横波和纵波横波质元的振动方向与波动的传播方向垂直纵波
- 格式:pptx
- 大小:1.78 MB
- 文档页数:86
波的基本概念1.波:振动在媒质(介质)中的传播就是波,分为横波和纵波。
2.横波:媒质中各体元振动的方向与波传播的方向垂直。
例如:一根均匀柔软的细绳的振动,形成的波就是横波。
3.纵波:媒质中各体元振动的方向与波传播的方向平行。
例如:空气中的声波,空气中体元时而靠近,时而疏远。
4.表面波:在两中媒质的界面上传播的波。
例如:水面波。
5.波面:波传播时,同相位各点所组成的面。
6.波前:离波源最远,即“最前方”的波面。
7.波射线:与波面垂直且表明波的传播方向的线叫波射线。
8.平面波:波前为平面的波。
波线是互相平行的。
9.球面波:波前为球面。
点波源在均匀的和各向同性媒质中发生的波是球面波。
波线是相交于波源的直线。
平面简谐波方程一. 平面简谐波:平面波传播时,媒质中体元均按正弦(或余弦)规律运动。
二. 平面简谐波方程(从运动学角度考虑):描述不同时刻不同体元的运动状态。
设:一列平面简谐波沿'轴正向传播,选择原点-|处体元相位为0的时刻为计时起点,即该体元的相位为零,则:|处体元的运动学方程:y = Acos魏其中:「为体元距平衡位置的位移,A、「为波源的振幅和圆频率。
Ai ——经:的时间,- |处体元的振动状态传到位于二处的体元,即:t时刻,位于厂处(巧t ——的体元的振动状态应与I甘丿时刻处体元的振动状态一样,则乔处体元的运动学方程为:其中:V 为振动状态传播的速度,叫波速,也叫相速。
⑴式就是平面简谐波方程。
从⑴式时刻的波形。
T=—r由⑴可知:二处体元振动的周期、频率和圆频率:注意:•不一定是振动系统的固有频率而取决于波源频率,所以⑴中的形式不意味 着各体元作简谐振动。
由⑵知:t 一定时,y 是二的周期函数,也存在空间位置上的周期,波长即:波长是波在一个周期内传播的距离,或:沿波传播方向相邻同相位两点间的距离。
另外,由空间位置的周期性可知:A — vT =—定义: ',称为波数:看出:二处质元的振动比原点处的质元落后 X耳£誌X —F 丿。
图5-100 问题5.11用图 G 问 题5.8 什么是波动?波动与振动有何区别与联系?答:振动在空间的传播过程叫波动。
振动是指一个质点的运动,波动是指介质内大量质点参与的集体振动的运动形式。
波动是振动状态的传播,或者说是振动相位的传播。
5.9 横波与纵波有什么区别?答:质点的振动方向与波的传播方向相垂直的波称为横波,质点的振动方向与波的传播方向相互平行的波称为纵波。
横波的波形图可看到波峰和波谷,纵波的波形图可看到疏密区域。
横波的形成是由于介质元的切应力而产生的相互切应力,纵波的形成是由于质元的压缩和拉伸的线应变而产生的相互正应力。
横波可以在固体中传播,纵波可以在固体、液体和气体中传播。
5.10 沿简谐波的传播方向相隔x ∆的两质点在同一时刻的相位差是多少?分别以波长λ和波数k 来表示。
答: 两质点同一时刻的相位差为:2x k x πϕλ∆=∆=∆。
5.11 设某时刻横波波形曲线如图5-100所示,试分别用箭头表示出图中A 、B 、C 、D 、E 、F 、G 、H 、I 等质点在该时刻的运动方向,并画出经过1/4周期后的波形曲线。
答:由于是横波,所以该时刻各质点的运动方向均发生在y 轴方向。
考虑经过t ∆时间后的波形,其中C 、G 质点已到达最大位移,瞬间静止,A 、B 、H 、I 质点沿y 轴向下运动,D 、E 、F 质点沿y 轴向上运动。
经1/4周期波形向前走了1/4个波长的距离。
5.12 波形曲线与振动曲线有什么不同?答:波形曲线是描述空间任意某点处质元在任意时刻的位移,即位移为空间位置和时间的函数形式。
振动曲线是描述确定质点的位移随时间变化的曲线。
5.13 机械波的波长、频率、周期和波速四个量中(1)在同一介质中,哪些量是不变的?(2)当波从一种介质进入另一种介质时,哪些量是不变的?答:1)在同一介质中,波速是不变的,频率不变,周期不变,波长也不变。
2)当波从一种介质进入另一种介质时,频率不变,周期不变;但波速改变,波长改变。
波的基本概念1.波:振动在媒质(介质)中的传播就是波,分为横波和纵波。
2.横波:媒质中各体元振动的方向与波传播的方向垂直。
例如:一根均匀柔软的细绳的振动,形成的波就是横波。
3.纵波:媒质中各体元振动的方向与波传播的方向平行。
例如:空气中的声波,空气中体元时而靠近,时而疏远。
4.表面波:在两中媒质的界面上传播的波。
例如:水面波。
5.波面:波传播时,同相位各点所组成的面。
6.波前:离波源最远,即“最前方”的波面。
7.波射线:与波面垂直且表明波的传播方向的线叫波射线。
8.平面波:波前为平面的波。
波线是互相平行的。
9.球面波:波前为球面。
点波源在均匀的和各向同性媒质中发生的波是球面波。
波线是相交于波源的直线。
平面简谐波方程一. 平面简谐波:平面波传播时,媒质中体元均按正弦(或余弦)规律运动。
二. 平面简谐波方程(从运动学角度考虑):描述不同时刻不同体元的运动状态。
设:一列平面简谐波沿轴正向传播,选择原点处体元相位为0的时刻为计时起点,即该体元的相位为零,则处体元的运动学方程:其中:为体元距平衡位置的位移,A、为波源的振幅和圆频率。
经的时间,处体元的振动状态传到位于处的体元,即:t时刻,位于处的体元的振动状态应与时刻处体元的振动状态一样,则处体元的运动学方程为:⑴其中:v为振动状态传播的速度,叫波速,也叫相速。
⑴式就是平面简谐波方程。
从⑴式看出:处质元的振动比原点处的质元落后。
若:波动沿轴负方向传播,则波动方程为:⑵⑵式可以看出:处质元的振动超前于原点处的质元。
三. 平面简谐波方程的物理意义1.当一定时,表示x处质元的振动方程,初位相是2.当t一定时,表示t时刻各个质元偏离平衡位置的位移,即t 时刻的波形。
由⑴可知:处体元振动的周期、频率和圆频率:注意:不一定是振动系统的固有频率而取决于波源频率,所以⑴中的形式不意味着各体元作简谐振动。
由⑵知:t一定时,y是的周期函数,也存在空间位置上的周期,波长:⑶即:波长是波在一个周期内传播的距离,或:沿波传播方向相邻同相位两点间的距离。