高数有理分式积分法
- 格式:ppt
- 大小:1.73 MB
- 文档页数:34
有理分式积分待定系数法理分式的积分可以使用待定系数法进行求解,具体步骤如下:1. 将有理分式进行部分分式分解。
例如,对于形如$$\frac{N(x)}{D(x)} = \frac{N_1(x)}{D_1(x)} + \frac{N_2(x)}{D_2(x)} + \cdots +\frac{N_k(x)}{D_k(x)}$$的有理分式,其中$N(x)$和$D(x)$分别为分子和分母多项式,$N_1(x)$和$D_1(x)$等为部分分式形式。
2. 根据部分分式的形式进行计算。
对于每一项$\frac{N_i(x)}{D_i(x)}$,可以使用待定系数法进行计算。
若$D_i(x)$的次数大于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} =\frac{A_{i1}}{D_{i1}(x)} + \frac{A_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}}{D_{im_i}(x)}$,其中$D_{ij}(x)$的次数小于$D_i(x)$的次数。
若$D_i(x)$的次数等于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} = \frac{A_{i1}x +B_{i1}}{D_{i1}(x)} + \frac{A_{i2}x + B_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}x +B_{im_i}}{D_{im_i}(x)}$。
3. 将部分分式进行通分,整理等式。
4. 将所得等式两边同时积分。
例如,对于每一个部分分式$\frac{A_{ij}x + B_{ij}}{D_{ij}(x)}$,可以通过先对其分子进行展开得到$\frac{A_{ij}x}{D_{ij}(x)} + \frac{B_{ij}}{D_{ij}(x)}$。
然后,可通过分别使用常数乘法法则和有理函数法则进行积分,最终得到对应的积分结果。
有理函数的积分拆分方法一、前言积分是高等数学中非常重要的概念。
而有理函数则是些基础的函数,其定义域是有理数的多项式函数。
在进行有理函数的积分时,我们有时可以通过拆分的方式,将原式转化为简单的形式,从而使求解变得更加容易。
本文将讨论有理函数的积分拆分方法,特别是常见的分式分解法和部分分式分解法。
二、分式分解法分式分解法是将原有理式拆分成若干个分式相加的形式。
下面我们将介绍一下分式分解法的具体步骤:1.将分母拆分成多项式的积。
例如:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{ B}{x+2}$其中 $A$,$B$ 是待定系数。
2.将原式中的分式分别乘上其对应的除数。
例如:$x^2+2x=A(x+2)+B(x+1)$3.利用待定系数的方法求解 $A$,$B$。
例如:在上式中将 $x$ 替换为 $x=-1$,可以得到 $A=-1$。
在上式中将 $x$ 替换为 $x=-2$,可以得到 $B=2$。
最终得到:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{2}{x+2}$三、部分分式分解法部分分式分解法则是将有理式模拟成部分分式,之后进行求解。
下面我们将介绍部分分式分解法的具体步骤:1.将分母分解因式。
例如:$\frac{5x-1}{x^2-3x+2}=\frac{5x-1}{(x-1)(x-2)}$2.将各因式拆成单项式。
例如:$\frac{5x-1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$3.用待定系数法求解。
例如:$5x-1=A(x-2)+B(x-1)$4.解得系数 $A$,$B$。
例如:在上式中将 $x=1$,可以得到 $A=-4$。
在上式中将 $x=2$,可以得到 $B=9$。
最终得到:$\frac{5x-1}{x^2-3x+2}=\frac{-4}{x-1}+\frac{9}{x-2}$四、总结:通过上述两种方法,我们可以将有理函数的积分拆分为若干个简单的分式相加。
44有理函数的积分知识讲解有理函数意为有理数的函数,即可以表示为$p(x)/q(x)$的函数,其中$p(x)$和$q(x)$均为多项式函数。
有理函数积分是指对有理函数进行积分运算,是高等数学中一个非常重要的内容。
下面将介绍有理函数积分的知识。
一、分式分解要求有理函数的积分,首先要进行分式分解。
分式分解是将一个有理函数分解成多个个简单的有理函数的和的过程,即对于一个形如$p(x)/q(x)$的有理函数进行分解,使得分解式的分母均为一次多项式或既约二次多项式。
分式分解的基本方法是:用二次多项式的因式作分子的一次式,二次多项式必须既约,即无重根。
若$q(x)$的某个根是$k$,则$(x-k)$是$q(x)$的因式;若二次多项式$(x^2+px+q)$有两个不同实根$x_1,x_2$,则分式分解式可写成两个部分的和形式,即分子为$k_1/(x-x_1)$,分母为$(x-x_1)$,分子为$k_2/(x-x_2)$,分母为$(x-x_2)$。
