第二章第五节常用连续分布
- 格式:ppt
- 大小:2.18 MB
- 文档页数:43
常用连续型分布性质汇总及其关系1. 常用分布1.1 正态分布(1)若X 的密度函数和分布函数分别为()()()222222(),.,.x t xp x x F x e dt x μσμσ-----∞=-∞<<+∞=-∞<<+∞ 则称X 服从正态分布,记作()2~,,X N μσ,其中参数,0.μσ-∞<<+∞>(2)背景:一个变量若是由大量微小的、独立的随机因素的叠加结果,则此变量一定是正态变量。
测量误差就是由量具零点偏差、测量环境的影响、测量技术的影响、测量人员的心理影响等等随机因素叠加而成的,所以测量误差常认为服从正态分布。
(3)关于参数,μσ:μ是正态分布的的数学期望,即()E X μ=,称μ为正态分布的位置参数。
μ为正态分布的对称中心,在μ的左侧和()p x 下的面积为0.5;在μ的右侧和()p x 下的面积也是0.5,所以μ也是正态分布的中位数。
2σ是正态分布的方差,即2().Var X σ=σ是正态分布的标准差,σ愈小,正态分布愈集中,σ愈大,正态分布愈分散。
σ又称为是正态分布的的尺度参数。
(4)称0,1μσ==时的正态分布(0,1)N 为标准正态分布。
记U 为标准正态分布变量,()u ϕ和()u Φ为标准正态分布的密度函数和分布函数。
()u ϕ和()u φ满足:()()()();1.u u u u ϕϕ-=Φ-=-Φ(5)标准化变换:若()2~,,X N μσ则()~0,1.X U N μσ-=(6)若()2~,,X N μσ则对任意实数a 与b ,有()(),()1(),()()(),b P X b a P a X b a P a X b μσμσμμσσ-≤=Φ-<=-Φ--<≤=Φ-Φ0.6826,1,()()()0.9545,2,.0.9973, 3.k P X k k k k k μσ=⎧⎪-<=Φ-Φ-==⎨⎪=⎩(7)特征函数 22()exp{}.2t t i t σϕμ=-(标准正态分布2()exp{}2t t ϕ=-)1.2.均匀分布(1)若X 的密度函数和分布函数分别为1().0a x b P x b a else ⎧<<⎪=-⎨⎪⎩ 0,,(),.1,.x a x a F x a x b b a x b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩ 则称X 服从区间(,)a b 上的均匀分布,记作()~,.X U a b(2)背景:向区间(,)a b 随机投点,落点坐标X 一定服从均匀分布(),.U a b(3)()2(),().212b a a b E X Var X -+==(4)特征函数().()itb itae e t b a itϕ-=- 1.3. 指数分布(1)若X 的密度函数和分布函数分别为,0,()0,.x e x P x else λλ-⎧≥=⎨⎩ 1,0,().0,.x e x F x else λ-⎧-≥=⎨⎩ 则称X 服从指数分布,记作()~,X Exp λ其中参数0.λ>(2)背景:若一个元器件(或一台设备、或一个系统)遇到外来冲击时即告失败,则首次冲击到来的时间X (寿命)服从指数分布,很多产品的寿命可认为服从或者近似服从指数分布。
常用的连续概率分布如下:(1)正态分布。
其特点是密度函数以均值为中心对称分布,这是一种最常用的概率分布,其均值为,方差为,用表示。
当,时,称为标准正态分布,用N(0,1)表示。
正态分布适用于描述一般经济变量的概率分布,如销售量、售价、产品成本等。
(2)三角型分布。
其特点是密度数是由最大值、最可能值和最小值构成的对称的或不对称的三角型。
适用描述工期、投资等不对称分布的输入变量,也可用于描述产量、成本等对称分布的变量。
(3)β分布。
其特点是密度函数为在最大值两边不对称分布,适用于描述工期等不对称分布的变量。
(4)经验分布。
其密度函数并不适合于某些标准的概率函数,要根据统计资料及主观经验估计的非标准概率分布,它适合于项目评价中的所有各种变量。
(5)指数分布。
指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、无线电元器件寿命等等。
指数分布的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。
阅读(354)| 评论(0)。