粉体工程
- 格式:ppt
- 大小:7.15 MB
- 文档页数:61
概论一、粉体工程研究的内容上世纪50年代初期,粉体工程这一名词首先出现在日本。
其实,粉体从古至今一直与人类的生产和生活有着十分密切的关系。
众所周知,陶器—作为第一种人造材料早在新石器时代就已问世,而它的生产除了与火有必然的联系外,与粉末也是分不开的。
早在明代宋应星的《天工开物》一书中,就对一些原始的粉体工艺加工过程进行了详细的总结和描述。
现在粉体工程学已经发展成为一门跨学科、跨行业的综合性极强的技术科学,粉体的应用遍及材料、冶金、化学工程、矿业、机械、建筑、食品、医药、能源、电子及环境工程等诸多领域。
粉体研究的目的:提高工业产品的质量与控制水平。
粉体颗粒的大小及粒度分布对产品质量影响非常大。
如在水泥中,粗细颗粒的比例、颗粒的形状对产品性能有着极大的影响;医药行业中的某些药剂,可以通过细化来改变药剂的用量和吸收性;颜料颗粒的大小对被涂物体表面的遮盖力影响极大,当颗粒细到约等于可见光波长(0.4~0.7μm)的0.4—0.5倍时,颗粒对入射光的散射能力最大,此时颜料具有较高的遮盖力,当颗粒直径小于可见光波长的1/2时,因发生光的衍射,遮盖力明显下降,颜料具有透明性;复印机所用墨粉的粒度一般在8~12μm,6~20μm的颗粒应该占到75%以上,小于这个数值,复印时变黑,大于这一数值,字体印不上去。
再者,就是粉体的表面改性,如白云母经过氧化钛、氧化铬、氧化铁、氧化锆等金属氧化物进行表面改性后,用于化妆品、塑料。
颗粒的分类1 原级颗粒最先形成粉体物料的颗粒,称为原级颗粒(又称一次颗粒或基本颗粒)。
从宏观上来看,原级颗粒是构成粉体的最小单元,这些原级颗粒的形状,有立方体的、球状、针状、不规则晶体状的。
粉体物料的性能都与其分散状态,即与它的单独存在的颗粒大小和形状有关,真正能反映出粉体物料固有性能的,就是的它的原级颗粒。
2. 聚集体颗粒聚集体颗粒是由许多原级颗粒依靠某种化学力与其表面相连而堆积起来,又称二次颗粒。
粉体工程总结范本近年来,我国粉体工程行业发展迅速,取得了显著的成果。
在工程设计、设备制造、工艺技术等方面,取得了很多创新和突破,为我国粉体工程行业的发展做出了卓越贡献。
本文将从粉体工程的概念、发展现状、问题与挑战、解决方案等方面进行总结讨论。
一、粉体工程的概念及发展现状粉体工程是将固体颗粒物料进行处理、加工、传输、存储等一系列工艺过程的科学技术领域。
它是研究和解决固体粉体在工业生产中存在的问题的一门学科。
随着我国经济的快速发展和工业化进程的加快,粉体工程行业蓬勃发展。
目前,我国粉体工程行业已具备了比较完善的产业链,形成了较为成熟的市场体系。
二、粉体工程的问题与挑战尽管我国粉体工程行业取得了快速发展,但仍存在一些问题和挑战。
首先,技术水平还不够高。
虽然在一些领域中我国粉体工程技术已经达到了国际先进水平,但与发达国家相比,整体水平仍有差距。
其次,产业结构亟待优化。
我国粉体工程行业的产业结构相对单一,缺乏差异化竞争优势。
产业链条上的各个环节之间缺乏有效的协同与合作,导致整个行业的发展受到限制。
再次,环保要求越来越高。
随着环保意识的提升,政府对粉体工程行业的环保要求不断加强,而一些企业在环保设备和技术方面仍存在不足。
最后,人才队伍建设亟待加强。
粉体工程行业的技术要求高,需要一批专业化、高素质的技术人员。
当前我国粉体工程行业的人才紧缺问题还没有彻底解决。
三、解决方案为了解决上述问题和挑战,我认为应该采取以下措施:首先,加强技术创新。
加大对粉体工程技术研发的投入,提高技术研发的效率和质量。
加强与国内外先进企业、研究机构的合作,共同推动技术创新。
其次,优化产业结构。
加强上下游企业之间的合作与协同,形成完整的产业链。
鼓励企业加大技术投入,提高产品的附加值。
加强自主创新,提高核心竞争力。
再次,加强环保工作。