二、基本积分公式有理函数的积分可以根据基本积分公式进行求解。
常用的基本积分公式有以下几种:1. $\int \frac{1}{x} dx = \ln |x| + C$2. $\int \frac{1}{x^2+a^2} dx=\frac{1}{a}\arctan(\frac{x}{a})+C$三、换元积分法针对部分比较复杂的有理函数,可以采用换元积分法进行求解。
具体方法是:先将分式分解为几个部分,其中一个部分是含有根式的二次函数,用$t=\sqrt{x^2+a^2}$进行代换,然后进行简化,并根据基本积分公式计算积分。
四、分步积分法对于含有较多项的有理函数,可以采用分步积分法进行求解。
具体方法是:将原式中的有理函数分解为两个有理函数的和,其中一个有理函数是原式的导数的因式,另一个有理函数则是原式的乘积。
然后,用分部积分法求解原式的积分。
总之,有理函数积分是高等数学中的一个非常重要的内容,可以通过分式分解、基本积分公式、换元积分法和分步积分法进行求解。
§3-7 阅读(有理函数和三角函数有理式的积分法)在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分..在那里,因为被积函数都很特殊,因为被积函数都很特殊,所以用所以用所以用“拼凑的方法”“拼凑的方法”就求出了它们的积分就求出了它们的积分..这一节讨论的是一般情形下,如何求它们的积分当你遇到那些简单或特殊的情形时,当然不必用这里的一般方法,而仍用以前那种“拼凑方法”就行了法,而仍用以前那种“拼凑方法”就行了. .1.有理函数的积分法有理函数的积分()d ()p x x q x ò[ [其中其中()p x 和()q x 都是多项式都是多项式] ] 总可以积出来,即可把它表示成初等函数总可以积出来,即可把它表示成初等函数..积分方法的要点是:第一,若有理函数()()p x q x 中,分子()p x 的次数不低于分母()q x 的次数,则称它为假分式假分式..在这种情形下,就用多项式除法(见下面例2727)),先把它变成一个多项式与一个真分式之和,即()()()()()p x r x s x q x q x =+ [ [其中分子其中分子()r x 的次数低于分母()q x 的次数的次数] ] 于是,()d ()p x x q x ò()()d d ()r x s x x x q x =+òò右端第一项是多项式的积分右端第一项是多项式的积分((用分项积分法可以积出来用分项积分法可以积出来)),所以就变成求有理函数真分式的积分()d ()r x x q x ò. . 关于多项式除法,请看下面的例题关于多项式除法,请看下面的例题关于多项式除法,请看下面的例题. . 例27 例如求有理函数假分式的积分522d 36x x x x -++ò首先像做整数除法那样,做多项式除法:由此可得63225++-x x x 3212323336x x x x +æö=-+ç÷+èø其次再逐项积分,即(余式) 23+x (被除式) (除式)255336000202x x x x x ++++-+++xx x x 40220233-+-+-+-(商式)31233x x -5342222212321132d d d d 33123363636x x x x x x x x x x x x x x x -+++æö=-+=-+ç÷+++èøòòòò这样就变成求这样就变成求((右端最后一个右端最后一个))有理函数真分式的积分有理函数真分式的积分. .第二,第二,对于真分式对于真分式()()r x q x ,先把分母上的多项式()q x 分解成一次因式或没有实根的二次因式的乘积二次因式的乘积((根据代数基本定理,这是可能的).).然后用待定系数法然后用待定系数法然后用待定系数法((或拼凑方法或拼凑方法))把()()r x q x 化成不超出下面这些“最简分式”的和:化成不超出下面这些“最简分式”的和:22,,,()()n m A B Cx D Ex Fx a x b x px q x rx s ++--++++(n 和m 为正整数为正整数)) (分子比分母上的基因式低一次分子比分母上的基因式低一次) )这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分. . 我们用例子来说明上述方法我们用例子来说明上述方法我们用例子来说明上述方法. .⑴分母为一次重因式的真分式的积分法例28 例如求例如求2353d (2)x x x ++ò,可令,可令2323532(2)(2)(2)x A B C x x x x +=++++++将右端通分,将右端通分,并比较两端分子,并比较两端分子,并比较两端分子,即即C x B x A x ++++º+)2()2(3522,则得三元线性方程组则得三元线性方程组ïîïíì=++=+=(常数项)的系数)(的系数)(3240452C B A x B A x A , 解得解得ïîïíì=-==23205C B A 于是得于是得3232)2(23)2(2025)2(35+++-+=++x x x x x 因此,因此, 2353d (2)x x x ++ò2352023d d d 2(2)(2)x x x x x x =-++++òòò220235ln 222(2)x x x =++-++【注1】上面求待定系数的方法是比较两端x 的同次项系数,下面是求待定系数的另一个方法:根据2253(2)(2)x A x B x C +º++++,则,则第一步,让2x =-,得23C =;第二步,在2253(2)(2)x A x B x C +º++++两端关于x 求导数,得102(2)x A x B º++. 