ≠±223412m n +=,PA PB 依题意可知的直线方程为,PA ()22ny x m =++的直线方程为,PB ()22n y x m =--令,可得,,4x =64,2n M m ⎛⎫ ⎪+⎝⎭24,2n N m ⎛⎫ ⎪-⎝⎭假设以为直径的圆过定点,不妨设定点为,MN ()00,Q x y 依题意可知,,所以,MQ NQ ⊥0MQ NQ ⋅=0000624,4,22n n MQ NQ x y x y m m ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪+-⎝⎭⎝⎭ ,()222000228812444mn n n x y y m m -=-+-+--因为,223412m n +=所以.()22000288494mn n MQ NQ x y y m -⋅=-+--- 因为,0MQ NQ ⋅=所以,()220002884904mn nx y y m --+--=-令,可得,解得,,00y =()2049x -=01x =07x =所以以为直径的圆过定点,.MN ()1,0()7,0【点睛】判断以为直径的圆过定点时,常用向量法,根据向量数量积为0,代入相关点的坐标MN 化简后即可得到结论.20.已知函数.()()221x af x x -=+(1)当时,求曲线在点处的切线方程;0a =()y f x =()()0,0f (2)求函数的单调区间;()f x (3)当函数存在极小值时,求证:函数的极小值一定小于0.()f x ()f x 【答案】(1)2y x =(2)答案见解析(3)证明见解析【分析】(1)根据导数的几何意义确定切点坐标和斜率,即可得切线方程;(2)根据函数单调性与导数的关系,确定单调性,即可得单调区间;(3)在(2)的基础上,确定函数极小值点,求极小值即可证明.【详解】(1)解:当,,则,0a =()()221xf x x =+()00f =因为,所以.()()3221x f x x -'+=+()02f '=所以曲线在的切线方程为.()y f x =()0,02y x =(2)解:函数定义域为.{}1x x ≠-,()()()()()()()44222121111x a x x a x f x x x -+++---+==++'令,解得:.()0f x '=1x a =+①当即时,,11a +=-2a =-()()()()()332212220111x x f x x x x -+---===++'<+所以函数的单调递减区间为和,无单调递增区间.()y f x =(),1-∞-()1,-+∞②当即时,当和,;当,11a +<-2a <-(),1x a ∞∈-+()1,x ∈-+∞()0f x '<()1,1x a ∈+-,()0f x ¢>函数的单调递减区间为和,单调递增区间为.()y f x =(),1a -∞+()1,-+∞()1,1a +-③当即时,当和,;当,11a +>-2a >-(),1x ∈-∞-()1,x a ∈++∞()0f x '<()1,1x a ∈-+,()0f x ¢>函数的单调递减区间为和,单调递增区间为.()y f x =(),1-∞-()1,a ∞++()1,1a -+综上所述:时,函数的单调递减区间为和,无单调递增区间.2a =-()y f x =(),1-∞-()1,-+∞时,函数的单调递减区间为和,单调递增区间为.2a <-()y f x =(),1a -∞+()1,-+∞()1,1a +-时,函数的单调递减区间为和,单调递增区间为.2a >-()y f x =(),1-∞-()1,a ∞++()1,1a -+(3)证明:函数定义域为.{}1x x ≠-由题意,函数存在极小值,则在极小值点有定义,且在该点左侧函数单调递减,在该点右侧函数单调递增.由(2)可知,当时,函数在处取得极小值,2a <-()y f x =1x a =+即;()()()()()222121102112a aa f x f a a a a +-+=+===<++++极小值当时,又,函数无极小值,2a >-1x ≠-()y f x =所以函数的极小值一定小于0.()f x 21.约数,又称因数.它的定义如下:若整数除以整数除得的商正好是整数而没有余数,a m()0m ≠我们就称为的倍数,称为的约数.设正整数共有个正约数,即为a m m a a k 121,,,,k ka a a a -⋅⋅⋅.()12k a a a <<⋅⋅⋅<(1)当时,若正整数的个正约数构成等比数列,请写出一个的值;4k =a k a (2)当时,若构成等比数列,求正整数;4k ≥21321,,,k k a a a a a a ---⋅⋅⋅-a (3)记,求证:.12231k k A a a a a a a -=++⋅⋅⋅+2A a <【答案】(1)8.(2).12k a a -=()4k ≥(3)证明见解析.【分析】(1)根据题意即可写出a 的一个值;(2)由题意可知,,,,结合构成等比数列,11a =k a a =12k a a a -=23k aa a -=21321,,,k k a a a a a a ---⋅⋅⋅-可推出是完全平方数,继而可得,由此可知为3a 232a a =21321,,,k k a a a a a a ---⋅⋅⋅-,即可求得a ;212222221,,,k k a a a a a ----⋅⋅⋅-(3)由题意知,,从而可得1211,,,,k k i k i a a a a a a a a a -+-==⋅⋅⋅=⋅⋅⋅()1i k ≤≤,采用放缩法以及裂项求和的方法,即可证明结论.22212112k k k k a a a A a a a a a a ---=++⋅⋅⋅+【详解】(1)当时正整数的4个正约数构成等比数列,4k =a 比如为8的所有正约数,即.1,2,4,88a =(2)由题意可知,,,,11a =k a a =12k a a a -=23k aa a -=因为,依题意可知,所以,4k ≥3212112kk k k a a a a a a a a -----=--3222123aa a a a a a a a a a --=--化简可得,所以,()()2232231a a a a -=-232321a a a a a ⎛⎫-= ⎪-⎝⎭因为,所以,*3N a ∈*3221N a a a a -∈-因此可知是完全平方数.3a 由于是整数的最小非1因子,是的因子,且,所以,2a a 3a a 32a a >232a a =所以为,21321,,,k k a a a a a a ---⋅⋅⋅-212222221,,,k k a a a a a ----⋅⋅⋅-所以,.12k a a -=()4k ≥(3)证明:由题意知,,1211,,,,k k i k i a a a a a a a a a -+-==⋅⋅⋅=⋅⋅⋅()1i k ≤≤所以,22212112k