msp430 TIMER实验报告
- 格式:doc
- 大小:3.51 MB
- 文档页数:12
msp430实验报告msp430实验报告引言:msp430是一种低功耗、高性能的微控制器,被广泛应用于嵌入式系统和物联网设备中。
本实验报告将介绍我对msp430微控制器进行的一系列实验,包括实验目的、实验过程、实验结果以及对实验的总结和展望。
实验目的:本次实验的主要目的是熟悉msp430微控制器的基本功能和使用方法,以及学习如何进行简单的控制程序设计。
通过实验,我希望能够掌握msp430的基本操作和编程技巧,并且能够运用所学知识解决实际问题。
实验过程:在实验开始之前,我首先对msp430微控制器进行了一些基本的了解。
我了解到,msp430具有低功耗、高性能和丰富的外设接口等特点,可以满足各种嵌入式系统的需求。
接着,我根据实验指导书的要求,准备好实验所需的硬件设备和软件工具。
第一部分实验是关于GPIO口的实验。
我按照实验指导书上的步骤,将msp430与LED灯连接起来,并编写了一个简单的程序,实现了对LED灯的控制。
通过这个实验,我学会了如何配置GPIO口和编写简单的控制程序。
第二部分实验是关于定时器的实验。
我学习了如何配置msp430的定时器,并编写了一个简单的程序,实现了定时闪烁LED灯的功能。
通过这个实验,我深入了解了定时器的工作原理和编程方法。
第三部分实验是关于ADC的实验。
我学习了如何配置msp430的ADC模块,并编写了一个简单的程序,实现了对外部模拟信号的采样和转换。
通过这个实验,我了解了ADC的基本原理和使用方法。
实验结果:通过一系列实验,我成功地掌握了msp430微控制器的基本功能和使用方法。
我能够独立完成GPIO口的配置和控制、定时器的配置和编程、ADC的配置和采样等任务。
实验结果表明,msp430具有强大的功能和灵活的编程能力,可以满足各种嵌入式系统的需求。
总结和展望:通过本次实验,我对msp430微控制器有了更深入的了解,并且掌握了一些基本的操作和编程技巧。
然而,由于实验时间和条件的限制,我还没有完全发挥出msp430的潜力。
定时器实验一、实验目的1、学习MSP430F5529定时器的使用。
2、学习MSP430F5529定时器相应的寄存器的使用。
二、实验任务LED灯的电路图如图*所示:图* LED灯的电路图任务:编程实现LED1 以1Hz频率闪烁。
三、程序流程图实现LED1 以1Hz频率闪烁的程序流程图如图*所示四、程序代码#includ#include<msp430.h>#define CPU_F ((double)1000000)#define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/1000000.0)) #define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x/1000.0)) unsigned char count=0;int main(void){//定时器口中断控制函数WDTCTL = WDTPW | WDTHOLD; // stop watchdog timerP1DIR |= BIT0; //P1.0置为输出TA0CCTL0 = CCIE; //CCR0中断使能TA0CCR0 = 50000; //设定计数值TA0CTL =TASSEL_2+MC_1+TACLR;//SMCLK,增计数模式,清除TAR_bis_SR_register(LPM0_bits+GIE);//低功耗模式0,使能中断}#pragma vector=TIMER0_A0_VECTOR__interrupt void TIMER0_A0_ISR(void){count++;if(count==20){count=0;P1OUT ^= BIT0; //1s改变LED1灯状态 }}五、遇到的问题及解决办法无六、实验小结练习了单片机mspf5529的编程。
MSP430实验报告姓名:学号:一、实验目的:掌握msp430单片机的程序编写和运行过程。
掌握IAR Embedded Workbench程序的编译和运行。
二、实验内容:实现流水灯以三种流动方式和四种流动速度的不同组合而进行点亮"流动",同时每改变一次流水方式,蜂鸣器响一次。
三、使用串口:P2口,P6口四、蜂鸣器实现:通过定义Timer()函数,并在每次改变流水方式时调用Timer()函数,通过对p6接口的设置,来达到蜂鸣器声音的实现。
五、实验代码://BoardConfig.h//typedef unsigned char uchar;typedef unsigned int uint;//控制位的宏定义#define Ctrl_Out P3DIR |= BIT3 + BIT6 + BIT7;#define Ctrl_0 P3OUT &= ~(BIT3 + BIT6 + BIT7)#define SRCLK_1 P3OUT |= BIT7#define SRCLK_0 P3OUT &= ~BIT7#define SER_1 P3OUT |= BIT6#define SER_0 P3OUT &= ~BIT6#define RCLK_1 P3OUT |= BIT3#define RCLK_0 P3OUT &= ~BIT3//板上资源配置函数void BoardConfig(uchar cmd){uchar i;Ctrl_Out;Ctrl_0;for(i = 0; i < 8; i++){SRCLK_0;if(cmd & 0x80) SER_1;else SER_0;SRCLK_1;cmd <<= 1;}RCLK_1;_NOP();RCLK_0;}主函数:#include <msp430x14x.h>#include "BoardConfig.h"void Timer (void);void delay(int z);uint i = 0,j = 0,dir = 0;uchar step = 0xff;uint flag = 0,speed = 0; //flag--灯光流动方式,speed--灯光流动速度void main(void){WDTCTL = WDTPW + WDTHOLD; //关闭看门狗BoardConfig(0xf0);CCTL0 = CCIE; //使能CCR0中断CCR0 = 50000;TACTL = TASSEL_2 + ID_3 + MC_1; //定时器A的时钟源选择SMCLK,增计数模式P2DIR = 0xff; //设置P2口方向为输出P2OUT = 0xff;P6DIR |= BIT7; //蜂鸣器对应IO设置为输出_EINT(); //使能全局中断LPM0; //CPU进入LPM0模式}函数名称:Timer_A功能:定时器A的中断服务函数,在这里通过标志控制流水灯的流动方向和流动速度参数:无返回值:无#pragma vector = TIMERA0_VECTOR__interrupt void Timer_A (void){if(flag == 0){P2OUT = ~(0x80>>(i++)); //灯的点亮顺序D8 -> D1}else if(flag == 1){P2OUT = ~(0x01<<(i++)); //灯的点亮顺序D1 -> D8}else{if(dir) //灯的点亮顺序 D8 -> D1,D1 -> D8,循环绕圈{P2OUT = ~(0x80>>(i++));}else{P2OUT = ~(0x01<<(i++));}}if(i == 8){i = 0;dir = ~dir;}j++;if(j == 8){ Timer();i = 0;j = 0;flag++;if(flag == 4) flag = 0;switch(speed){case 0:TACTL &=~ (ID0 + ID1); TACTL |= ID_3;break;case 1:TACTL &=~ (ID0 + ID1); TACTL |= ID_2;break;case 2:TACTL &=~ (ID0 + ID1); TACTL |= ID_1;break;case 3:TACTL &=~ (ID0 + ID1); TACTL |= ID_0;break;default:break;}if(flag != 3) speed++; if(speed == 4) speed = 0; }}void Timer (void){P6OUT ^= BIT7; // Toggle P6.7delay(1);}void delay(int z){int x;for(x=z;x>0;x--);//for(y=10;y>0;y--);}六、总结通过这次msp430单片机的实验,是我进一步的了解了单片机的远离,虽然在实验过程中遇到了一些问题,但我及时与同学讨论与老师沟通,解决了以上问题。
MSP430单片机实验报告--段式LCD显示1.实验介绍:实验演示了将ADC结果用段式LCD显示,并且还原输入电压也采用段式LCD显示。
ADC的结果可以通过ADC12MEM0的值来显示。
当程序运行时,LCD屏幕采用10进制显示出ADC12MEM0的值。
2.实验目的:a.熟悉IAR5.0软件开发环境的使用b.了解MSP430段式LCD的工作方式c.掌握MSP430段式LCD的编程方法3.实验原理:驱动LCD需要在段电极和公共电极上施加交流电压。
若只在电极上施加直流电压,液晶本身发生劣化。
解决这个问题的一般方法是使用短时也就驱动器,如MSP430F4xx系列单片机就集成有段式液晶驱动。
如果要在没有液晶驱动器的情况下使用段式液晶显示器,就要用到如图1所示电路。
图1中,A为电极信号输入端,控制该段液晶是否被点亮;B为交流方波信号输入端,将有一个固定频率的方波信号从此端输入;com为公共背极信号。
工作原理为;固定的方波信号被直接加载到液晶公共背极,同时该信号通过一个异或门加载到液晶段极。
当A端为低电平时,液晶的段极与公共背极将得到一个同相、同频率、同幅度的方波信号,液晶的两端始终保持没有电压差;当A端为高电平时,液晶的段极也公共背极将得到一个反相、同幅度、同频率的方波信号,液晶两端将保持一个交流的电压差。
这样既能使液晶保持点亮状态,又不会发生劣化而损坏液晶显示器。
图一.段式液晶驱动电路4.实验步骤:(1)将PC 和板载仿真器通过USB 线相连;5.实验现象:段式LCD显示屏显示的数字为002031,ADC12MEM0的值为07EF,其值为16进制,将其转换后值为2031与屏幕显示一致。
6.关键代码分析:#include <msp430x26x.h>#include "General_File.h"#include "I2C_Define.h"void I2C_Start(void){DIR_OUT;SDA_1;I2C_Delay();SCL_1;I2C_Delay();SDA_0;I2C_Delay();SCL_0;}//End I2C_Start/*函数名:I2C_Stop 功能:遵循I2C总线协议定义的停止*/void I2C_Stop(void){DIR_OUT;SDA_0;I2C_Delay();SCL_1;I2C_Delay();SDA_1;}//End I2C_Stop/* 函数名:I2C_ReceiveACK 功能:待接受ACK 信号,完成一次操作*/void I2C_Write_ACK( void ){SDA_1;DIR_IN;SCL_1;I2C_Delay();while(SDA_IN );SCL_0;I2C_Delay();DIR_OUT;return;}//End I2C_ReceiveACK/* 函数名:2C_Read_Ack 功能:接受数据后发送一个ACK信号*/void I2C_Read_Ack(void){DIR_OUT;SCL_0;SDA_0;I2C_Delay();SCL_1;I2C_Delay();SCL_0;SDA_1;}//End I2C_Read_Ack/* 函数名:I2C_Read_NoAck 