企业要提高环保意识,积极采取先进的环保设备和技术,切实做好废气、废水、废渣的处理和综合利用。
最后,加强人才队伍建设。
粉体工程师岗位职责粉体工程师是一种新兴的工程领域,其职责包括对粉体物料的生产、加工、存储、运输等各个环节进行研究与处理。
下面是粉体工程师的岗位职责介绍:1. 粉体生产的研究与优化粉体工程师负责对粉体生产流程进行研究和优化。
需要掌握各类粉体生产技术以及设备操作等相关知识,确保生产过程顺畅并有收益。
同时,粉体工程师还需要结合产品市场需求和现有技术水平,提出新的工艺流程改进方案,以提高生产效率和质量。
2. 粉体加工技术的研发与改进粉体工程师需要对各种粉体加工技术进行研发和改进,以提高设备的加工效率、设备稳定性和产品的质量。
需掌握颗粒物料的物理化学及流体力学知识,了解和掌握颗粒物料的表观性质和加工过程及影响因素,为提升加工工艺、优化设备和降低成本、提供技术改进方案等提供科学依据。
3. 粉体物料的测试与分析粉体工程师需要掌握各种粉体物料的检测和分析方法,以评估物料粒度、质量、流动性、稳定性等主要性能,同时还要通过数据分析、软件模拟等方法,对粉体物料进行优化设计和改进。
4. 设备的研究与开发粉体工程师需要对各种颗粒物料设备进行研究和开发,以满足不同用户需求。
同时,需要分析和评估现有设备的性能、工作原理、优化改进的方案和方法等,与供应商和用户进行技术交流和合作,提供适合的设备和方案。
5. 安全规范和合规性的评估和监测粉体工程师要关注设备安全性和合规性,制定或参与建设和完善生产安全管理制度、培训人员和技术检查等,普及安全知识,提高生产安全水平。
同时要关注环保、再生资源等可持续发展问题,确保生产过程与环保标准相符。
总之,粉体工程师需要有扎实的理论基础、紧跟科技进步的步伐,以较高的敏感性发现生产中的问题,并能提出相应的解决方案。
他们需要在不断探索的领域不断更新知识、改进方案和提供优质服务,将科学的理论和技术转换为实际的应用。
1、粉体是是由无数相对较小的的颗粒状物质组成的一个集合体。
粉体既有固体的性质,也有液体的性质,有时还有气体的性质。
凡从粉磨机中卸出的物料即为产品,不带检查筛分或选粉设备的的粉磨流程称为开路流程。
凡带检查筛分或选粉设备的粉磨流程称为闭路流程。
开路适用于粉磨产品粒度较大,闭路适用于粉磨产品粒度较小。
2、颚角(钳角):颚式破碎机动颚与定颚之间的夹角α称为钳角。
减小钳角可增加破碎机的生产能力,但会导致破碎比减小;反之,增大钳角虽可增大破碎比,但会降低生产能力,同时,落在颚腔中的物料不易夹牢,有被推出机外的危险。
反击式破碎机工作原理:机器工作时,在电动机的带动下,转子高速旋转,物料进入板锤作用区时,与转子上的板锤撞击破碎,后又被抛向反击装置上再次破碎,然后又从反击衬板上弹回到板锤作用区重新破碎,此过程重复进行,物料由大到小进入一、二、三反击腔重复进行破碎,直到物料被破碎至所需粒度,由出料口排出。
调整反击架与转子之间的间隙可达到改变物料出料粒度和物料形状的目的。
石料由机器上部直接落入高速旋转的转盘;在高速离心力的作用下,与另一部分以伞型方式分流在转盘四周的飞石产生高速碰撞与高密度的粉碎,石料在互相打击后,又会在转盘和机壳之间形成涡流运动而造成多次的互相打击、摩擦、粉碎,从下部直通排出。
形成闭路多次循环,由筛分设备控制达到所要求的粒度。
结构单转子反击式破碎机的构造,料块从进料口喂入,为了防止料块在破碎时飞出,在进料口进料方向装有链幕。
喂入的料块落在篦条筛的上面,细小料块通过篦缝落到机壳的下部,大块的物料沿着筛面滑到转子上。
在转子的圆周上固定安装着有一定高度的板锤,转子由电动机经V 型皮带带动作高速转动。
落在转子上面的料块受到高速旋转的板锤的冲击,获得动能后以高速向反击板撞击,接着又从反击板上反弹回来,在破碎区中又同被转子抛出的物料相碰撞。
由 条筛、转子、反击板以及链幕所组成的空间称为第一冲击区;由反击板与转子之间组成的空间是第二冲击区。