再令2x =-,得20B =-;第三步,在102(2)x A x B º++两端关于x 求导数,则得102A =,即5A =.【注2】把真分式2353(2)x x ++化成最简分式之和的另一个方法是依次用多项式除法化成最简分式之和的另一个方法是依次用多项式除法: :25323(510)22x x x x +=-+++,222253510232023522(2)(2)(2)x x x x x x x +-=+=-++++++ 232353520232(2)(2)(2)x x x x x +=-+++++ ( (你看懂了吗你看懂了吗你看懂了吗?) ?)⑵分母为不同一次因式乘积的真分式的积分法例如求d ()()cx d x x a x b +--ò,可令,可令 bx Ba x Ab x a x d cx -+-=--+))(((A 和B 为待定系数)为待定系数) 然后根据恒等式()()cx d A x b B x a +º-+-,求出待定系数A 和B .于是,于是,d ()()cx d x x a x b +=--òd d ln ||ln ||A B x x A x a B x b x a x b +=-+---òò例29 求2d (3)(5)x x x x ---ò.解 设53)5)(3(2-+-=---x Bx A x x x (B A ,为待定常数为待定常数) ) 则得)3()5(2-+-º-x B x A x ,即,即2)35()(-º+-+x B A x B A 比较两端常数项和x 的系数,则得线性方程组的系数,则得线性方程组îíì=+=+1235BA B A 解得23,21=-=B A ( (求求B A 和的另一个方法见下注的另一个方法见下注).).).因此,因此,因此, 523321)5)(3(2-+--=---x x x x x 从而得从而得2d(3)(5)x x x x ---ò113113d(3)d(5)ln 3ln 5232522x x x x x x =--+-=--+---òò【注】在式2(5)(3)x A x B x -º-+-中,让3x =,则得12A =-,所以12A =-;再让5x =,则得32B =,所以32B =.⑶分母为二次多项式(没有实根)的真分式的积分法 例如例如[[注意注意,,分母没有实根2(40)p q -<],22222111(1)d d d 424x x ux px q u A p q px ==+++-æö++ç÷èøòòò24,22q p p u x A æö-ç÷=+=ç÷èø(套用积分公式)1arctan u A A =2222arctan 44q q x p p p+-=-2222(2)(2)d (0)d d 2b bx p p x ax ba a ax a ax x x px qx px qx px qæö++-+ç÷+èø¹==++++++òòò222d()21d 22ax px q a b p x a x px q x px q++æö=+-ç÷++++èøòò2221ln()d 22aa bx px q p x a x px q æö=+++-ç÷++èøò(套用前一题的结果套用前一题的结果).). ⑷分母为二次重因式的真分式的积分法例30 例如求积分例如求积分322221d (1)x x x x x -+++ò.若用待定系数法,就令若用待定系数法,就令322222221(1)1(1)x xAx B Cx D x x x x x x -+++=+++++++若不用待定系数法,可依次用多项式除法:若不用待定系数法,可依次用多项式除法:第一步,3222212(2)(3)11x x x x x x x x -++=-+++++;第二步,32222222132(2)(1)1(1)x x x x x x x x x x -+-+=+++++++于是,于是,32222222132(2)d d d (1)1(1)x x x x xx x x x x x x x -+-+=+++++++òòò其中右端第一个积分其中右端第一个积分22222231(21)71d(1)7d d d 1212121322x x x x x x x x x x x x x x -+-++==-++++++æöæö++ç÷ç÷èøèøòòòò217221ln(1)arctan 2233x x x +=++-×而第二个积分而第二个积分2222222222(2)(21)3d(1)1d d 3d (1)(1)(1)(1)x x x x xxx x x x x x x x x +++++==+++++++++òòòò2222113d (1)1322x x x x =-+++éùæöæöêú++ç÷ç÷êúèøèøëûò[套积分公式⒇] ⑸分母为一次因式与二次因式乘积的真分式的积分法例如,求22d ()()bx cx d x x a x px q ++-++ò时,可令时,可令 q x p x C x B a x Aq x p x a x d x c x b ++++-=++-++222))((然后根据恒等式然后根据恒等式22()()()bx cx d A x px q Bx C x a ++º++++-求出待定系数A 、B 和C . 