功能:最后接受数据后发送NoACK信号*/void I2C_Read_NoAck( void ){DIR_OUT;SCL_0;SDA_1;I2C_Delay();SCL_1;I2C_Delay();SCL_0;}//End I2C_Read_Ack/* 函数名:I2C_Receiveuchar 功能:接受一个字节的数据*/uchar I2C_Receiveuchar(void){uchar Read_Data = 0x00; //返回值uchar DataBit = 0x00; //每一个clk 接受到的数据SCL_0;I2C_Delay();SDA_1;DIR_IN;for( uchar i = 0;i < 8;i++ ){SCL_1;I2C_Delay();DataBit = SDA_IN;SCL_0;I2C_Delay();I2C_Delay();Read_Data = ( ( Read_Data << 1 ) | DataBit ); //将数据依次存入Read_Data }return( Read_Data );}//End I2C_Receiveuchar/* 函数名:I2C_Senduchar 功能:遵循I2C总线协议定义发送一字节数据*/void I2C_Senduchar( uchar Wr_Data ){DIR_OUT;SCL_0;SDA_1;for( uchar i = 0;i < 8;i++ ){if( Wr_Data & 0x80 ){SDA_1; //最高位是否为1,为1则SDA= 1 }else{SDA_0; //否则SDA=0}I2C_Delay();SCL_1;I2C_Delay();SCL_0;I2C_Delay();Wr_Data <<= 1; //数据左移一位,进入下一轮送数}SDA_1;return;}//End I2C_Senduchar/************ BU9796FS相关指令定义**********/#define Write_Com 0x80#define Write_Data 0x00#define Display_ON 0x48#define Half_Bias 0x44#define Set_Reset 0x6A#define Ext_Clock 0x69#define Blink_Mode0 0x70#define Blink_Mode1 0x71#define Blink_Mode2 0x72#define Blink_Mode3 0x73#define Pixel_ON 0x7E#define Pixel_OFF 0x7D#define BU9796_Addr 0x7C#define Base_Add 0x00/************** 引用的外部函数*********************/extern void I2C_Start(void);extern void I2C_Stop(void);extern void I2C_Write_ACK(void);extern void I2C_Senduchar( uchar Wr_Data );/************** 定义段式LCD的阿拉伯数字码*********************/const uchar Num_Code[] ={0xAF, // 00x06, // 10x6D, // 20x4F, // 30xC6, // 40xCB, // 50xEB, // 60x0E, // 70xEF, // 80xCF, // 90x10, //. 如果要显示小数点,必须要将此值与下一位值相加0x88 //: ,包括LCD上的两个":"};uchar Disp_Data[]={ 5,5,7,3,1,5 };/* 函数名:Segment_Display 功能:段式LCD数据包写入服务程序,负责将一串字符送到段式LCD 上去显示*/void Segment_Display( const uchar Addr,const uchar *P_Data, uchar Length ){uchar User_Addr = Addr;I2C_Start(); //启动BU9796I2C_Senduchar( BU9796_Addr ); //写BU9796的物理地址I2C_Write_ACK();I2C_Senduchar( Base_Add + User_Addr * 2 ); //发送起始地址,下一个紧跟的是数据I2C_Write_ACK();for( uchar i = Length ;i > 0;i-- ){if( *P_Data != 0x0A ) // 显存中是否有小数点?如果有,就将小数点码值与下一位码值相加{I2C_Senduchar( Num_Code[ *P_Data++ ] );}else{uchar Temp_Disp_Data = Num_Code[ *P_Data++ ];I2C_Senduchar( Temp_Disp_Data + Num_Code[ *P_Data++ ]);i--;}I2C_Write_ACK();}I2C_Stop(); //访问结束}/* 函数名:Init_BU9796FS 功能:初始化驱动芯片BU9796的相关参数*/void Init_BU9796FS( void ){I2C_Start(); //启动BU9796I2C_Senduchar( BU9796_Addr ); //写BU9796的物理地址I2C_Write_ACK(); //等待ackI2C_Senduchar( Write_Com + Set_Reset); //启动软复位I2C_Write_ACK(); //等待ackI2C_Senduchar( Write_Com + Blink_Mode2 );I2C_Write_ACK();I2C_Senduchar( Write_Com + Display_ON ); //开显示I2C_Write_ACK();I2C_Senduchar( Write_Data + Base_Add ); //发送起始地址,下一个紧跟的是数据I2C_Write_ACK();for( uchar i = 0;i<10;i++ ) //清LCD显示屏{I2C_Senduchar( 0x00 );I2C_Write_ACK();}I2C_Stop(); //访问结束}/* 函数名:Init_MCU 功能:初始化MSP430的相关参数*/void Init_MCU( void ){/* WDTCTL = WDTPW + WDTHOLD; */ // 关看门狗BCSCTL3 |= XT2S_2; // XT2频率范围设置BCSCTL1 &= ~XT2OFF; // 打开XT2振荡器do{IFG1 &= ~OFIFG; // 清振荡器失效标志BCSCTL3 &= ~XT2OF; // 清XT2失效标志for( uint i = 0x47FF; i > 0; i-- ); // 等待XT2频率稳定}while (IFG1 & OFIFG); // 外部时钟源正常起动了吗?BCSCTL2 |= SELM_2 + SELS ; // 设置MCLK、SMCLK为XT2P4OUT &= ~BIT4;P4DIR |= BIT4; // 打开LCD显示部分的电源//P8REN |= BIT3 + BIT4;P8DIR |= BIT3 + BIT4; // 配置MSP430与BU9796的数据数P8OUT |= BIT3 + BIT4;P5OUT &= ~BIT7; // 点亮外部LEDP5DIR |= BIT7;}/* 函数名:main 功能:系统入口主函数*/void main( void ){WDTCTL = WDTPW + WDTHOLD; // 停看门狗ADC12CTL0 = SHT0_2 + ADC12ON; // 设置采样时间,开ADC12,Vref = V ACC ADC12CTL1 = SHP; // 使用定时器采样ADC12MCTL0 = INCH_1; // 选用A1通道ADC12IE = 0x01; // 开ADC12MCTL0中断ADC12CTL0 |= ENC; // 启动转换ADC12MCTL0 = INCH_1;P5DIR |= BIT7; // P5.7输出-LED/*for (;;){ADC12CTL0 |= ADC12SC; // 软件启动转换_BIS_SR(CPUOFF + GIE); // LPM0模式,由ADC12中断唤醒}*//* 功能:将16进制转化为10进制*/int a,b;a=ADC12MEM0;Disp_Data[5]=a%10;b=a/10;Disp_Data[4]=b%10;a=b/10;Disp_Data[3]=a%10;b=a/10;Disp_Data[2]=b%10;a=b/10;Disp_Data[1]=a%10;b=a/10;Disp_Data[0]=b%10;Init_MCU();Init_BU9796FS();P5OUT |= BIT7;Segment_Display( 0,Disp_Data,6 );_BIS_SR( CPUOFF );}#pragma vector=ADC12_VECTOR__interrupt void ADC12_ISR (void){ _BIC_SR_IRQ(CPUOFF); }。
430定时器学习心得(含五篇)第一篇:430定时器学习心得Msp430单片机一共有5种类型的定时器。
看门狗定时器(WDT)、基本定时器(Basic Timer1)、8位定时器/计数器(8-bitTimer/Counter)、定时器A(Timer_A)和定时器B (Timer_B)。
但是这些模块不是所有msp430型号都具有的功能。
1、看门狗定时器(WDT)学过电子的人可能都知道,看门狗的主要功能就是当程序发生故障时能使受控系统重新启动。
msp430中它是一个16位的定时器,有看门狗和定时器两种模式。
2、基本定时器(Basic Timer1)基本定时器是msp430x3xx和msp430F4xx系列器件中的模块,通常向其他外围提供低频控制信号。
它可以只两个8位定时器,也可以是一个16位定时器。
3、8位定时器/计数器(8-bit Timer/Counter)如其名字所示,它是8位的定时器,主要应用在支持串行通信或数据交换,脉冲计数或累加以及定时器使用。
4、16位定时器A和B定时器A在所有msp430系列单片机中都有,而定时器B在msp430f13x/14x和msp430f43x/44x等器件中出现,基本的结构和定时器A是相同的,由于本人最先熟悉并应用的是定时器A所以在这里就主要谈一下自己对定时器A的了解和应用。
定时器A是16位定时器,有4种工作模式,时钟源可选,一般都会有3个可配置输入端的比较/捕获寄存器,并且有8种输出模式。
通过8种输出模式很容易实现PWM波。
定时器A的硬件电路大致可分为2类功能模块:一:计数器TAR计数器TAR是主体,它是一个开启和关闭的定时器,如果开启它就是一直在循环计数,只会有一个溢出中断,也就是当计数由0xffff到0时会产生一个中断TAIFG。
二:比较/捕获寄存器CCRX如何实现定时功能呢?这就要靠三个比较/捕获寄存器了(以后用CCRx表示)。
当计数器TAR的计数值等于CCRx时(这就是捕获/比较中的比较的意思:比较TAR是否等于CCRx),CCRx单元会产生一个中断。
实验报告课程名称:单片机原理及应用实验题目:实用多功能定时器学生姓名:**学号:**********专业班级:自动化二零一六年五月七日目录一、课程实验目的 (1)二、实验要求 (1)三、课程实验硬件电路 (2)3.1、硬件电路结构 (2)3.2、电路原理 (2)3.2.1、显示电路 (2)3.2.2、按键检测电路 (3)四、实验步骤 (6)五、软件设计 (6)5.1、倒计时主程序 (6)5.2、中断程序设计 (7)六、调试与结论 (7)七、附录 (8)一、目的(1)熟练运用CCS开发环境和Proteus仿真软件,巩固和加深单片机原理课程知识的理解和运用。
