大数据培训零基础教学 Hadoop模式与搭建的相关问题
- 格式:docx
- 大小:32.40 KB
- 文档页数:4
Hadoop大数据开发基础教案Hadoop介绍教案第一章:Hadoop概述1.1 课程目标了解Hadoop的定义、发展历程及应用场景掌握Hadoop的核心组件及其作用理解Hadoop在大数据领域的优势1.2 教学内容Hadoop的定义与发展历程Hadoop的核心组件:HDFS、MapReduce、YARN Hadoop的应用场景与优势1.3 教学方法讲解与案例分析相结合互动提问,巩固知识点1.4 课后作业简述Hadoop的发展历程及其在大数据领域的优势。
第二章:HDFS(分布式文件系统)2.1 课程目标掌握HDFS的架构与工作原理了解HDFS的优势与局限性掌握HDFS的常用操作命令2.2 教学内容HDFS的架构与工作原理HDFS的优势与局限性HDFS的常用操作命令:hdfs dfs, hdfs dfsadmin2.3 教学方法讲解与实践操作相结合案例分析,理解HDFS的工作原理2.4 课后作业利用HDFS命令练习文件的与。
第三章:MapReduce编程模型3.1 课程目标掌握MapReduce的基本概念与编程模型理解MapReduce的运行原理与执行过程学会使用MapReduce解决大数据问题3.2 教学内容MapReduce的基本概念:Mapper、Reducer、Shuffle与Sort MapReduce的编程模型:Map阶段、Shuffle阶段、Reduce阶段MapReduce的运行原理与执行过程3.3 教学方法讲解与编程实践相结合剖析经典MapReduce案例,理解编程模型3.4 课后作业编写一个简单的MapReduce程序,实现单词计数功能。
第四章:YARN(资源管理器)4.1 课程目标掌握YARN的基本概念与架构了解YARN的工作原理与调度策略掌握YARN的资源管理与优化方法4.2 教学内容YARN的基本概念与架构YARN的工作原理与调度策略YARN的资源管理与优化方法4.3 教学方法讲解与案例分析相结合实操演练,掌握YARN的资源管理方法4.4 课后作业分析一个YARN集群的资源使用情况,提出优化方案。
解决Hadoop使用中常见的问题在大数据时代,Hadoop已经成为了处理海量数据的重要工具。
然而,随着Hadoop的普及,一些常见的问题也随之出现。
本文将探讨这些问题并提供解决方案,帮助用户更好地使用Hadoop。
一、数据丢失问题在使用Hadoop时,数据丢失是一个常见的问题。
这可能是由于硬件故障、网络问题或软件错误引起的。
为了解决这个问题,我们可以采取以下措施:1. 数据备份:在Hadoop集群中,数据通常会被复制到多个节点上。
这样,即使一个节点发生故障,数据仍然可以从其他节点中恢复。
因此,我们应该确保数据的备份策略已经正确配置。
2. 定期监控:通过监控Hadoop集群的状态,我们可以及时发现并解决数据丢失的问题。
可以使用一些监控工具,如Ambari、Ganglia等,来实时监控集群的健康状况。
二、任务执行时间过长问题在处理大规模数据时,任务执行时间过长是一个普遍存在的问题。
这可能是由于数据倾斜、节点负载不均衡等原因引起的。
为了解决这个问题,我们可以采取以下措施:1. 数据倾斜处理:当某个任务的输入数据不均匀地分布在各个节点上时,会导致某些节点的负载过重,从而影响整个任务的执行效率。
我们可以通过数据倾斜处理算法,如Dynamic Partitioning、Salting等,将数据均匀地分布到各个节点上,从而提高任务的执行效率。
2. 节点负载均衡:通过调整Hadoop集群的配置,我们可以实现节点负载的均衡。
例如,可以使用Hadoop的资源管理器(ResourceManager)来动态分配任务给各个节点,从而使得节点的负载更加均衡。
三、数据安全问题随着大数据的快速发展,数据安全问题变得尤为重要。
在Hadoop中,数据安全主要包括数据的保密性和完整性。
为了解决这个问题,我们可以采取以下措施:1. 数据加密:我们可以使用Hadoop提供的加密功能来保护数据的机密性。
可以使用Hadoop的加密文件系统(HDFS Encryption)来对数据进行加密,从而防止未经授权的访问。
基于Hadoop的大数据处理平台搭建与部署一、引言随着互联网和信息技术的快速发展,大数据已经成为当今社会中不可或缺的重要资源。
大数据处理平台的搭建与部署对于企业和组织来说至关重要,而Hadoop作为目前最流行的大数据处理框架之一,其搭建与部署显得尤为重要。
