一般地质雷达数据处理步骤
- 格式:doc
- 大小:6.78 MB
- 文档页数:12
地质雷达法检测操作规程1、地质雷达法适用围地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。
2、地质雷达主机技术指标:(1)系统增益不低于150dB;(2)信噪比不低于60dB;(3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位;(4)计时误差小于1ns;(5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒;(6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能;(7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。
3、地质雷达应符合下列要求:(1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。
(2)测线经过的表面相对平缓、无障碍、易于天线移动。
(3)避开高电导屏蔽层或大围的金属构件。
4、地质雷达天线可采用不同频率的天线组合,技术指标为:(1)具有屏蔽功能;(2)最大探测深度应大于2m;(3)垂直分辨率应高于2cm。
5、现场检测(1)测线布置1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。
纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测容和要求布设线距。
一般情况线距8~12m;采用点测时每断面不少于6点。
检测中发现不合格地段应加密测线或测点。
2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。
纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。
需确定回填空洞规模和围时,应加密测线和测点。
3、三线隧道应在隧道拱顶部位增加2条测线。
4、测线每5~10m应有一历程标记。
(2)介质参数的标定:检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。
GSSI软件RADAN地质雷达资料处理1.打开软件RADAN,选择文件夹.视图→自定义→文件目录.2.打开文件。
文件→打开(*.dzt)。
文件显示,换颜色。
波形显示选择第二个图标,采用波形方式显示数据剖面选择显示器图标,设置波形参数,比列为间隔2倍,如32-16。
标准为正大小为03.扫描信息预编辑:利用图标编辑 选择, 选择一段扫描剖面,切除多余扫描信息删除,或者保存特定扫描剖面保存。
剪切处理4.文件测量方向掉转。
打开文件,文件 另存为->方向反转,打勾。
5.添加距离信息。
测量轮测量直接获取距离概念。
连续测量方式加距离需要三步A) 编辑文件头内的距离信息编辑→文件头, 扫描/米[scans/m], 米/标记[m/mark],B)编辑用户标记,C)处理→距离归一。
图5-0图5-A图5-b图5-c原始标记保存标记标记类型转换距离归一化6.添加里程信息.编辑→文件头→三维选项→X起点,输入里程起点坐标。
原始数据添加里程数据7.水平刻度调整。
处理→水平缩放.叠加、抽道、加密。
8.确定地面反射波信号位置编辑→文件头→信号位置(纳秒),如-2.5。
9.调整信号延时信息,找地面处理→信号位置调整→信号移动(ns)。
10.设置和修改介电常数,计算深度信息编辑→文件头→介电常数。
介电常数时间深度11.信号振幅自动增益调整处理→增益调整→自动增益,增益点数为5。
放大倍数,值一般选择2-5。
自动增益调整自动增益处理比对指数增益参数设置:手动设置增益点数,调整增益值大小原始数据局部指数增益12.背景去除,显示构造特征。
处理→FIR滤波→背景去除(扫描)为1023。
滤波参数选择原始数据处理结果13.水平相关分析,消除雪花噪音干扰。
处理→FIR滤波→水平叠加(扫描)5。
原始数据5次平滑数据14.一维频率滤波处理 IIR滤波。
频谱图与地质雷达原始记录曲线频谱图------波形图------线扫描图[低频信号]垂直滤波(MHz) 高通40原始数据与高通滤波数据15.反褶积、频率滤波。
地质雷达操作规程地质雷达法检测操作规程1、地质雷达法适用范围地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。
2、地质雷达主机技术指标:(1)系统增益不低于150dB;(2)信噪比不低于60dB;(3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位;(4)计时误差小于1ns;(5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒;(6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能;(7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。