(2)综合本学期所学的按键检测以及液晶的动态显示原理,设计出以MSP430G2553为核心的以LCD1602为显示的倒计时系统。
(3)熟悉各元器件的性能和设置元件参数,进一步提高学生单片机应用系统的设计能力。
(4)培养学生综合分析问题、发现问题和解决问题的能力。
二、实验要求(1)设计一个倒计时器,定时范围99分60秒,用液晶作为显示器。
4个按键控制,分别是分钟加一、秒钟加一、清零和开始停止键。
按分钟加一键时,分钟显示值加1,最大99 ;按秒钟加一键时,秒钟显示值加1,最大60;按清零键时,分钟、秒钟显示值都清零;按开始键,则开始倒计时。
显示值为零时停止倒计时,且报警器报警,直到按停止键报警器停止报警。
按开始键后,分钟加一、秒钟加一、清零键不起作用。
按停止键可以暂停。
倒计时为零后,按停止键,显示值恢复设定值,按开始键又可以工作。
(2)总体要求如下:1、方案论证,确定总体电路原理图。
2、画硬件仿真电路图。
3、绘制程序流程图,编写C语言源程序。
4、安装调试,实现倒计时器的基本功能。
三、硬件电路3.1、电路结构图:多功能定时器主要由三个最基本模块组成,一是以LCD1602液晶为基础的显示电路,二是以四个按键为核心的控制电路,三是以MSP430G2553为核心的信号发生电路。
湖南大学本科生实习报告实习题目:MSP430单片机实习时间:2011.7.15---2011.7.24 专业:班级:学生姓名:指导教师:目录第1章调试平台-----------------------------------------------------------------------3 1.1 简介------------------------------------------------------------------------------3 1.2 下载指令------------------------------------------------------------------------3 1.3程序调试指令-------------------------------------------------------------------3 1.4 各种设置------------------------------------------------------------------------4第2章实验内容----------------------------------------------------------------------4 2.1 内容简介------------------------------------------------------------------------4 2.2 定时器时钟---------------------------------------------------------------------42.2.1 基本功能介绍--------------------------------------------------------------42.2.2 总体方案介绍--------------------------------------------------------------42.2.3 定时器时钟硬件图-------------------------------------------------------42.2.3.1 独立式键盘-----------------------------------------------------------42.2.3.2 LED显示模块-----------------------------------------------------52.2.3.3LCD显示模块----------------------------------------------------52.2.4 软件系统设计---------------------------------------------------------------62.2.4.1 主流程图----------------------------------------------------------------62.2.4.2 扫描函数流程图-------------------------------------------------------72.3 测试结果------------------------------------------------------------------------72.4 总结------------------------------------------------------------------------------73.1 ADC12----------------------------------------------------------------------------73.1.1基本功能介绍----------------------------------------------------------------73.1.2总体方案介绍----------------------------------------------------------------83.1.3 AD微处理器片内温度测量硬件图--------------------------------------83.1.3.1 MSP430芯片AD通道------------------------------------------------83.1.3.2 AD电压检测-滑动变阻器--------------------------------------------93.1.3.3 LCD模块--------------------------------------------------------------93.3.3.4 