本文将介绍基于Hadoop的大数据处理平台搭建与部署的相关内容。
二、Hadoop简介Hadoop是一个开源的分布式存储和计算框架,能够高效地处理大规模数据。
它由Apache基金会开发,提供了一个可靠、可扩展的分布式系统基础架构,使用户能够在集群中使用简单的编程模型进行计算。
三、大数据处理平台搭建准备工作在搭建基于Hadoop的大数据处理平台之前,需要进行一些准备工作: 1. 硬件准备:选择合适的服务器硬件,包括计算节点、存储节点等。
2. 操作系统选择:通常选择Linux系统作为Hadoop集群的操作系统。
3. Java环境配置:Hadoop是基于Java开发的,需要安装和配置Java环境。
4. 网络配置:确保集群内各节点之间可以相互通信。
四、Hadoop集群搭建步骤1. 下载Hadoop从Apache官网下载最新版本的Hadoop压缩包,并解压到指定目录。
2. 配置Hadoop环境变量设置Hadoop的环境变量,包括JAVA_HOME、HADOOP_HOME等。
3. 配置Hadoop集群编辑Hadoop配置文件,包括core-site.xml、hdfs-site.xml、mapred-site.xml等,配置各个节点的角色和参数。
4. 启动Hadoop集群通过启动脚本启动Hadoop集群,可以使用start-all.sh脚本启动所有节点。
五、大数据处理平台部署1. 数据采集与清洗在搭建好Hadoop集群后,首先需要进行数据采集与清洗工作。
通过Flume等工具实现数据从不同来源的采集,并进行清洗和预处理。
2. 数据存储与管理Hadoop提供了分布式文件系统HDFS用于存储海量数据,同时可以使用HBase等数据库管理工具对数据进行管理。
[⼤数据运维]第28讲:Hadoop平台常见故障汇总以及操作系统性能调优第28讲:Hadoop 平台常见故障汇总以及操作系统性能调优⾼俊峰(南⾮蚂蚁)Hadoop ⽇常运维问题及其解决⽅法1.如何下线⼀个 datanode 节点?当⼀个 datanode 节点所在的服务器故障或者将要退役时,你需要在 Hadoop 中下线这个节点,下线⼀个 datanode 节点的过程如下。
(1)修改 hdfs-site.xml ⽂件如下选项,找到 namenode 节点配置⽂件 /etc/hadoop/conf/hdfs-site.xml:<property><name>dfs.hosts.exclude</name><value>/etc/hadoop/conf/hosts-exclude</value></property>(2)修改 hosts-exclude ⽂件执⾏如下操作,在 hosts-exclude 中添加需要下线的 datanode 主机名:vi /etc/hadoop/conf/hosts-exclude172.16.213.188(3)刷新配置在 namenode 上以 hadoop ⽤户执⾏下⾯命令,刷新 hadoop 配置:[hadoop@namenodemaster ~]$hdfs dfsadmin -refreshNodes(4)检查是否完成下线执⾏如下命令,检查下线是否完成:[hadoop@namenodemaster ~]$hdfs dfsadmin -report也可以通过 NameNode 的 50070 端⼝访问 Web 界⾯,查看 HDFS 状态,需要重点关注退役的节点数,以及复制的块数和进度。
2.某个 datanode 节点磁盘坏掉怎么办?如果某个 datanode 节点的磁盘出现故障,那么该节点将不能进⾏写⼊操作,并导致 datanode 进程退出,针对这个问题,你可以如下解决:⾸先,在故障节点上查看 /etc/hadoop/conf/hdfs-site.xml ⽂件中对应的 dfs.datanode.data.dir 参数设置,去掉故障磁盘对应的⽬录挂载点;然后,在故障节点上查看 /etc/hadoop/conf/yarn-site.xml ⽂件中对应的 yarn.nodemanager.local-dirs 参数设置,去掉故障磁盘对应的⽬录挂载点;最后,重启该节点的 DataNode 服务和 NodeManager 服务即可。
