镍催化剂的合成及其在催化加氢中的应用ppt课件
- 格式:ppt
- 大小:441.51 KB
- 文档页数:17
2绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。
催化加氢反应一般生成产物和水,不会生成其它副产物,具有很好的原子经济性。
加氢反应的应用很广泛。
加氢过程在石油炼制工业中,除用于加氢裂化外,还广泛用于加氢精制。
在煤化工中用于煤加氢液化制取液体燃料。
在有机化工中则用于制备各种有机产品,例如一氧化碳加氢合成甲醇、苯加氢制环己烷、苯酚加氢制环己醇等。
此外,加氢过程还作为化学工业的一种精制手段,用于除去有机原料或产品中所含少量有害而不易分离的杂质,例如乙烯精制时使其中杂质乙炔加氢而成乙烯;丙烯精制时使其中杂质丙炔和丙二烯加氢而成丙烯等。
3早在1902年,Normann 就实现了用镍催化剂使脂肪加氢来制取硬化油的工业化生产。
近年来,镍系催化剂无论是在制备方法还是在应用领域,都取得了巨大的发展,镍应用于烯烃,炔烃,苯,硝基化合物,含羰基的化合物的催化加氢。
4按照催化剂的改性方法,将镍催化剂分为骨架镍催化剂、负载型催化剂以及其它类型镍催化剂。
5骨架镍,是应用最广泛的一类镍系加氢催化剂,也称雷尼镍。
具有很多微孔,是以多孔金属形态出现的金属催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。
具体的制备方法:将 Ni 和 Al ,Mg ,Si ,Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。
6薛勇等[8]以邻硝基甲苯和草酸二乙酯为起始原料,合成邻硝基苯丙酮酸乙酯的乙醇碱性溶液,再用雷尼镍催化剂,在60~70℃、1.5MPa 压力下,用催化氢化法合成了吲哚-2-甲酸,总收率为70% (以邻硝基甲苯计算)用熔点、NMR 、GC - MS 谱图表征了该化合物。
雷尼镍催化氢化方法合成吲哚-2-甲酸成本较低、后处理简单、无环境污染。
其合成路线为: CH 3NO 2+(COOC 2H 5)2C 2H 5ONa CH 2C OCOOCH 2CH 3NO 2 CH 2C OCOOCH 2CH 3NO 2+H 2Ni NH COOH胡少伟等[10]采用骤冷法制备了改性骨架镍,将其应用于3, 4-二甲基硝基苯的催化加氢制备3, 4-二甲基苯胺。
镍催化剂催化加氢的机理探究镍催化剂催化加氢的机理探究在化学领域中,催化剂的使用极为广泛,而镍催化剂作为一种重要的催化剂,具有在加氢反应中的广泛应用。
本文将深入探究镍催化剂催化加氢的机理,并分享我对这一主题的观点和理解。
我们来了解一下加氢反应的基本原理。
1. 加氢反应的基本原理加氢反应是指将氢气与有机化合物在催化剂的作用下发生反应,将有机化合物中的双键或多键转化为单键的过程。
这种反应在化学工业中具有广泛的应用,常见的加氢反应包括饱和烃的制备、不饱和化合物的加氢脱氢、氢化物的还原和环代谢等。
2. 镍催化剂的特点与应用镍催化剂具有许多独特的特点,例如催化性能高、催化活性可调节、易得性好等。
镍催化剂在许多加氢反应中都表现出优秀的催化活性和选择性。
镍催化剂还具有较低的成本和环境友好性,因此被广泛应用于工业生产中的加氢反应。
3. 镍催化剂催化加氢的机理镍催化剂催化加氢的机理涉及多个步骤,以下为具体内容:3.1 吸附和激活氢气镍催化剂首先通过吸附氢气使其激活。
在催化剂表面,氢气分子会与表面的镍原子形成键合,从而使氢气中的化学键变得更容易断裂。
3.2 吸附和激活有机化合物在催化剂表面,有机化合物分子与镍原子形成键合,吸附在催化剂表面,从而使有机化合物中的双键或多键易于断裂。
3.3 反应步骤在催化剂表面上,吸附的氢气和有机化合物发生反应,产生中间体。
这些中间体随后发生反应,断裂原有的化学键,生成新的化学键,最终得到目标产物。
4. 我对镍催化剂催化加氢机理的观点和理解镍催化剂催化加氢的机理是一个复杂的过程,涉及多个步骤和反应中间体的生成。
我认为,在研究镍催化剂催化加氢机理时,需要综合考虑各个因素的影响,如镍催化剂的结构、活性位点的形成以及反应条件等。
镍催化剂的催化性能也受到催化剂的负载、助剂的添加等因素的影响。
总结:镍催化剂催化加氢是一种重要的反应,具有广泛的应用前景。
在镍催化剂催化加氢的机理探究中,深入理解反应的步骤和中间体生成的机制对于提高催化剂的活性和选择性具有重要意义。
镍做催化剂的催化加氢反应催化加氢反应是一种重要的化学反应,在有机合成和能源转化领域具有广泛的应用。
而镍作为一种常见的催化剂,其在催化加氢反应中表现出了良好的催化活性和选择性。
镍作为催化剂的优势之一在于其丰富的资源和低成本。
镍在地壳中的丰富度较高,可以以较低的价格获取,这使得镍催化剂在工业生产中得到广泛应用。
另外,镍的物理化学性质也很稳定,能够在高温和高压等严苛的反应条件下保持催化活性,使得镍催化剂在实际应用中具备了较高的稳定性。
镍催化剂其次的优势在于其独特的电子结构和表面特性。
镍催化剂在催化加氢反应中可以形成活性的催化中间体,促进反应的进行。
镍具有可调节的电子亲和力和反应活性,可以在不同的反应中发挥不同的催化效果。
此外,镍催化剂的表面具有丰富的活性位点,提高了反应物的吸附和催化反应的速率。
这些特性使得镍催化剂在催化加氢反应中表现出了较高的效率和选择性。
在催化加氢反应中,镍催化剂主要通过吸附氢气和反应物分子,并在表面上发生催化活性位点与反应物分子之间的反应,从而促进反应的进行。
镍催化剂可以催化各种有机物的加氢反应,如烯烃的加氢、酮类和醛类的加氢等。
此外,镍催化剂还可以催化一些特殊的加氢反应,如还原亚胺和脱氮等反应。
虽然镍催化剂在催化加氢反应中表现出了较高的活性和选择性,但其仍面临一些挑战。
首先,镍催化剂在反应过程中容易发生副反应,导致反应物转化率的降低和产物选择性的下降。
其次,镍催化剂容易受到空气中的氧气和水分的影响,造成催化剂的失活。
因此,在实际应用中需要对镍催化剂进行改性,提高其稳定性和反应活性。
总之,镍作为一种常见的催化剂,在催化加氢反应中具有广泛的应用前景。
其低成本和丰富的资源使其成为工业生产中的理想选择。
此外,镍催化剂的独特的电子结构和表面特性使其表现出了良好的催化活性和选择性。
虽然镍催化剂在反应中仍面临一些挑战,但通过改性和调控其性质,可以进一步提高其催化性能。
随着对镍催化剂的研究深入,相信镍催化剂在催化加氢反应领域会有更广泛的应用。