k k k a a a A a a a a a a ---=++⋅⋅⋅+因为,121121212111111111,,k k k k k k k k a a a a a a a a a a a a a a a a ------≤=-⋅⋅⋅≤=-所以22221211212112111k k k k k k k k a a a A a a a a a a a a a a a a a ------⎛⎫=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎝⎭,2212231111111111k k k a a a a a a a a a a -⎛⎫⎛⎫≤-+-+⋅⋅⋅+-=- ⎪ ⎪⎝⎭⎝⎭因为,,所以,11a =k a a =1111k a a -<所以,22111k A a a a a ⎛⎫≤-< ⎪⎝⎭即.2A a <【点睛】关键点点睛:在第二问的解答中,在得到后,要能根据,推得232321a a a a a ⎛⎫-= ⎪-⎝⎭*3N a ∈,继而得出,这是解决问题的关键.第三问的证明中,难点在于要能注意到*3221N a a a a -∈-232a a =,,从而可得,然后采用1211,,,,k k i k ia a a a a a a a a -+-==⋅⋅⋅=⋅⋅⋅()1i k ≤≤22212112k k k k a a a A a a a a a a ---=++⋅⋅⋅+裂项求和的方法进行化简进而证明结论.。
【典型题】高三数学上期末试卷(带答案)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD3.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .14.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( )A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃ 5.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .146.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .27.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .328.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a = A .4B .10C .16D .329.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A.-5 B .-1 5C.5 D.1510.等差数列{}n a中,34512a a a++=,那么{}n a的前7项和7S=()A.22B.24C.26D.2811.在中,,,,则A.B.C.D.12.一个递增的等差数列{}n a,前三项的和12312a a a++=,且234,,1a a a+成等比数列,则数列{}n a的公差为 ( )A.2±B.3C.2D.1二、填空题13.数列{}n a满足14a=,12nn na a+=+,*n N∈,则数列{}n a的通项公式n a=______. 14.如图,在ABCV中,,43C BCπ==时,点D在边AC上,AD DB=,DE AB⊥,E为垂足若22DE=,则cos A=__________15.已知数列{}n a的前n项和n s=23n-2n+1,则通项公式.n a=_________16.已知变量,x y满足约束条件2{41yx yx y≤+≥-≤,则3z x y=+的最大值为____________.17.已知锐角三角形的边长分别为1,3,a,则a的取值范围是__________.18.已知递增等比数列{}n a的前n项和为n S,且满足:11a=,45234a aa a+=+,则144S Sa+=______.19.已知不等式250ax x b-+>的解集是{}|32x x-<<-,则不等式250bx x a-+>的解集是_________.20.若log41,ab=-则+a b的最小值为_________.三、解答题21.已知数列中,,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,求数列的前项和.22.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 23.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .24.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)证明:2221274n S S S +++<L . 25.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值. 26.已知函数f(x)=x 2-2ax -1+a ,a∈R. (1)若a =2,试求函数y =()f x x(x>0)的最小值; (2)对于任意的x∈[0,2],不等式f(x)≤a 成立,试求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到2222AC BC AB AC BC +-=⨯⨯将2AC =,BC =,代入等式得到AB=再由等面积法得到1122225CD CD ⨯=⨯⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.3.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++,设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.4.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可.详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0, ∴不等式f (x )≤5的解集为[﹣2,4], 故选B .点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.5.C解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列, 又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.6.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c =1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误7.