3、地质雷达应符合下列要求:(1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。
(2)测线经过的表面相对平缓、无障碍、易于天线移动。
(3)避开高电导屏蔽层或大范围的金属构件。
4、地质雷达天线可采用不同频率的天线组合,技术指标为:(1)具有屏蔽功能;(2)最大探测深度应大于2m;(3)垂直分辨率应高于2cm。
5、现场检测(1)测线布置1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。
纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。
一般情况线距8~12m;采用点测时每断面不少于6点。
检测中发现不合格地段应加密测线或测点。
2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。
纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。
需确定回填空洞规模和范围时,应加密测线和测点。
3、三线隧道应在隧道拱顶部位增加2条测线。
4、测线每5~10m应有一历程标记。
(2)介质参数的标定:检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。
地质雷达法检测操作规程1、地质雷达法适用范围地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。
2、地质雷达主机技术指标:(1)系统增益不低于150dB;(2)信噪比不低于60dB;(3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位;(4)计时误差小于1ns;(5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒;(6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能;(7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。
3、地质雷达应符合下列要求:(1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。
(2)测线经过的表面相对平缓、无障碍、易于天线移动。
(3)避开高电导屏蔽层或大范围的金属构件。
4、地质雷达天线可采用不同频率的天线组合,技术指标为:(1)具有屏蔽功能;(2)最大探测深度应大于2m;(3)垂直分辨率应高于2cm。
5、现场检测(1)测线布置1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。
纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。
一般情况线距8~12m;采用点测时每断面不少于6点。
检测中发现不合格地段应加密测线或测点。
2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。
纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。
需确定回填空洞规模和范围时,应加密测线和测点。
3、三线隧道应在隧道拱顶部位增加2条测线。
4、测线每5~10m应有一历程标记。
(2)介质参数的标定:检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。
地质雷达实施方案地质雷达是一种利用电磁波穿透地下并检测地下结构的仪器,广泛应用于地质勘探、地下管线检测、建筑工程等领域。
本文将介绍地质雷达的实施方案,包括前期准备、实施步骤、数据处理和分析等内容。
一、前期准备在进行地质雷达实施前,需要进行一些前期准备工作。
首先是确定勘探区域,根据勘探目的和地质条件选择合适的勘探区域。
其次是进行现场勘察,了解地面情况、地下障碍物、地形地貌等信息,为后续实施提供参考。
同时需要准备好地质雷达设备,包括主机、天线、数据采集系统等设备,并对设备进行检查和测试,确保设备正常工作。
二、实施步骤1. 布设测量线路根据勘探区域的地形地貌和勘探目的,确定测量线路的布设方案。
通常采用直线、网格状或曲线布设方式,根据实际情况选择合适的布设方式。
2. 调试设备在进行实际测量前,需要对地质雷达设备进行调试和校准。
包括设置合适的工作参数、校准天线、检查数据采集系统等工作。
3. 进行测量根据布设的测量线路,进行地质雷达的实际测量工作。
在测量过程中,需要注意设备的稳定性和数据的准确性,确保测量结果的可靠性。
4. 数据采集地质雷达在测量过程中会实时采集数据,包括地下结构的反射信号、地质层的界面等信息。
需要对这些数据进行实时采集和记录,确保数据完整和准确。
5. 数据处理和分析测量完成后,需要对采集到的数据进行处理和分析。
包括数据的清洗、滤波、成像等工作,最终得到地下结构的图像和分析结果。
三、数据处理和分析1. 数据清洗对采集到的原始数据进行清洗和去噪处理,去除干扰信号和噪声,提高数据的质量和可靠性。