LED模块----------------------------------------------------------------93.1.4软件系统设计----------------------------------------------------------------103.1.4.1 程序流程图-------------------------------------------------------------103.1.5 测试结果---------------------------------------------------------------------103.1.6 总结---------------------------------------------------------------------------10 附录1---------------------------------------------------------------------------------------10 附录2---------------------------------------------------------------------------------------16第1章调试平台1 IAR调试平台1.1简介:IARsystems 是全球领先的嵌入式系统开发工具和服务的供应商,本次实验所用的IAREW430就是其产品之一。
实验二一、示例:按S1,LED1改变状态#include <msp430f5529.h>void Delay(void) //延迟子程序{int i;for(i = 100;i--;i > 0) ;//延时一点时间}void main(void){WDTCTL = WDTPW + WDTHOLD; // 停止看门狗P1DIR=0x7f;//P1DIR,置1为输出,置0为输入。
0x7f=0111 1111,p1.7为输入,p1.0~p1.6为输出P1REN |= BIT7;//P1.7开启上拉电阻。
|= 为与或,BIT7为1000 0000,P1.7的REN置1,开启端口拉电阻。
P1OUT=0xff; //P1输出高电平。
注意:while (1){if ((P1IN & BIT7)==0)//按键S1被按下。
&位与,若S1按下,P1.7=0,位与操作后,P1IN&BIT7=0x00 {void Delay(void);if (!(P1IN & BIT7)) //按键S1被按下.!(P1IN & BIT7)等同(P1IN & BIT7)==0 {while(!(P1IN & BIT7)); //按键S1被松开P1OUT ^= 0x01; //P1.0输出状态翻转}}}}二、上机自编程序的要求:按下按键S1,控制LED1的亮和灭。
短按键,则小灯亮1秒,然后灭;长按键,小灯常亮。
//********************************************************************* *********// MSP430F552x Demo - Timer0_A5, Toggle P1.0, CCR0 Up Mode ISR, DCO SMCLK //// Description: Toggle P1.0 using software and TA_1 ISR. Timer1_A is// configured for up mode, thus the timer overflows when TAR counts// to CCR0. In this example, CCR0 is loaded with 50000.// ACLK = n/a, MCLK = SMCLK = TACLK = default DCO ~1.045MHz//// MSP430F552x// ---------------// /|\| |// | | |// --|RST |// | |// | P1.0|-->LED//// Bhargavi Nisarga// Texas Instruments Inc.// April 2009// Built with CCSv4 and IAR Embedded Workbench Version: 4.21//********************************************************************* #include<msp430f5529.h>unsigned int h,i;void Delay(void) //延迟子程序{int i;for(i = 100;i--;i > 0) ;//延时一点时间}void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTP1DIR=0x7f;//P1DIR,置1为输出,置0为输入。
实验四定时器实验实验目的:MPS430F5529片内集成的定时器A的使用,学习计数器的补捕获比较模块的使用。
实验内容:定时器采用辅助时钟ACLK作为计数脉冲,fACLK=32768Hz,实现以下功能:1.定时器TA0延时1s,点亮或熄灭LED6,即灯亮1s灭1s,如此循环,采用中断服务程序实现。
2.定时器TA0延时1s,点亮或熄灭LED4,采用捕获比较器CCR0的比较模式,设定输出方式,输出方波,不用中断服务程序3.采用捕获比较器CCR1的比较模式LED5,设定输出方式,输出PWM波形,使LED 亮2s,灭1s。
4.用定时器实现30s倒计时,在液晶模块上显示,每过一秒显示数字变化一次。
5.使用TA1的捕获比较器CCR0捕获按键的间隔时间,在液晶模块上显示。
程序代码:程序1:#include <msp430f5529.h>void main(){WDTCTL = WDTPW + WDTHOLD; //关看门狗P1DIR |= BIT3; //设置P1.0口方向为输出。