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PAk +==最大.故答案为32. 【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.8.C解析:C 【解析】由64S S -=6546a a a +=得,()22460,60q q a q q +-=+-=,解得2q =,从而3522=28=16a a =⋅⨯,故选C.9.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴=∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.10.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质11.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.12.C解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .二、填空题13.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +. 【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.14.【解析】在△ABC 中∵DE ⊥ABDE=∴AD=∴BD=AD=∵AD=BD ∴A=∠ABD ∴∠BDC=∠A+∠ABD =2∠A 在△BCD 中由正弦定理得即整理得cosA= 解析:64【解析】在△ABC 中,∵DE ⊥AB ,DE =22,∴AD =2sin A, ∴BD =AD 22. ∵AD =BD ,∴A =∠ABD ,∴∠BDC =∠A +∠ABD =2∠A , 在△BCD 中,由正弦定理得sin sin BD BCCBDC=∠ , 即224sin sin 23A A = ,整理得cosA =6. 15.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n 项和;2数列的通项公式解析:na =2,1{65,2n n n =-≥ 【解析】试题分析:n=1时,a 1=S 1=2;当2n ≥时,1n n n a S S -=-=23n -2n+1-[23(1)n --2(n-1)+1]=6n-5, a 1=2不满足61n a n =-,所以数列{}n a 的通项公式为na =2,1{65,2n n n =-≥. 考点:1.数列的前n 项和;2.数列的通项公式.16.11【解析】试题分析:由题意得作出不等式组所表示的可行域如图所示由得平移直线则由图象可知当直线经过点时直线的截距最大此时有最大值由解得此时考点:简单的线性规划解析:11 【解析】试题分析:由题意得,作出不等式组所表示的可行域,如图所示,由3z x y =+,得3y x z =-+,平移直线3y x z =-+,则由图象可知当直线3y x z =-+经过点A 时,直线3y x z =-+的截距最大,此时z 有最大值,由2{1y x y =-=,解得(3,2)A ,此时33211z =⨯+=.考点:简单的线性规划.17.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的解析:a <<【解析】由三角形中三边关系及余弦定理可得a 应满足22222222224130130310a a a a <<⎧⎪+->⎪⎨+->⎪⎪+->⎩,解得a << ∴实数a的取值范围是.答案:点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围.18.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题解析:2【解析】【分析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论.【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q =, ∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2.【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.19.【解析】【分析】根据不等式的解集是求得的值从而求解不等式的解集得到答案【详解】由题意因为不等式的解集是可得解得所以不等式为即解得即不等式的解集为【点睛】本题主要考查了一元二次不等式的解法其中解答中根 解析:11(,)23-- 【解析】【分析】根据不等式250ax x b -+>的解集是{}|32x x -<<-,求得,a b 的值,从而求解不等式250bx x a -+>的解集,得到答案.【详解】由题意,因为不等式250ax x b -+>的解集是{}|32x x -<<-, 可得53(2)(3)(2)a b a ⎧-+-=⎪⎪⎨⎪-⨯-=⎪⎩,解得1,6a b =-=-,所以不等式250bx x a -+>为26510x x --->,即2651(31)(21)0x x x x ++=++<,解得1123x -<<-, 即不等式250bx x a -+>的解集为11(,)23--.【点睛】本题主要考查了一元二次不等式的解法,其中解答中根据三个二次式之间的关键,求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.20.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1【解析】试题分析:由log 41,a b =-得104a b =>, 所以112144a b b b b b+=+≥⋅=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.三、解答题21.(1)答案见解析;(2).【解析】试题分析:⑴根据数列的递推关系,结合等比数列的定义即可证明是等比数列,并求的通项公式,⑵利用错位相减法即可求得答案; 解析:(1)∵∴∴, ∵,, ∴是以为首项,以4为公比的等比数列 ∴, ∴, ∴, (2),∴①②①-②得∴. 22.(1)12n n a +=(2)2222222()()()122311n n S n n n =-+-++-=++L 【解析】【分析】【详解】(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d.因为71994{2a a a =,=,所以11164{1828a d a d a d +++=,=().