粉体工程粉体工程是一门涉及粉末物料的制备、处理、传输、储存、包装、流动、混合等各个方面的工程领域。
它是一种独特而复杂的工艺,需要灵巧的工艺技能和深厚的理论知识。
粉体工程器件应用范围广泛,涵盖了医药、化工、食品、环保、能源等各个行业。
在本篇文章中我们将会从以下几个方面来详细探讨粉体工程的设备、原理、工艺等方面的知识。
一、粉体工程设备1、粉碎设备粉末的制备是粉体工程的首要任务,通过粉碎设备将原料破碎成粉末是最基本的粉末制备方法。
常用的粉碎设备有:颚式破碎机、圆锥式破碎机、滚筒式破碎机等。
这些破碎机可以将原材料破碎成均匀细小的颗粒,为后续的加工和处理提供了条件。
2、混合设备粉末混合是粉体工程中最常见的一种操作,混合器主要作用是将相同或不同种类的粉末物料混合在一起,形成一种新的物料。
根据混合粉末的要求,可以选择不同的混合设备。
如:普通型搅拌机、飞散混合机、双轴式强制混合机、高剪切混合机、流化床混合机等等。
3、流化床设备粉体工程中的流化床是一种广泛应用的设备,主要用于熔融制备、干燥、喷雾干燥、颗粒化等工艺。
流化床的工作原理是将气体或液体流经粉末床层,产生流化状态,使粉末均匀分布并形成充分的接触,从而加快化学反应和热传递。
流化床的设备形式多种多样,可以有圆形、方形、长条形等不同的类型,通常都包含燃烧室、气体分布装置和颗粒床层组成。
4、烘干设备在粉体工程中,烘干是一项重要工艺,目的是去除物料中的水分,使其满足后续加工的需要。
常见的烘干设备有:传统的批式烘干器、连续式烘干器、真空烘干器、气流式烘干器、喷雾烘干器等。
这些烘干设备在不同的工艺操作中都有着特定的用途和优缺点,需要根据不同的实际情况来选择。
二、粉体工程原理1、粉末物理学物理学原理是所有粉体工程操作的基础,它理解了物料的粒度、形状、密度等基本特性,并建立了与这些属性相关的工艺知识。
物理学原理中的一些基本概念,如密度、粒度分布和物料流动性等,对粉末的特性和操作有着深远的影响。
粉体工程专业设计条件内容及格是统一规定粉体工程是一门涉及粉体物料的操纵、传输、储存等工程技术的学科。
在设计粉体工程项目时,需要考虑以下条件内容:1.物料特性:物料的物理、化学、热力学等特性对工程设计至关重要。
包括粒度分布、密度、流动性、湿度、颗粒形状等。
2.工艺流程:需要确定粉体物料的处理流程,包括混合、干燥、粉碎、造粒等。
对于连续工艺还需要确定物料的输送方式和系统布局。
3.设备选择:依据物料特性和工艺要求,选择合适的设备。
包括粉体的输送设备、储存设备、粉碎设备、混合设备、干燥设备等。
4.安全和环境:在设计过程中必须考虑安全和环境保护要求,避免粉尘爆炸、毒性气体泄漏等安全和环境问题。
5.自动化和控制:粉体工程应尽可能实现自动化控制,通过PLC或DCS等控制系统自动监控和调整物料的输送和处理过程。
6.能耗和经济性:在设计过程中需要考虑能耗和经济性,减少能源消耗,提高工艺效率,降低成本。
7.适应不同工艺要求:不同的产品和工艺对粉体工程的要求不同,设计时需要充分考虑产品的特性和工艺要求,以确保设备和工艺能够满足需求。
8.维护和保养:设计时应便于设备的维护和保养,确保设备运行稳定和寿命长。
9.可持续发展:在设计过程中要考虑粉体工程的可持续发展,包括资源的合理利用、废物和排放物的处理等环保问题。
10.食品安全和卫生:在设计食品、制药等行业的粉体工程项目时,需要符合食品安全和卫生标准,确保产品的质量和安全。
总结起来,粉体工程专业设计条件内容包括物料特性、工艺流程、设备选择、安全和环境、自动化和控制、能耗和经济性、适应不同工艺要求、维护和保养、可持续发展以及食品安全和卫生等方面。
这些条件内容统一规定是为了确保粉体工程项目的质量、安全和可持续发展。
一、名词解释1、粉体:由大量的不同尺寸的颗粒组成的颗粒群体。
2、颗粒:能单独存在并参与操作过程,还能反应物料某种基本构造与性质的最小单元。