《Hadoop大数据开发实战》教学教案(第一部分)一、教学目标1. 理解Hadoop的基本概念和架构2. 掌握Hadoop的安装和配置3. 掌握Hadoop的核心组件及其作用4. 能够搭建简单的Hadoop集群并进行基本的操作二、教学内容1. Hadoop简介1.1 Hadoop的定义1.2 Hadoop的发展历程1.3 Hadoop的应用场景2. Hadoop架构2.1 Hadoop的组成部分2.2 Hadoop的分布式文件系统HDFS2.3 Hadoop的计算框架MapReduce3. Hadoop的安装和配置3.1 Hadoop的版本选择3.2 Hadoop的安装步骤3.3 Hadoop的配置文件解读4. Hadoop的核心组件4.1 NameNode和DataNode4.2 JobTracker和TaskTracker4.3 HDFS和MapReduce的运行原理三、教学方法1. 讲授法:讲解Hadoop的基本概念、架构和组件2. 实践法:引导学生动手实践,安装和配置Hadoop,了解其运行原理3. 讨论法:鼓励学生提问、发表观点,共同探讨Hadoop的应用场景和优缺点四、教学准备1. 教师准备:熟悉Hadoop的安装和配置,了解其运行原理2. 学生准备:具备一定的Linux操作基础,了解Java编程五、教学评价1. 课堂参与度:学生提问、回答问题的积极性2. 实践操作:学生动手实践的能力,如能够独立完成Hadoop的安装和配置3. 课后作业:学生完成课后练习的情况,如编写简单的MapReduce程序4. 综合评价:结合学生的课堂表现、实践操作和课后作业,综合评价学生的学习效果《Hadoop大数据开发实战》教学教案(第二部分)六、教学目标1. 掌握Hadoop生态系统中的常用组件2. 理解Hadoop数据存储和处理的高级特性3. 学会使用Hadoop进行大数据处理和分析4. 能够运用Hadoop解决实际的大数据问题七、教学内容1. Hadoop生态系统组件7.1 YARN的概念和架构7.2 HBase的概念和架构7.3 Hive的概念和架构7.4 Sqoop的概念和架构7.5 Flink的概念和架构(可选)2. Hadoop高级特性8.1 HDFS的高可用性8.2 HDFS的存储策略8.3 MapReduce的高级特性8.4 YARN的资源管理3. 大数据处理和分析9.1 Hadoop在数据处理中的应用案例9.2 Hadoop在数据分析中的应用案例9.3 Hadoop在机器学习中的应用案例4. Hadoop解决实际问题10.1 Hadoop在日志分析中的应用10.2 Hadoop在网络爬虫中的应用10.3 Hadoop在图像处理中的应用八、教学方法1. 讲授法:讲解Hadoop生态系统组件的原理和应用2. 实践法:引导学生动手实践,使用Hadoop进行数据处理和分析3. 案例教学法:分析实际应用案例,让学生了解Hadoop在不同领域的应用九、教学准备1. 教师准备:熟悉Hadoop生态系统组件的原理和应用,具备实际操作经验2. 学生准备:掌握Hadoop的基本操作,了解Hadoop的核心组件十、教学评价1. 课堂参与度:学生提问、回答问题的积极性2. 实践操作:学生动手实践的能力,如能够独立完成数据处理和分析任务3. 案例分析:学生分析实际应用案例的能力,如能够理解Hadoop在不同领域的应用4. 课后作业:学生完成课后练习的情况,如编写复杂的MapReduce程序或使用Hadoop生态系统组件进行数据处理5. 综合评价:结合学生的课堂表现、实践操作、案例分析和课后作业,综合评价学生的学习效果重点和难点解析一、Hadoop的基本概念和架构二、Hadoop的安装和配置三、Hadoop的核心组件四、Hadoop生态系统组件五、Hadoop数据存储和处理的高级特性六、大数据处理和分析七、Hadoop解决实际问题本教案涵盖了Hadoop的基本概念、安装配置、核心组件、生态系统组件、数据存储和处理的高级特性,以及大数据处理和分析的实际应用。
大数据分析实训课程学习总结利用Hadoop 和Spark进行大规模数据处理的技巧与策略近年来,随着信息时代的发展,大数据成为了各行各业不可忽视的重要资源。
为了充分利用大数据的价值,我报名参加了一门名为“大数据分析实训”的课程。
在这门课程中,我们学习了如何使用Hadoop和Spark这两个强大的工具来进行大规模数据处理,并掌握了一些技巧与策略。
在接下来的内容中,我将对这门课程所学知识进行总结和回顾。
首先,在课程的初期,我们对Hadoop进行了学习和实践。
Hadoop是一个开源的分布式计算平台,可以处理大规模数据集并将其分成若干个小任务进行处理。
在使用Hadoop进行大规模数据处理时,我们需要了解和掌握以下一些技巧和策略。