解得a 1=1,d =12.所以{a n }的通项公式为a n =12n +. (2)b n =1n na =22211n n n n -++=(), 所以S n =2222222()122311n n n n ⎛⎫⎛⎫++⋯+ ⎪ ⎪+⎝⎭⎝⎭---=+ 23.(1)2n a n =;(2)S n =212n -•3n +1+32 【解析】【分析】 (1)等差数列{a n }的公差设为d ,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得b n =2n •3n ,由数列的错位相减法求和即可.【详解】(1)等差数列{a n }的公差设为d ,a 3=6,且前7项和T 7=56.可得a 1+2d =6,7a 1+21d =56,解得a 1=2,d =2,则a n =2n ;(2)b n =a n •3n =2n •3n ,前n 项和S n =2(1•3+2•32+3•33+…+n •3n ),3S n =2(1•32+2•33+3•34+…+n •3n +1),相减可得﹣2S n =2(3+32+33+…+3n ﹣n •3n +1)=2•(()31313n --﹣n •3n +1), 化简可得S n =212n -•3n +1+32. 【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题.24.(1)证明见解析;(2)证明见解析【解析】【分析】(1)当n ≥2时,S n ﹣S n ﹣121n n S S =-⇒S n ﹣S n ﹣1=S n •S n ﹣1(n ≥2),取倒数,可得111n n S S --=1,利用等差数列的定义即可证得:数列{1nS }是等差数列; (2)利用222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭进行放缩并裂项求和即可证明 【详解】(1)当2n ≥时,211n n n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --= 从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列. (2)由(1)可知,()11111n n n S S =+-⨯=,1n S n ∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭L L 1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<L . 法二:则当2n ≥时22211111n S n n n n n=<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L 又当1n =时,21714S =<,当时,21714S =<满足题意, 【点睛】本题考查数列递推式的应用,考查等差数列的判定,考查等价转化思想,突出裂项法、放缩法应用的考查,属于难题.25.(1)22n a n =+;(2)63【解析】【分析】(1)求出公差d 和首项1a ,可得通项公式;(2)由23,b b 得公比,再得6b ,结合{}n a 通项公式求得k .【详解】(1)由题意等差数列{n a 的公差432d a a =-=,121210a a a d +=+=,14a =, ∴1(1)4(1)222n a a n d n n =+-=+-⨯=+;(2)由(1)23378,16b a b a ====,∴321628b q b ===,446282128b b q ==⨯=, ∴22128k a k =+=,63k =.【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础.26.(1)2-;(2)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据基本不等式求最值,注意等号取法,(2)先化简不等式,再根据二次函数图像确定满足条件的不等式,解不等式得结果.【详解】(1)依题意得y=()f xx=2-41x xx+=x+1x-4.因为x>0,所以x+1x≥2.当且仅当x=1x时,即x=1时,等号成立.所以y≥-2.所以当x=1时,y=()f xx的最小值为-2.(2)因为f(x)-a=x2-2ax-1,所以要使得“对任意的x∈[0,2],不等式f(x)≤a成立”只要“x2-2ax-1≤0在[0,2]恒成立”.不妨设g(x)=x2-2ax-1,则只要g(x)≤0在[0,2]上恒成立即可.所以(0)0,(2)0,gg≤⎧⎨≤⎩即0-0-10,4-4-10,a≤⎧⎨≤⎩解得a≥34,则a的取值范围为3,4∞⎡⎫+⎪⎢⎣⎭.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.。
【好题】高三数学上期末试卷含答案一、选择题1.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .42.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .43.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD5.设x y ,满足约束条件10102x y x y y -+≤⎧⎪+-⎨⎪≤⎩>,则yx 的取值范围是( )A .()[),22,-∞-+∞UB .(]2,2-C .(][),22,-∞-+∞UD .[]22-,6.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1167.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) ABCD8.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .789.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞10.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .4511.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6012.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=( )A 25B 5C 310D .1010二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .2C A π-=,1sin 3A =,3a =,则b =______.15.