TA0CCTL0 = CCIE; //设置捕获/比较控制寄存器中CCIE位为1,//CCR0捕获/比较功能中断为允许。
TA0CCR0 = 32767; //捕获/比较控制寄存器CCR0初值为32767TA0CTL = TASSEL_1 + MC_1+TACLR; //设置定时器A控制寄存器TACTL,//使时钟源选择为SMCLK辅助时钟。
//进入低功耗模式LPM0和开总中断_BIS_SR(LPM0_bits +GIE);}//定时器A 中断服务程序区#pragma vector=TIMER0_A0_VECTOR__interrupt void Timer_A (void){P1OUT ^= BIT3; //P1.0取反输出}实验现象:实验开始后,实验板上LED6亮灭闪烁,间隔为1s。
程序2:#include <msp430f5529.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // 关狗P1DIR |= BIT1; // P1.1 设置为输出P1SEL |= BIT1; // P1.1 输出使能TA0CCR0 = 60000; // PWM PeriodTA0CCTL0 = OUTMOD_4; // CCR1 模式4TA0CCR1 = 30000; // CCR1 PWM duty cycleTA0CTL = TASSEL_1 + MC_1 + TACLR; // ACLK, up mode, clear TAR__bis_SR_register(LPM3_bits); // Enter LPM3__no_operation(); // For debugger}实验现象:实验开始后,实验板上LED4亮灭闪烁,间隔为1s。
Msp430系列单片机的定时器实验1.看门狗定时器(WDT)1.1实验介绍计数单元WDTCNT:不能直接通过软件存取,必须通过WDTCTL来控制。
控制寄存器WDTCTL高8位为口令:写5AH,读69H低8位为WDT操作的控制命令HOLD:停止看门狗定时器工作。
0 :激活;1 :停止WDTSSEL:时钟源选择TMSEL:工作模式选择。
0:看门狗;1 :定时CNTCL:该位为1时,WDTCNT清除IS2、IS1、IS0:选择看门狗定时器的定时长度1.2 实验目的学会使用看门狗定时器(WDT)。
熟悉WDT相关寄存器1.3 实验原理1.4 实验步骤(1) 将PC 和板载仿真器通过USB 线相连;(2) 打开CCS 集成开发工具,选择Project->Import Existing CCS Eclipse Project,导入MSP430F6638_DemoV2.0\11.WTD 文件夹中的工程;(3) 选择对该工程进行编译链接,生成.out 文件。
然后选择,将程序下载到实验板中。
程序下载完毕之后,可以选择全速运行程序,也可以选择单步调试程序,选择F3 查看具体函数。
也可以程序下载之后,按下,软件界面恢复到原编辑程序的画面。
再按下实验板的复位键,运行程序。
(调试方式下的全速运行和直接上电运行程序在时序有少许差别,建议上电运行程序)。
1.5 实验现象实验板上对应的LED灯以一定周期闪烁。
1.6 关键代码实验一:#include<msp430f6638.h>void main(void){volatile unsigned int i;volatile unsigned int count=0;WDTCTL = WDTPW+WDTHOLD; // Stop WDTP4DIR |= BIT1 + BIT2 + BIT3; // P4.1,P4.2,P4.3 set as outputP4OUT &= ~(BIT1 + BIT2 + BIT3); // P4.1,P4.2,P4.3 set "0"for (i=0;i<60000;i++) ; //延时大约60msP4OUT |= (BIT1 + BIT2 + BIT3); // P4.1,P4.2,P4.3 set "1"for (i=0;i<60000;i++) ; //延时大约60msWDTCTL=WDTPW+WDTIS_4; //启动看门狗while(1) ; // continuous loop}实验二:#include<msp430f6638.h>void main(void){volatile unsigned int i;volatile unsigned int count=0;WDTCTL = WDTPW+(WDTCTL&0xff)+WDTHOLD; // Stop WDTP4DIR |= BIT1 + BIT2 + BIT3; // P4.1,P4.2,P4.3 set as outputP4OUT &= ~(BIT1 + BIT2 + BIT3); // P4.1,P4.2,P4.3 set "0"for (i=0;i<60000;i++) ; //延时大约60msP4OUT |= (BIT1 + BIT2 + BIT3); // P4.1,P4.2,P4.3 set "1"for (i=0;i<60000;i++) ; //延时大约60msWDTCTL=WDTPW+(WDTCTL&0xff)-WDTHOLD; //启动看门狗while(1){// WDTCTL=WDTPW+WDTCTL&0xff+WDTCNTCL; //计数器清零};分析:实验一与实验二结果相同,只不过在每个周期结束启动看门狗定时器时修改的寄存器参数不同。
如果把实验二循环中的语句去掉,则有可能使输出的信号周期不稳定。
通过改变循环语句中的循环次数可以改变输出信号的频率。
2.Timer_A的时钟源和计数模式实验2.1 实验介绍MSP430 系列有丰富定时器资源:看门狗定时器(WDT),基本定时器(Basic timer1),定时器A(Timer_A),定时器B(Timer_B)等。
器件因系列不同可能包含这些模块的全部或者部分。