2. 数据滤波对清洗后的数据进行滤波处理,提取地下结构的反射信号,增强目标信号的清晰度和可视化效果。
3. 数据成像利用成像算法对滤波后的数据进行成像处理,得到地下结构的图像和剖面图,直观展示地下结构和地质层的分布情况。
4. 数据分析对成像后的数据进行分析,包括地下结构的特征识别、地质层的界面识别、岩性解译等工作,为后续地质勘探和工程设计提供参考和依据。
地质雷达软件RADAN用户手册美国地球物理测量系统公司美国劳雷工业公司2010年10月RADAN处理软件安装安装采集软件RADAN66和RADAN5,并且激活采集软件输入软件序列号serial number输入处理软件产品ID代码:radan计算获取软件激活码Windows 7 系统安装radan 5安装radan程序,找到setup.exe鼠标右键要求以系统管理员身份运行;RADAN软件第一次运行要以系统管理员身份打开。
Windows 7 系统调整显示效果选择控制面板->所有控制面板项->显示->更改配色方案->windows经典->高级,对话框如下:选择颜色项目->桌面->颜色->设置红绿蓝资料整理1打测量,布置网格和测线,数据采集2数据拷贝与备份:从地质雷达主机把数据复制在个人电脑上,并利用2种以上存储介质对原始数据进行备份。
3野外记录整理:整理野外记录本(包括各种参数,利用数码相机或者扫描仪对原始纪录扫描拍照,并制作成PDF格式文件便于日后随时查看野外现场原始资料),工作照片,收集的各种第三方资料(设计图纸、设计厚度、第三方检测资料),现场钻孔资料(里程桩号、芯样实物和照片、长度)。
利用钻孔资料反算电磁波传播速度或者材料介电常数。
4数据编辑与初步整理RADAN5资料处理RADAN6资料解释7图片制作8探测报告编写I GSSI 地质雷达探测资料处理流程图数据备份,资料整理,资料处理,资料解释 3文件编辑---剪切 4剖面方向调整 5距离归一化 6添加起始里程桩号 7剖面水平拉伸、压缩 8调整地面时间零点 10时间深度转换2读入数据文件(*.dzt) 1打开RADAN 软件 11增益调整12叠加去噪13背景去除14一维垂直滤波15反褶积16偏移归位17希尔伯特变换静态校正 18高程修正频谱分析速度分析19剖面追加 21交互式解释II GSSI处理软件功能模块介绍基本工具打开数据文件,显示雷达数据剖面。
地质雷达法检测操作规程1、地质雷达法适用范围地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。
2、地质雷达主机技术指标:(1)系统增益不低于150dB;(2)信噪比不低于60dB;(3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位;(4)计时误差小于1ns;(5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒;(6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能;(7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。
3、地质雷达应符合下列要求:(1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。
(2)测线经过的表面相对平缓、无障碍、易于天线移动。
(3)避开高电导屏蔽层或大范围的金属构件。
4、地质雷达天线可采用不同频率的天线组合,技术指标为:(1)具有屏蔽功能;(2)最大探测深度应大于2m;(3)垂直分辨率应高于2cm。
5、现场检测(1)测线布置1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。
纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。
一般情况线距8~12m;采用点测时每断面不少于6点。
检测中发现不合格地段应加密测线或测点。
2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。
纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。
需确定回填空洞规模和范围时,应加密测线和测点。
3、三线隧道应在隧道拱顶部位增加2条测线。
4、测线每5~10m应有一历程标记。
(2)介质参数的标定:检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。
探地雷达数据资料处理流程
探地雷达数据处理流程通常包括以下步骤:
数据采集:使用地雷探测雷达设备进行数据采集。
这可能涉及雷达发射信号并测量返回信号的时间和强度。
数据预处理:对采集的原始数据进行预处理,包括去除噪声、校正信号、填补数据缺失等。
这有助于提高数据质量和准确性。
数据滤波:应用滤波技术来进一步减少噪声和提高信号与噪声比。
这有助于更清晰地识别地雷的特征。
特征提取:从处理后的数据中提取特征,例如目标的形状、大小、深度等。
这些特征有助于区分地雷和其他物体。
数据分析:利用统计学和模式识别方法对特征进行分析,以识别可能的地雷目标。
这可能包括使用机器学习算法来自动检测潜在的地雷区域。
