高二数学反证法(20200806104323)
- 格式:pdf
- 大小:1.15 MB
- 文档页数:8
高二数学知识点重点解析:数学解题方法之反证法【】查字典数学网高中频道的编辑就为您准备了高二数学知识点重点解析:数学解题方法之反证法与前面所讲的方法不同,反证法是属于间接证明法一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。
法国数学家阿达玛(Hadamard)对反证法的实质作过概括:若肯定定理的假设而否定其结论,就会导致矛盾。
具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的矛盾律和排中律。
在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的矛盾律两个互相矛盾的判断不能同时都假,简单地说A或者非A,这就是逻辑思维中的排中律。
反证法在其证明过程中,得到矛盾的判断,根据矛盾律,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以否定的结论必为假。
再根据排中律,结论与否定的结论这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。
所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为否定推理否定。
即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是否定之否定。
应用反证法证明的主要三步是:否定结论推导出矛盾结论成立。
实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到反设进行推理,否则就不是反证法。
用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫归谬法如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫穷举法。
反证法反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。
法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。
具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。
在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。
反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。
再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。
所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为“否定→推理→否定”。
即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。
应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。
实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。
用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
高二数学反证法在大家的学习中,数学是大家学习的难点。
对于数学的学习,每个人都必须掌握一定的学习技巧。
这一点很重要,同时大家也要了解数学中的一些重要概念。
下面学大教育专家为大家讲解高二数学中的反证法。
一、反证法的逻辑依据反证法的理论依据是形式逻辑中的两个基本规律——矛盾律和排中律。
所谓“矛盾律”是说:在同一论证过程中两个互相反对或互相否定的论断,其中至少有一个是假的。
而所谓“排中律”则是说:任何一个判断或者为真或者为假,二者必居其一。
也就是说结论“p真”与“非p真”中有且只有一个是正确的。
关于反证法,法国数学家J·阿达玛曾说过:“这种方法在于表明:若肯定定理的假设而否定其结论,就会导致矛盾。
”这段话可以理解为:假设命题的结论不正确,并运用此判断,在正确的逻辑推证下导致逻辑矛盾,(根据矛盾律)知该相反判断的错误性,(再根据排中律)进而知判断本身的正确性。
这就是反证法的逻辑依据。
由此可见,证明原命题的逆否命题只是反证法的一种具体形式。
二、反证法与证逆否命题是不同的全日制普通高级中学教科书(试验修订本·必修)数学第一册(上)《教师教学用书》(以下简称教参)在第10页中指出:从逻辑角度看,命题“若p则q”的否定,是“p且非q”,由此进行推理,如果发生矛盾,那么“p且非q”为假,因此可知“若 p则q”为真。
像这样证明“若p 则q”为真的证明方法,叫做反证法。
如上所述,用反证法证明命题“若p则q”,是把“p且非q”作为假设,利用正确的推理推出矛盾,得出“p且非q”为假,从而得出“若p则q”为真;而证明命题“若p则q”的逆否命题“若非q则非p ”,是将非q作为条件,用正确的推理推出非p成立,根据“若p则q”和“若非q则非p ”的等价性得出“若p则q”成立。
比较可知,不论从思路方面还是从方法方面来讲,反证法与证逆否命题是有着本质的不同的。
因而“反证法就是证逆否命题”这一说法的不妥之处便是非常清楚的了。