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________16.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.17.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___).18.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.19.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式 n a =_______.20.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.三、解答题21.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =. (1)若b =30A =︒,求角B 的值; (2)若ABC ∆的面积3ABC S ∆=,cos 45B =,求,b c 的值. 22.已知函数()21f x x =-. (1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y y af x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.23.已知各项均为正数的等比数列{}n a 的首项为12,且()3122123a a a -=+。
(1)求数列{}n a 的通项公式;(2)若8n b n =,数列{}n b 的前n 项和为n T ,数列{}n a 的前n 项和为n S ,试比较12111n T T T ++⋅⋅⋅+与12n S 的大小. 24.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且()sin 2sin 0b A a A C -+=. (1)求角A ;(2)若3a =,ABC △11b c +的值.25.已知在公比为q 的等比数列{}n a 中,416a =,()34222a a a +=+. (1)若1q >,求数列{}n a 的通项公式;(2)当1q <时,若等差数列{}n b 满足31b a =,512b a a =+,123n n S b b b b =+++⋅⋅⋅+,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项的和.26.已知等差数列{}n a 的前n 项和为n S ,且24220a a -=,3128S a -=. (1)求数列{}n a 的通项公式;(2)当n 为何值时,数列{}n a 的前n 项和最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由已知条件得()()113x y +++=,对代数式2211x y y x +++变形,然后利用基本不等式求出2211x y y x +++的最小值,即可得出实数m 的最大值. 【详解】正数x 、y 满足1x y +=,则()()113x y +++=,()()()()()()222222221212111111111111y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+++++++++444444141465111111y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭412533⎛≥⨯+-= ⎝, 当且仅当12x y ==时,等号成立,即2211x y y x +++的最小值为13,则13m ≤. 因此,实数m 的最大值为13. 故选:B. 【点睛】本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.2.A解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.3.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t ++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减. 可得t=12处,此时6f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.4.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到2222.22AC BC AB AC BC +-=-⨯⨯将2AC =,22BC =,代入等式得到AB=25, 再由等面积法得到11225252222225CD CD ⨯⨯=⨯⨯⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.5.A解析:A 【解析】 【分析】根据题意,作出可行域,分析yx的几何意义是可行域内的点(),x y 与原点O 连线的斜率,根据图象即可求解. 【详解】作出约束条件表示的可行域,如图所示,yx 的几何意义是可行域内的点(),x y 与原点O 连线的斜率,由102x y y -+=⎧⎨=⎩,得点A 的坐标为()1,2,所以2OA k =,同理,2OB k =-,所以yx 的取值范围是()[),22,-∞-+∞U . 故选:A 【点睛】本题考查简单的线性规划,考查斜率型目标函数问题,考查数形结合思想,属于中等题型.6.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅.7.A解析:A 【解析】 【分析】由正弦定理求出c , 【详解】A 是三角形内角,1tan 3A =,∴sin A = 由正弦定理sin sin a c A C=得sin sin 2a C c A ===, 又2222cos c a b ab C =+-,即22512cos15012b b b =+-︒=+,2302b +-=,b =(b =∴11sin 122ABC S ab C ∆==⨯︒=. 故选:A . 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查同角间的三角函数关系.解三角形中公式较多,解题时需根据已知条件确定先选用哪个公式,再选用哪个公式.要有统筹安排,不致于凌乱.8.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.9.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.10.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.11.