3、颗粒形状系数:在表示颗粒群性质和具体物理现象、单元过程等函数时,把与颗粒形状有关的诸多因素概括为一个修正系数加以考虑,该修正系数即为形状系数。
(有体积形状指数、表面积形状指数、比表面积形状指数)4、颗粒形状指数:表示单一颗粒外形的几何量的各种无因次组合。
5、粒度分布:指将颗粒群用一定的粒度范围按大小顺序分为若干粒级,各级别粒子占颗粒群总量的百分数。
6、破坏包络线:对同一粉体层的所有极限摩尔圆可以做一条公切线,这条公切线成为破坏包络线。
7、填充率:粉体所占体积与粉体表观体积的比值。
8、球形度:与颗粒等体积的球和实际粉体的表面积之比。
9、孔隙率:粉体层中空隙所占有的比率。
10、配位数:某一个颗粒与周围空间接触的颗粒个数。
11、极限应力状态:在粉体层加压不大时,因粉体层的强度足以抵御外界压力,此时粉体层外观不起变化,当压力达到某一极性状态时,此时的应力称极限应力。
粉体层就会突然崩坏,这与金属脆性材料的断裂是一致的。
12、库仑粉体:分体的破坏包络线呈一条直线,称该粉体为库仑粉体。
13、粘附性粉体:破坏包络线不经过坐标原点的粉体称为粘附性粉体。
14、主动受压粉体:由于重力作用在崩塌前将其支撑住,在崩塌时临界状态称主动态,最小应力在水平方向。
15、被动受压粉体:粉体延水平方向压缩,当粉体呀倾斜向上压动时的临界状态称为被动状态,最大主应力在水平方向。
16、堆积:17、安息角/休止角:指物料堆积层的自由表面在静平衡状态下,与水平面形成的最大角度。
(安息角越小,粉体的流动性越好)18、均化:物料在外力作用下发生速度和方向的改变,使各组分颗粒得以均匀分布。
19、粉体流动函数:固结主应力与开放屈服强度存在着一定的函数关系。
20、静态拱:物料颗粒在出口处起拱,此时正好承受上面的压力这样流动停止,此时孔口处处于静止平衡状态。
粉体工程及设备粉体工程是一门研究颗粒性物料(包括粉体和颗粒)、其加工与处理设备以及加工过程中发生的各种现象的科学。
颗粒物料的性质取决于他们的成分和颗粒结构,包括颗粒大小、形状、孔隙结构、表面活性等。
这门学科的主要目标是以物理、化学和数学等原理为基础,提供粉体和颗粒材料加工(如干燥、混合、粉碎、筛分、分离、流态化、热处理等)的理论、设计与实施。
颗粒物料包括各种各样的产品和废料,例如聚合物、金属、陶瓷、矿物、食品和药品。
它们在很多工业领域都有应用,例如在塑料、橡胶、涂料、油漆、化肥、化学、医药、陶瓷、矿物加工、食品和饮料等。
现代粉体工程和设备科学开展的现象研究包括颗粒之间的接触力学、颗粒群体的流动(也称为颗粒流动)、颗粒的破碎、颗粒的聚集、颗粒的过滤和颗粒的振动行为。
粉体工程设备是指用于制备或处理粉状物质的设备,包括破碎设备(如破碎机、研磨机)、筛分设备(如振动筛、气流筛)、混合设备(如混合器、混凝土搅拌机)、烘干设备(如流动床干燥器、旋转干燥器)、除尘设备(如袋式除尘器、电除尘器)以及输送设备(如螺旋输送机、气力输送机)等。
由于颗粒材料的特性和应用广泛,粉体工程和设备在很多重要的工业生产中起着关键的作用。
例如,在化学工业中,大部分的原料和产品都是颗粒材料,它们的孔隙结构、颗粒大小和形状对化学反应过程、物料传递和产品性能有着重要的影响;食品和制药工业也大量使用颗粒物料,它们的加工过程中涉及到颗粒物料的干燥、混合、破碎和筛分等各种操作。
由于粉体工程和设备涉及的问题复杂多变,尤其是涉及颗粒与颗粒之间,颗粒与设备之间复杂的相互作用,因此,这个领域需要对流体动力学、热力学、化学反应工程、材料科学、微观力学以及计算方法等进行深入研究。
总的来说,粉体工程是一门涉及到计算机模拟、实验研究和工业应用的交叉学科,它的目标是通过理论研究和应用开发,为粉体和颗粒材料加工提供科学的理论依据和高效的工程解决方法。
它的研究不仅能够推动颗粒材料加工技术的创新和应用,也对提高我们对颗粒和粉体物质性质和行为的理解,增进我们对颗粒和粉体工程设备性能和设计的知识都有着重要的意义。