于是,于是,22d ()()bx cx dx x a x px q ++-++ò2ln ||d Bx C A x a x x px q +=-+++ò (注意2xpx q ++没有实根没有实根,,即240p q -<)2.三角函数有理式的积分法 所谓“三角函数有理式”,是指由常数和简单三角函数x sin 与x cos 经过有限次的有理运算经过有限次的有理运算((加、减、乘、除加、减、乘、除))得到的函数,记成)cos ,(sin x x R .下面介绍的是形如积分的是形如积分(sin ,cos )d R x x x ò的积分法的积分法..例如积分例如积分2cos d 2sin cos x x x x +ò,1d 2sin cos 1x x x -+ò,1d (0)cos x ab a b x ¹+ò等.实际上,我们在前面几节中曾多次遇到这种类型的积分我们在前面几节中曾多次遇到这种类型的积分..这里介绍的是一般方法这里介绍的是一般方法..你在做题时.....,还是要具体问题具体分析...........,未必就一定要用这里介绍的方法..............(因为一般情形下,这里介绍的方法要麻烦一些)方法要麻烦一些). .令2tan xt =(称它为半角替换或万能替换称它为半角替换或万能替换)),则,则2222122tan12tan22sec 2tan22cos2tan22cos2sin2sin t t x x xx xx x x x +=+==== 22222222112tan12tan 1)2tan 1(2cos 2sin 2cos cos t t x x x x x x x +-=+-=-=-= t t t x d 12)arctan 2(d d 2+==于是,于是,(sin ,cos )d R x x xò2222212,d 111t t R t t t t-æö=ç÷+++èøò这样,三角函数有理式的积分就变成有理函数的积分三角函数有理式的积分就变成有理函数的积分..在有些情形下,像前面做过的那样,不必用半角替换,而用其它三角替换会更简单必用半角替换,而用其它三角替换会更简单..例如例如()i 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令cos t x =; ()ii 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令sin t x =; ()iii 当(sin ,cos )(sin ,cos )R x x R x x --=时,令tan t x =.习题1.求下面的原函数:⑴25d (3)x x x --ò; ⑵⑵325d (2)x x x --ò;⑶23354d (1)x x x x -+-ò; ⑷⑷3223242d 21x x x x x x -++-+ò. 答案:⑴323ln -+-x x;⑵2)2(2122-+--x x ;⑶2)1(1111ln 3-----x x x ; ⑷171ln 94232---++x x x x .2.求下面的原函数:求下面的原函数:⑴x x x x d )3)(2(73ò---; ⑵⑵x x x x d 2152ò-++; ⑶⑶x x x x x x d )2)(2(2342ò+---. 答案:⑴3ln 22ln -+-x x ;⑵1ln 22ln 3-++x x ;⑶2ln 252ln ln 21++-+x x x . 3.求下面的原函数:求下面的原函数:⑴x x x x x d )1)(2(23222ò++-+; ⑵⑵x x x x x d )32)(1(2ò+++; ⑶⑶x x x d 134ò+. 答案:⑴x x arctan )1ln(2-+;⑵21arctan 21)32ln(411ln 212++++++-x x x x ;⑶312arctan 311)1(ln 6121222--+-++x x x x x . 4.根据提示,请把下面的演算做到底:根据提示,请把下面的演算做到底:⑴tan 21d 2sin cos 1x t x x x æö=ç÷èø====-+ò⑵(cos )1d (2cos )sin t x x x x ======+ò⑶2(sin )cos d 2sin cos t x xx x x ======+ò⑷3(tan )3sin d sin cos t x xx x x======+ò答案:⑴22tan2tan ln21+x x ;⑵32)cos 1()cos 1()cos 2(ln 61x x x +-+;⑶12sin 1ln 222sin 1x x +--+;⑷÷÷øöççèæ---+-x x x x x x x sin 3sin cos 2arctan 31cos sin 1)cos (sin ln 612.。