第一,合理的数据切分策略。
Hadoop适合处理大规模的数据,但是如果数据集过大,会严重影响计算性能。
因此,我们需要将数据集合理地切分成小块,以便能够并行地进行处理。
在切分数据时,可以考虑根据关键字段进行划分,使得同一组数据能够被分到同一个节点上进行计算,提高效率。
第二,数据本地性原则。
Hadoop的一个核心思想就是将计算移动到数据所在的节点上,以减少数据的传输和网络带宽的开销。
因此,在编写Hadoop程序时,我们要尽量保证数据和计算在同一节点上进行,尽量避免跨节点的数据传输。
第三,合理配置和调优。
Hadoop的性能和稳定性很大程度上取决于其配置和参数设置。
我们需要根据数据集的规模和计算需求,对Hadoop集群进行合理的配置和调优,以获得更好的性能和效果。
接下来,我们学习了Spark这个快速、通用的大数据处理引擎。
相比于Hadoop,Spark具有更高的计算速度和更强大的内存管理能力,可以用于实时数据处理、机器学习、图计算等多种场景。
在使用Spark进行大规模数据处理时,我们需要注意以下几点技巧和策略。
首先,合理选择RDD和DataFrame。
RDD是Spark的基本数据结构,而DataFrame则是Spark 2.0之后新引入的数据结构,相比于RDD,DataFrame具有更高效的内存管理和优化能力。
Hadoop使用常见问题以及解决方法1:Shuffle Error: Exceeded MAX_FAILED_UNIQUE_FETCHES; bailing-out Answer:程序里面需要打开多个文件,进行分析,系统一般默认数量是1024,(用ulimit -a可以看到)对于正常使用是够了,但是对于程序来讲,就太少了。
修改办法:修改2个文件。
/etc/security/limits.confvi /etc/security/limits.conf加上:* soft nofile 102400* hard nofile 409600$cd /etc/pam.d/$sudo vi login添加 session required /lib/security/pam_limits.so针对第一个问题我纠正下答案:这是reduce 预处理阶段shuffle时获取已完成的map的输出失败次数超过上限造成的,上限默认为5。
引起此问题的方式可能会有很多种,比如网络连接不正常,连接超时,带宽较差以及端口阻塞等。
通常框架内网络情况较好是不会出现此错误的。
2:Too many fetch-failuresAnswer:出现这个问题主要是结点间的连通不够全面。
1) 检查、/etc/hosts要求本机ip对应服务器名要求要包含所有的服务器ip + 服务器名2) 检查 .ssh/authorized_keys要求包含所有服务器(包括其自身)的public key3:处理速度特别的慢出现map很快但是reduce很慢而且反复出现reduce=0% Answer:结合第二点,然后修改conf/hadoop-env.sh 中的export HADOOP_HEAPSIZE=40004:能够启动 datanode ,但无法访问,也无法结束的错误在重新格式化一个新的分布式文件时,需要将你NameNode上所配置的.dir 这一namenode用来存放NameNode持久存储名字空间及事务日志的本地文件系统路径删除,同时将各DataNode上的dfs.data .dir的路径DataNode存放块数据的本地文件系统路径的目录也删除。
项目1 Hadoop基础知识1.Hadoop是由哪个项目发展来的?答:2002年,开源组织Apache成立开源搜索引擎项目Nutch,但在Nutch开发过程中,始终无法有效地将计算任务分配到多台计算机上。
2004年前后,Google陆续发表三大论文GFS、MapReduce和BigTable。
于是Apache在其Nutch里借鉴了GFS和MapReduce思想,实现了Nutch版的NDFS和MapReduce。
但Nutch项目侧重搜索,而NDFS和MapReduce则更像是分布式基础架构,因此,2006年,开发人员将NDFS和MapReduce移出Nutch,形成独立项目,称为Hadoop。
2.Hadoop主要有哪些版本?答:目前Hadoop的发行版除了Apache的开源版本之外,还有华为发行版、Intel发行版、Cloudera发行版(CDH)、Hortonworks发行版(HDP)、MapR等,所有这些发行版均是基于Apache Hadoop衍生出来的。