粉体工程与设备讲解粉体工程与设备是指将固体材料进行粉碎、干燥、颗粒化、混合等处理的一种技术与设备体系。
这些技术和设备在许多工业领域中有广泛的应用,如化工、冶金、建材、医药等。
在这些领域中,粉体工程与设备可以实现材料的细化、均质性提高、质量控制等效果,并且能够提高生产效率和产品质量。
1.粉碎设备:粉碎设备用于将原料进行粉碎处理,将固体材料细化和均质化。
常见的粉碎设备有破碎机、磨粉机、颚式破碎机等。
这些设备通过机械力的作用将物料进行破碎,使其达到所需的粒径和形状要求。
2.干燥设备:干燥设备主要用于将湿度高的物料进行干燥处理,降低湿度以满足工艺要求。
常见的干燥设备有烘干机、流化床干燥机、喷雾干燥机等。
这些设备通过加热或者利用气流将物料中的水分蒸发出来,从而实现干燥效果。
3.颗粒化设备:颗粒化设备用于将散状的物料进行颗粒化处理,将其变成一定大小和形状的颗粒。
常见的颗粒化设备有造粒机、压片机等。
这些设备通过施加压力或者利用液滴的凝固作用将散状物料粘合成颗粒,并且控制颗粒的大小和形状。
4.混合设备:混合设备用于将不同性质的物料进行混合,达到均一混合的效果。
常见的混合设备有搅拌机、混合机、螺旋搅拌机等。
这些设备通过机械搅拌的作用将不同的物料混合在一起,并且控制混合的均匀性和时间。
5.分离设备:分离设备用于将物料中的杂质或者不同颗粒大小的物料进行分离,实现筛选和分级的效果。
常见的分离设备有筛分机、离心机等。
这些设备通过筛孔大小或者离心力的作用将物料进行分离,并且实现杂质的除去或者颗粒大小的分级。
除了上述设备,还有一些辅助设备和控制系统用于辅助生产和控制工艺参数,如输送设备、加料设备、粉尘收集装置、液体添加装置等。
总而言之,粉体工程与设备是一个结合了物料工程、机械工程、控制工程等多个专业知识的跨学科领域。
通过先进的粉体工程设备,可以实现对物料的粉碎、干燥、颗粒化、混合等处理,提高工艺效率、产品质量和生产安全性。
粉体工程课程综述前言二十一世纪新技术革命的三大支柱—生物、能源(信息技术)、材料材料是基础:材料是一切科学技术发展的先导与物质基础;是改善人民生活质量所必需的一个重要方面;材料的研究对于大多数材料而言,粉体工艺又是必不可少的工艺。
因此,粉体工程的研究显得尤为重要。
接下来将从粉体粒度及测试、粉体密度及流动性、粉碎过程、粉体混合与造粒等方面阐述粉体工程与设备这门课要学习的相关内容。
正文绪论1、粉体:就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
粉体是气、液、固相之外的第四相(在少许外力的作用下呈现出固体所不具备的流动性和变形)。
2、粉体化的目的:粉体化小比表面积增大;粒度减小表面原子所占比例增大;表面原子比物质内部原子具有更高比表面积和比表面能;表面原子比物质内部原子具有更高活性和化学反应性。
3、粉体的特点:不连续性;流动性;离散集合是可逆的;具有塑性,可加工成型;比表面积大,具有化学活性;粒子形状不规则性。
4、粉体工程以粉状和颗粒状物质为对象,研究其性质及加工、处理技术的一门学科。
粉体粒度与测试1、粉体的表征包括:几何空间性质—粒度及其分布、密度、形状;成分分析—材料的组成及其含量;结构分析—晶态结构、界面;性能分析—静力学性质、动力学性质、物理性能、化学性能。
2、颗粒尺寸及表征:颗粒的大小和形状是粉体最重要的物性特性表征量。
表征颗粒尺寸的主要参数:、粒度、粒度分布。
粒径:以单个颗粒为对象,表征单颗粒几何尺寸的大小。
粒度:以颗粒群为对象,表征所有颗粒在总体上几何尺寸大小的概念。
3、“演算直径”:三轴径、定向径、当量径、筛分径、Stocks径。
4、粒度分布:表征多分散体系中颗粒大小不均一的程度,表示粉体中不同粒径区间颗粒的含量。
粒度分布的表示方法:列表法;频率分布;累积分布。
表征粒度分布的特征参数:中位粒径D50;最频粒径;标准偏差;函数法(对数分布、对数正态分布)。