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.12.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=225AC AB BC +在ACD ∆中,由余弦定理得2222310cos 2252AC AD CD DAC AC AD +-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.二、填空题13.9【解析】【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【解析】 【分析】将分式展开,利用基本不等式求解即可 【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =422,xy ≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9 【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件14.7【解析】【分析】先求出再利用正弦定理求最后利用余弦定理可求【详解】因为所以故且为锐角则故由正弦定理可得故由余弦定理可得故即或因为为钝角故故故答案为:7【点睛】三角形中共有七个几何量(三边三角以及外解析:7 【解析】 【分析】 先求出2sin 3C =,再利用正弦定理求c ,最后利用余弦定理可求b . 【详解】 因为2C A π-=,所以2C A π=+,故sin sin cos 2C A A π⎛⎫=+= ⎪⎝⎭,且A为锐角,则cos 3A =,故sin 3C =. 由正弦定理可得sin sin a c A C =,故3sin 31sin 3a Cc A=== 由余弦定理可得2222cos a b c bc A =+-,故297223b b =+-⨯即7b =或9b =, 因为C 为钝角,故c b >,故7b =. 故答案为:7. 【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量. (1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边); (3)如果知道两角及一边,用正弦定理.15.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n 项和;2数列的通项公式 解析:n a =2,1{65,2n n n =-≥ 【解析】试题分析:n=1时,a 1=S 1=2;当2n ≥时,1n n n a S S -=-=23n -2n+1-[23(1)n --2(n-1)+1]=6n-5, a 1=2不满足61n a n =-,所以数列{}n a 的通项公式为n a =2,1{65,2n n n =-≥.考点:1.数列的前n 项和;2.数列的通项公式.16.﹣33【解析】分析:由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案详解:由约束条件作出可行域如图:联立解得化目标函数为直线方程的斜截式解析:[﹣3,3] 【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 详解:由约束条件作出可行域如图:联立13x y x y -=-+=,解得12x y ==,()1,2B ,化目标函数2z x y =-为直线方程的斜截式22x zy =-. 由图可知,当直线22x zy =-过()1,2B ,直线在y 轴上的截距最大,z 最小,最小值为1223-⨯=-;当直线22x zy =-过()3,0A 时,直线在y 轴上的截距最小,z 最大,最大值为3203-⨯=. ∴2z x y =-的取值范围为[﹣3,3].故答案为:[﹣3,3].点睛:利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【解析】【分析】根据两个和的关系得到公差条件解得结果【详解】由题意可知即又两式相减得【点睛】本题考查等差数列和项的性质考查基本分析求解能力属基础题 解析:1-【解析】 【分析】根据两个和的关系得到公差条件,解得结果. 【详解】由题意可知,10551015S S -=--=-,即67891015a a a a a ++++=-, 又1234510a a a a a ++++=,两式相减得2525d =-,1d =-. 【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.18.5【解析】【分析】画出不等式表示的可行域利用目标函数的几何意义当截距最小时取z 取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示)化直线为当直线平移过点A 时z 取得最大值联立直线得A (解析:5 【解析】 【分析】画出不等式表示的可行域,利用目标函数的几何意义当截距最小时取z 取得最大值求解即可 【详解】画出不等式组表示的平面区域(如图阴影所示),化直线2z x y =+为122z y x =-+ 当直线平移过点A 时,z 取得最大值,联立直线3010x y x y +-=⎧⎨-+=⎩得A (1,2),故max 145z =+=故答案为:5【点睛】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值,是基础题19.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项 解析:2221n n -- 【解析】 【分析】 构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.20.4【解析】【分析】先判断是正数且把所求的式子变形使用基本不等式求最小值【详解】由题意知则当且仅当时取等号∴的最小值为4【点睛】】本题考查函数的值域及基本不等式的应用属中档题解析:4 【解析】 【分析】先判断a c 、是正数,且1ac =,把所求的式子变形使用基本不等式求最小值. 【详解】由题意知,044010a ac ac c =-=∴=V >,,,>,则111111 2224a c a c a c c a c c a a c a c a +++=+++=+++≥+=+=()(),当且仅当1a c ==时取等号.∴11a c c a +++的最小值为4. 【点睛】】本题考查函数的值域及基本不等式的应用.属中档题.三、解答题21.(1)60B =︒或120︒. (2) b =【解析】 【分析】(1)根据正弦定理,求得sin 2B =,进而可求解角B 的大小;(2)根据三角函数的基本关系式,求得3sin 5B =,利用三角形的面积公式和余弦定理,即可求解。