Apache Hadoop版本分为两代,第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop 2.0。
第一代Hadoop包含三个大版本,分别是0.20.x,0.21.x和0.22.x,其中,0.20.x 最后演化成1.0.x,变成了稳定版,而0.21.x和0.22.x增加了NameNode HA等新的重大特性。
第二代Hadoop包含两个版本,分别是0.23.x和2.x,它们完全不同于Hadoop 1.0,是一套全新的架构,均包含HDFS Federation和YARN两个系统,相比于0.23.x,2.x增加了NameNodeHA和Wire-compatibility两个重大特性。
3.简要描述Hadoop的体系结构,分析1.x与2.x版本间的区别。
答:Hadoop 2.x相比Hadoop 1.x最大的变化是增加了YARN组件,YARN是一个资源管理和任务调度的框架,主要包含三大模块:ResourceManager(RM)、NodeManager(NM)和ApplicationMaster(AM)。
北京尚学堂提供问题导读:1.hadoop编程需要哪些基础?2.hadoop编程需要注意哪些问题?3.如何创建mapreduce程序及其包含几部分?4.如何远程连接eclipse,可能会遇到什么问题?5.如何编译hadoop源码?阅读此篇文章,需要些基础下面两篇文章尚学堂_肖斌_hadoop经典视频教程/2015/down_0526/41.html尚学堂云计算极限班-云计算培训/html/cloud/如果看过的话,看这篇不成问题,此篇讲hadoop编程篇。
hadoop编程,hadoop是一个Java框架,同时也是编程的一次革命,使得传统开发运行程序由单台客户端(单台电脑)转换为可以由多个客户端运行(多台机器)运行,使得任务得以分解,这大大提高了效率。
hadoop既然是一个Java框架,因为我们必须要懂Java,网上有大量的资料,所以学习Java不是件难事。
但是学到什么程度,可能是我们零基础同学所关心的。
语言很多情况下都是相通的,如果你是学生,还处于打基础的阶段,那么难度对于你来说还是不小的。
1.初学者要求必须有理论基础,并且能够完成一个小项目,最起码能够完成几个小例子,例如图书馆里等。
初学者基本的要求:(1)懂什么是对象、接口、继续、多态(2)必须熟悉Java语法(3)掌握一定的常用包(4)会使用maven下载代码(5)会使用eclipse,包括里面的快捷键,如何打开项目传统程序员,因为具有丰富的编程经验,因此只要能够掌握开发工具:(1)会使用maven下载代码(2)会使用eclipse,包括里面的快捷键,如何打开项目(3)简单熟悉Java语法上面的只是基础,如果想开发hadoop,还需要懂得下面内容(1)会编译hadoop(2)会使用hadoop-eclipse-plugin插件,远程连接集群(3)会运行hadoop程序。
上面列出大概的内容,下面我们具体说一些需要学习的内容。
无论是传统开发人员还是学生,零基础下面都是需要掌握的:我们就需要进入开发了。
大数据培训零基础教学Hadoop模式与搭建的相关问题
刚刚结束了大数据Hadoop的相关教学,诚如前辈所言,确实是最重要且最难的一部分课程。
在老师事先打好预防针的前提下,可以说是聚精会神,全身关注的完成了这部分知识的学习,当然后期仍然需要投入大量的时间进行巩固性学习和挖掘。
大数据培训课上,理论和操作性的知识点很多,尤其在近期学习的Hadoop集群的搭建问题上,小细节,小难点拼频频出现,所以,今天集中总结以下笔记,希望对各位同学有所帮助。
ps:以下不涉及完全分布式,只说明单机版和伪分布式。
一、hadoop本地模式和伪分布式模式之间的区别
1.单机(非分布式)模式。
这种模式在一台单机上运行,没有分布式文件系统,而是直接读写本地操作系统的文件系统。
2.伪分布式运行模式。
这种模式也是在一台单机上运行,但用不同的Java进程模仿分布式运行中的各类结点: (NameNode,DataNode,JobTracker,TaskTracker,SecondaryNameNode)。
请注意分布式运行中的这几个结点的区别:从分布式存储的角度来说,集群中的结点由一个NameNode和若干个DataNode组成,另有一个SecondaryNameNode作为NameNode