这些模块除了具有定时功能外,各自还有一些特定功能。
在应用中根据需求选择多种定时器模块。
本实验以定时A(Timer_A)为基础。
在MSP430F6638 中,例化了3 个定时器A (Timer_A),1 个定时器B(Timer_B)。
2.3 实验原理Timer_A的时钟源:Timer_A的计数模式:2.4 实验步骤(1) 将PC 和板载仿真器通过USB 线相连;(2) 打开CCS 集成开发工具,选择Project->Import Existing CCS Eclipse Project,导入MSP430F6638_DemoV2.0\11.Timer_A1 文件夹中的工程;(3) 选择对该工程进行编译链接,生成.out 文件。
然后选择,将程序下载到实验板中。
程序下载完毕之后,可以选择全速运行程序,也可以选择单步调试程序,选择F3 查看具体函数。
也可以程序下载之后,按下,软件界面恢复到原编辑程序的画面。
再按下实验板的复位键,运行程序。
(调试方式下的全速运行和直接上电运行程序在时序有少许差别,建议上电运行程序)。
2.5 实验现象对应的LED灯以一定频率和占空比闪烁。
2.6 关键代码#include<msp430f6638.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTwhile(BAKCTL & LOCKIO) // Unlock XT1 pins for operation BAKCTL &= ~(LOCKIO);UCSCTL6 &= ~(XT1OFF); // XT1 OnUCSCTL6 |= XCAP_3; // Internal load cap// Loop until XT1 fault flag is cleareddo{UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG);// Clear XT2,XT1,DCO fault flags SFRIFG1 &= ~OFIFG; // Clear fault flags}while (SFRIFG1&OFIFG); // Test oscillator fault flagP4DIR |= BIT1+BIT2+BIT3;TA0CTL = TASSEL_1 + MC_2 + TACLR + TAIE; // ACLK, continue mode, clear TAR// enable interrupt__bis_SR_register(LPM3_bits + GIE); // Enter LPM3, enable interrupts__no_operation(); // For debugger}// Timer0_A5 Interrupt Vector (TAIV) handler#pragma vector=TIMER0_A1_VECTOR__interrupt void TIMER0_A1_ISR(void){switch(__even_in_range(TA0IV,14)){case0: break; // No interruptcase2: break; // CCR1 not usedcase4: break; // CCR2 not usedcase6: break; // reservedcase8: break; // reservedcase 10: break; // reservedcase 12: break; // reservedcase 14:P4OUT ^= BIT1+BIT2+BIT3; //overflowbreak;default: break;}}2.7 思考题(1)Timer_A的捕获比较功能是如何实现的?答:在连续计数模式下,当计数器计数到0xffff时,会产生一个中断,即可以实现定时功能。
在增计数模式下,计数器计数到CCR0时,计数器自动清零,且产生一个中断,即可实现捕获比较功能。
(2)如何修改LED灯闪烁的频率?答:只需将MC_2改为MC_1,再修改 TA0CCR0的值即可。
(3)MSP430F6638 有哪些定时器资源?答:看门狗定时器(WDT),基本定时器(Basic timer1),定时器A(Timer_A),定时器B(Timer_B)等。
Timer0_A5、Timer1_A3、Timer2_A3、Timer0_B7(4) 基本定时器是否可以定时任意的时间?答:不可以,因为当计数器从0 计数到0FFFFH 到之后,发生溢出中断,CCR0的值不可以超过0xffffh(5)MSP430 系列单片机中实现定时和计数的方法有什么,每种方法的特点是什么?答:MC_0:停止计数。
MC_1:递增计数,计数器从0计数到TAxCCR0。
MC_2:连续计数,计数器从0计数到0xffffh。
MC_3:计数器从0计数到TAxCCR0,然后再递减计数到0。
3.Timer_A的PWM实验3.1 实验介绍实验程序产生两路PWM 波形输出。
CCR0 中的值定义了PWM 信号的周期,CCR1,CCR2 中的值定义了PWM 信号的占空比。
定时器使用32KHz 的ACLK 作为输入时钟源。
时钟周期为:15.6ms。
P1.2 上的占空比为75%,P1.3 上的占空比为25%。
3.2 实验目的(1) 了解PWM 技术;(2) 掌握PWM 控制技术的原理;(3) 掌握MSP430F6638 产生PWM输出的方法;(4) 掌握示波器测量频率的方法。
3.3 实验原理PWM 技术的三个要素:(1) Frequency 时钟频率(2) Duty cycle 占空比(3) Amplitude 信号幅度3.4 实验步骤(1) 将PC 和板载仿真器通过USB 线相连;(2) 打开CCS 集成开发工具,选择Project->Import Existing CCS Eclipse Project,导入MSP430F6638_DemoV2.0\11.Timer_A2 文件夹中的工程;(3) 选择对该工程进行编译链接,生成.out 文件。