图像显示与地图生成:将处理后的数据以图像或地图的形式呈现,以帮助操作员更直观地理解潜在的地雷分布。
验证与确认:对潜在地雷目标进行验证和确认,可能需要进一步的实地勘查或使用其他技术手段来确保准确性。
报告生成:生成最终的报告,提供有关潜在地雷位置和特性的详细信息,以协助相关决策和行动。
这是一个一般性的处理流程,具体步骤和方法可能因使用的雷达设备、数据特性以及处理软件而有所不同。
1。
地质雷达操作规程 ( 总 9 页 )--本页仅作为文档封面,使用时请直接删除即可---- 内页可以根据需求调整合适字体及大小--1、地质雷达法合用范围地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌暗地里的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。
2、地质雷达主机技术指标:(1)系统增益不低于150dB;(2)信噪比不低于60dB;(3)采样间隔普通不大于、A/D 模数转换不低于16 位;(4)计时误差小于1ns;(5)具有点测与连续测量功能,连续测量时,扫描速率大于64 次/秒;(6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能;(7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。
3、地质雷达应符合下列要求:(1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或者相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。
(2)测线经过的表面相对平缓、无障碍、易于天线挪移。
(3)避开高电导屏蔽层或者大范围的金属构件。
4、地质雷达天线可采用不同频率的天线组合,技术指标为:(1)具有屏蔽功能;(2)最大探测深度应大于2m;(3)垂直分辨率应高于2cm。
5、现场检测(1)测线布置1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。
纵向布线的位置应在隧道的拱顶、摆布拱腰、摆布边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。
普通情况线距8~12m;采用点测时每断面不少于6 点。
检测中发现不合格地段应加密测线或者测点。
2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。
纵向布线的位置应在隧道拱顶、摆布拱腰和摆布边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于 5 个点。
需确定回填空洞规模和范围时,应加密测线和测点。
3 、三线隧道应在隧道拱顶部位增加2 条测线。
地质雷达软件RADAN用户手册美国地球物理测量系统公司美国劳雷工业公司2010年10月RADAN处理软件安装安装采集软件RADAN66和RADAN5,并且激活采集软件输入软件序列号serialnumber输入处理软件产品ID代码:radan计算获取软件激活码Windows7系统安装radan5安装radan程序,找到setup.exe鼠标右键要求以系统管理员身份运行;RADAN软件第一次运行要以系统管理员身份打开。
Windows7系统调整显示效果选择控制面板->所有控制面板项->显示->更改配色方案->windows经典->高级,对话框如下:选择颜色项目->桌面->颜色->设置红绿蓝资料整理1打测量,布置网格和测线,数据采集2数据拷贝与备份:从地质雷达主机把数据复制在个人电脑上,并利用2种以上存储介质对原始数据进行备份。
3野外记录整理:整理野外记录本(包括各种参数,利用数码相机或者扫描仪对原始纪录扫描拍照,并制作成PDF格式文件便于日后随时查看野外现场原始资料),工作照片,收集的各种第三方资料(设计图纸、设计厚度、第三方检测资料),现场钻孔资料(里程桩号、芯样实物和照片、长度)。
利用钻孔资料反算电磁波传播速度或者材料介电常数。
4数据编辑与初步整理RADAN5资料处理RADAN6资料解释7图片制作8探测报告编写IGSSI 地质雷达探测资料处理流程图数据备份,资料整理,资料处理,资料解释 3文件编辑---剪切 4剖面方向调整 5距离归一化 6添加起始里程桩号7剖面水平拉伸、压缩8调整地面时间零点 10时间深度转换2读入数据文件(*.dzt)1打开RADAN 软件 11增益调整12叠加去噪 13背景去除14一维垂直滤波15反褶积 16偏移归位 17希尔伯特变换静态校正 18高程修正频谱分析速度分析19剖面追加 21交互式解释IIGSSI处理软件功能模块介绍基本工具打开数据文件,显示雷达数据剖面。
一般地质雷达数据处理步骤
分界面厚度变化时可用此法,一般不用2)有倾斜地层时可用此法3)使钢筋显示更清楚用此法⑹主要用此法的地方1)测工字钢个数,埋深,形态,间隔2)测空洞3)测钢筋网个数
1.反褶积、一维频率滤波(取默认值。
垂直方向上出现一串时(等间隔的多次
波)用此)。
Process→Deconvolution;Process→IIR Filter.