的备份;从分布式应用的角度来说,集群中的结点由一个JobTracker和若干个TaskTracker 组成,JobTracker负责任务的调度,TaskTracker负责并行执行任务。
TaskTracker必须运行在DataNode上,这样便于数据的本地计算。
JobTracker和NameNode则无须在同一台机器上。
一个机器上,既当namenode,又当datanode,或者说既是jobtracker,又是tasktracker。
没有所谓的在多台机器上进行真正的分布式计算,故称为"伪分布式"。
二,hadoop本地模式的搭建
1.首先需要一台客户机。
2.安装jdk。
1)首先在客户机根目录root文件夹下建立tools文件夹:root> mkdir tools。
2)用远程连接工具连接客户机,拖拽压缩包到客户机 root/tools/目录下
3) 解压jdk到/etc/local下:tar -zxvf jdk-8u152-linux-x64.tar.gz -C /usr/local/
3.安装hadoop
1) 拖拽压缩包到客户机root/rools 目录下。
2)解压hadoop到etc/local/下:tar -zxvf hadoop-2.7.2.tar.gz -C /usr/local/。
4.配置环境变量
hadoop> vi /etc/profile
export JAVA_HOME=/usr/local/jdk1.8.0_152
export HADOOP_HOME=/usr/local/hadoop-2.7.2/
export CLASSPATH=.;JAVA_HOME/lib/dt.jar;JAVA_HOME/lib/tools.jar
export PATH=$JAVA_HOME/bi
PATH;HADOOP_HOME/bin;
HADOOP_HOME/sbin/;
5. hadoop version
java –version。
以上两项,都能正常显示除版本号,即为环境搭建成功,以上步骤为本地模式搭建成功!
三,hadoop伪分布式模式的搭建(以上五部到配置环境搭建成功为基础)
1..配置集群
1)配置:hadoop-env.sh。
Linux 系统中获取jdk 的安装路径:/usr/local/jdk1.8.0_15并修改JAVA_HOME 路径为:export JAVA_HOME=/opt/module/jdk1.8.0_144
2)配置:core-site.xml
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop101:9000</value>
<!-- 指定hadoop 运行时产生文件的存储目录-->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
3)配置:hdfs-site.xml
<!-- 指定HDFS 副本的数量-->
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
4)启动集群。
格式化namenode(第一次启动时格式化,以后就不要总格式化)[qianfeng@hadoop101 hadoop-2.7.2]$ bin/hdfs namenode –format。
启动namenode。
[qianfeng@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode。
启动datanode。
[qianfeng@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
5)查看集群是否成功。
[qianfeng@hadoop101 hadoop-2.7.2]$ jps。
13586 NameNode。
13668 DataNode。
13786 Jps。
//正常应该启动这三个进程6)查看产生的log日志。
当前目录:/usr/local/hadoop-2.7.2/logs>ls。
.log
.out
.log
.out
SecurityAuth-root.audit
cat hadoop-qianfeng-datanode-hadoop101.log
以上步骤即为伪分布式搭建成功!
最好,想留下几句话,告诫未来可能来到好程序员的学弟学妹们:没有攻不下的山头,没有打不赢的仗。
成大事者从不说“不”,分秒必争,用有限的时间赢得一个机会,五个月的时光足以成就脱胎换骨的你!。