2.偏移归位Process→Migration,选择偏移类型kirchhoff,调整曲线形态。
3.希尔伯特变化Process→Hilbert Xform,选phase显示瞬态相位信息。
4.添加地面高程信息,并利用高程归一化函数进行处理。
Process→Surface
Norm。
5.静态校正Process→Static,mode选择manual手动调整方式。
6.文件拼接。
打开Radan软件,选择File→Append files。
7.通道合并,多通道资料对比分析。
打开Radan软件,选择File→Combine
channels。
8.交互式解释View→Interactive,生成*.lay文件。
步骤1)点2)如果从没解释时就选generate new pick file,如果是在原来的基础上对此文件进行解释就选pick file找到lay文件3)选目标体(如钢筋类的,
解释后可以看出有多少根):①在剖面上点右键---target options—new target—双击目标体名字----然后在target parameters里改各个要改的参数②在剖面上
点右键---pick options---在pick options里填参数(若拾取工具选block时,在剖面上选一块然后点右键然后加点,)4)选分层①在剖面上点右键----layer options---改layer options里的参数然后确定②在剖面上点右键---pick options---在pick options里填参数(若拾取工具选block时,在剖面上选一块然后点右键然后加点,若当中有空的没有连起来则点右键,插值)5)在剖面上点右键----spreadsheet(表格)6)在剖面上点右键----save changes---current file---保存为lay文件7)用excel打开此lay文件(打开时分割符号选tab键和逗号),打开后去掉头文件然后画图。
速度的选取:在剖面上点右键---ground truth(钻孔)----z(分界面距地面的埋深)
9.绘制地质剖面图.利用电子表格Excel或者Surfer 8软件绘制地质图件。
一:连接文件
File----append files----把每个文件双击------done
二:单个文件宏处理
1)打开文件
2)New macro---保存为宏文件cmf
3) 几种方法处理完后保存为一个dzt 文件 三:批处理
1) 文件---新建----rpj 文件 2) ----ok
3) 打开各个文件-----done
4) Edit macro list----调入宏文件cmf (编辑好的处理方法) 5) 点每一个文件------attach macro----done
测河床底时,天线要放在床上或者别的东西上,不要直接放在水上。
分界面位置的确定利用的是波的散射原理(波向四周传播的性质) 1.一个完整的波取决于大的(正或负波尖) 2.分界面都在波尖位置,正负取决于振幅大小 3.钢筋类的 埋深顶面(正波尖);pvc 管类的 埋深顶面(负波尖)
4.介电常数ε
是阻止外来信号的能力 1)钢筋类的
2
1
εε>(2代表钢筋类,1代表围岩):顶面在正波尖(黑—白---黑) 1) pvc 管道类的
21
εε<(2代表pvc 管道类,1代表围岩):顶面在负波尖(白---黑---白) 2) 空洞类
2
1
εε<(2代表空洞类,1代表围岩):顶面在负波尖(白---黑---白)
波的色散相当于波传开之后不再是等间隔而是越向外传播距离越来越大
地质雷达资料用randan 软件显示时: 一:线扫描图时
1. 水平方向:有准确距离信息时就用距离显示,没有准确距离信息时,用扫描显示
二:颜色表:振幅大小投影到下面的颜色上
三:单根显示波形:水平方向表时间(深度,采样点数),垂直方向表振幅大小
四:color table:颜色表(一般选1,3,6,17,25)
1—5 彩色;6---8 黑色;9—16 可自己改颜色;17---19 :256显示
Color xform:颜色变换表
1 颜色等间隔分布;2,3颜色不等间隔分布,可显示弱信号
五:点显示器按钮出现
此对话框,双击wiggle 出现
此对话框
Scale(比例32):波的横向宽度
Space(间隔16):道与道之间的宽度
Stack(叠加(压缩)):取数值跟测量剖面有关,剖面长时,叠加多些
Skip(抽点):跳跃式,抽去的不要了(波形图显示时,水平方向为扫描显示时,分别点相邻的两道,就能看出之间抽去了多少道)
Fill(填充)----
数据处理:(080425劳雷袁技术总监)
1.gain (增益)
2.色标
3.滤波:
分为1)频率滤波(图形显示细碎的是高频,显示粗大的是低频)
3) 波数(空间)滤波(意思是一米里面有几个波):波形平缓的是低频,波形变化大的是高频。
4.反褶积(类似空间滤波):反褶积的目的是使通频带扩宽(脉冲尖锐),提高垂直方向分辨率;波形粗大时做反褶积。
5.偏移归位:提高横向分辨率。
平均传播速度高则曲线张的开;平均传播速度低则曲线张的小。
贴地天线脱空测时:1.会损失一部分能量2.首波不清楚影响分辨率。
如果脱空距离控制在4
λ之内,则一般不影响测量效果。
{Criteria(标
Level (%)(大小):从0开始填充就是从零线开始填充, 若标准选positive 时,相当于正的波全部被填充了(如下图)。